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Abstract
A new era has begun in the treatment of ischemic disease and heart failure. With the discovery that
stem cells from diverse organs and tissues, including bone marrow, adipose tissue, umbilical cord
blood, and vessel wall, have the potential to improve cardiac function beyond that of conventional
pharmacological therapy comes a new field of research aiming at understanding the precise
mechanisms of stem cell-mediated cardiac repair. Not only will it be important to determine the
most efficacious cell population for cardiac repair, but also whether overlapping, common
mechanisms exist. Increasing evidence suggests that one mechanism of action by which cells
provide tissue protection and repair may involve paracrine factors, including cytokines and growth
factors, released from transplanted stem cells into the surrounding tissue. These paracrine factors
have the potential to directly modify the healing process in the heart, including neovascularization,
cardiac myocyte apoptosis, inflammation, fibrosis, contractility, bioenergetics, and endogenous
repair.

Heart failure and stem cells
Although coronary artery disease accounts for two-thirds
of heart failure cases in the United States [1], other causes
leading to heart failure are due to non-ischemic events
and include myocarditis, hypertension, diabetes, arrhyth-
mias, valvular disease, hypothyroidism, and drug-induced
cardiotoxicity. The molecular and cellular mechanisms
mediating heart failure have been the focus of numerous
research efforts, and include cardiac myocyte apoptosis
and necrosis, cardiac myocyte hypertrophy, interstitial
fibrosis, decreased contractility, inflammation, oxidative
stress, and impaired neovascularization. Pharmacological
therapies for the treatment of heart failure have tradition-
ally targeted pump function and quality of life for end-
stage heart failure patients, and although several medica-
tions are available to limit the progression of the disease,

the current therapies or interventional procedures do not
lead to replacement of tissue and, thus, do not stop or
reverse progression of adverse left ventricular (LV) remod-
eling in all patients [2,3]. The use of stem cell-based ther-
apy is becoming increasingly recognized as having the
potential to salvage damaged myocardium and to pro-
mote endogenous repair of cardiac tissue [4-6]. Although
the available data in this area are highly debatable, the
potential of stem cell-based therapy for the treatment of
heart failure remains an alternative option.

Stem cells are defined as cells that have the capacity to self
renew, multipotency/pluriopotency, and clonality, and
are divided into embryonic stem cells and adult stem cells.
Although embryonic stem cells may have more potential
for cardiac differentiation and thus replacement of dam-
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aged myocardium, few studies have focused on paracrine
factors released from these cells that may be involved in
mediating cardiac repair. Therefore, this review will focus
on adult stem or adult progenitor cells, since numerous
studies suggest that paracrine factors released from these
cells may comprise an important mechanism contributing
to cardiac protection after their transplantation into the
myocardium.

Types of stem cells
Adult stem cells comprise at least three different groups:
bone marrow-derived stem cells, the circulating pool of
stem or progenitor cells, which, at least in part, are derived
from the bone marrow, and tissue-resident stem cells.
Bone marrow contains a complex assortment of progeni-
tor cells, including hematopoietic stem cells (HSCs), so-
called 'side population cells' (SP cells; defined by the
expression of the Abcg2 transporter, which enables export
of a Hoechst dye) [7], mesenchymal stem cells (MSCs) or
stromal cells [8], and multipotential adult progenitor cells
(MAPCs), a subset of MSCs [9], (see Table 1).

Another population of progenitor cells that has also been
shown to have therapeutic potential is the pool of progen-
itor cells circulating within the blood. Asahara and Isner
isolated the so called 'endothelial progenitor cells' (EPCs),
defined by their function to form new blood vessels and
enhance neovascularization after ischemia (for a review,
see [10,11]. However, the definition of these cells has
recently been challenged [12] and it appears that these
cells, isolated and cultured from the mononuclear cell
fraction, may actually consist of a mixture of cells includ-
ing HSCs, EPCs, and myeloid cells. Regardless of the exact
definition of these cell populations, it appears that these
cells have the capacity to acquire an endothelial-like phe-

notype, or at least, have the capacity to promote neovas-
cularization.

Tissue-resident stem cells in the heart, the 'cardiac stem'
cells, include cells characterized by c-Kit+ marker expres-
sion [13], Sca-1+ marker expression [14], cardiac SP cells
[15] and cells expressing the protein Islet-1 [16]. Another
type of cardiac stem cell has been identified by growing
self-adherent clusters (termed 'cardiospheres') from sub-
cultures of murine or human biopsy specimens. Whether
these cells and c-Kit+, Sca-1+ and cardiac SP cells comprise
distinct cell populations is not entirely clear. Furthermore,
the exact origin of these c-Kit+, Sca-1+, SP, Islet-1+, or car-
diosphere-derived cardiac stem cells and the mechanisms
maintaining the cardiac stem cell pool are unclear. Two
recent studies suggest that c-Kit+ and cardiac SP cells may
arise from the bone marrow [17,18]. However, these stud-
ies cannot entirely exclude that specific subpopulations of
cardiac stem cells originate from the heart and these car-
diac stem cells may represent remnants from embryonic
development in selected niches within the heart.

Clinical trials
Most of the clinical trials using stem/progenitor cells to
treat patients following an ischemic event have, to date,
used cells derived from the bone marrow [19-22]. Using a
systematic review and meta-analysis of all of the com-
pleted clinical trials using bone marrow-derived stem cells
to treat ischemic heart disease, Abdel-Latif et al. [23] and
Lipinski et al. [24] suggested that the transplantation of
these cells is safe and efficacious beyond the benefits
achieved using traditional therapy using pharmaceuticals.
Using such analysis, these studies found that there were
decreases in infarct scar size, improvements in ejection
fraction, and decreased left ventricular end systolic vol-
ume, suggesting improvement in overall global function.

Table 1: Summary of cell derived factors in different cell populations.

Stem cell type Stem-cell derived factors

Bone marrow
BM-MNCs VEGF, bFGF, Ang-1, IL-1β, TNF-α [26]
BMSCs (HSCs and MSCs) VEGF, bFGF, IGF, SDF-1, Akt, eNOS [27]
MSCs VEGF, bFGF, Ang-1, IL-1, SDF-1, PIGF, MCP-1, FGF-7, IL-6, TGF-β, PDGF, PA, MMP-

9, TB4, Sfrp, Tenacin C, Thrombospondin-1 [28,29]
MAPCs VEGF, MCP-1, TGF- β, PDGF-BB [32]
Multipotent BM-derived cells (non-HSCs and non-MSCs) VEGF, bFGF, Ang-1, Ang-2, IGF-1, SDF-1α, PDGF-B, HGF [34]

Circulating
Cultured PB-MNCs VEGF, HGF, G-CSF, GM-CSF [35]
EPCs VEGF-A, VEGF-B, SDF-1, IGF-1 [72]; VEGF-A FGF-2, IGF-1, HGF, Ang-1, SDF-1 [36]

Tissue resident
Cardiac stem cells
c-kit+, MDR-1+, Sca-1+ IGF-1, HGF [71]
Adipose stem cells MMP-9, MMP-3 [82]; VEGF, HGF, TGF-β [83,84]
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Interestingly, these studies found no significant differ-
ences in outcomes with the use of less or more than the
median number of transplanted stem cells; however, since
most of the clinical trials used different cell isolation pro-
tocols and subsets of bone marrow-derived cells, it
remains unclear which cell subpopulations would have
the most beneficial effects [25].

While it is virtually impossible to define the precise mech-
anisms involved in bone marrow cell-mediated improve-
ment in LV function in patients, the use of animal models
of heart disease aids not only in the discovery of which
stem cell population is the most efficacious, but also in
determining whether there are overlapping or differential
mechanisms between stem cell populations, such as the
release of paracrine factors. Paracrine factors, such as
growth factors and cytokines, are normally released from
endogenous cells of the heart in response to injury. These
factors may signal via the circulation to mediate stem cell
homing from the circulation, bone marrow, or tissue to
the site of injury, thus aiding in tissue repair. As a focus of
this review, we discuss how exogenously transplanted
cells also secrete paracrine factors, which may be more
advantageous in mediating cardiac repair by regulating
endogenous factors that play direct and important roles in
the regulation of neovascularization, fibrosis, inflamma-
tion, cardiac myocyte survival, contractility and bioener-
getics and endogenous repair.

Cell-derived paracrine factors and neovascularization
Review of the literature indicates, regardless of whether
'stem' or 'progenitor' cells consist of a mixture of several
cell populations or selected subpopulations, that these
cells have the capacity to mediate neovascularization.
Kamihata et al. [26] have shown that bone marrow mono-
nuclear cells (BM-MNCs), which consist of numerous dif-
ferent types of stem cells, transplanted into ischemic
myocardium mediate angiogenesis via increased expres-
sion of angiogenic ligands and cytokines such as basic
fibroblast growth factor (bFGF), vascular endothelial
growth factor (VEGF), angiopoietin-1 (Ang-1), inter-
leukin-1 beta (IL-1β), and tumor necrosis factor-alpha
(TNF-α). Bone marrow derived stem cells (BMSCs)
expressing c-kit and Sca-1 subjected to preconditioning
(anoxic conditions) expressed increased amounts of acti-
vated Akt and activated eNOS, and secreted higher levels
of VEGF, bFGF, insulin growth factor (IGF), and stromal
cell derived factor-1 (SDF-1) compared to cells cultured
under normal culture conditions, and the myocardial
transplantation of these preconditioned cells led to
increased blood vessel density [27]. Using MSCs, Kinnaird
et al. [28] demonstrated the release of several angiogenic
factors, such as VEGF, bFGF, placental growth factor
(PIGF), and monocyte chemoattractant protein-1 (MCP-
1), into the culture media, and the injection of these cells

led to an increase in vessel number without MSC incorpo-
ration in mature vessels. Using gene expression profiling,
additional studies from this laboratory demonstrate that
MSCs express bFGF, FGF-7, IL-1, IL-6, PIGF, transforming
growth factor-beta (TGF-β), TNF-α, and VEGF, which was
augmented in response to hypoxia. This increased gene
expression paralleled increased secreted protein levels of
VEGF, bFGF, IL-6, PIGF, MCP-1, platelet-derived growth
factor (PDGF), Ang-1, plasminogen activator (PA), and
metalloproteinase-9 (MMP-9) [29]. In the heart, the
intramyocardial injection of MSCs led to the in vivo upreg-
ulation of bFGF, VEGF, and SDF-1α, and led to increased
vessel density after myocardial infarction (MI) [30]. Over-
expression of VEGF in MSCs also led to increased capillary
density following MI [31], suggesting that stem cells may
be modulated to overexpress a variety of key factors that
may further enhance their capacity to promote neovascu-
larization in the heart.

Another population of bone marrow-derived stem cells,
MAPCs, was also found to secrete factors such as VEGF,
MCP-1, PDGF-BB, and TGF-β, and the authors postulated
that this increase in angiogenic factors led to increased
vascularity after the intramyocardial injection following
MI [32]. Specifically, PDGF-BB and TGF-β may act in an
autocrine manner on MAPCs to promote their differenti-
ation into a smooth muscle cell-like phenotype [33].
Moreover, a novel clonally expandable population of
BMSCs that did not express markers defining MSCs, HSCs,
or MAPCs was also capable of secreting paracrine factors
such as VEGF, hepatocyte growth factor (HGF), bFGF,
PDGF-B, SDF-1α, Ang-1, Ang-2, and IGF-1, leading to
therapeutic neovascularization [34].

Other cell types with angiogenic potential are those iso-
lated and cultured from the circulating pool of mononu-
clear cells, and these cells express factors that are pro-
angiogenic [35]. Specifically, we demonstrated signifi-
cantly higher mRNA levels of VEGF-A, VEGF-B, SDF-1,
and IGF-1 in cultured myeloid EPCs compared to adult
endothelial cells, which paralleled significant release of
VEGF, SDF-1, and IGF-1 protein into the cell culture
supernatant. The paracrine effect of these cells could also
be detected in vivo such that, in ischemic limbs, VEGF is
also released from recruited human EPCs. As a functional
consequence, conditioned medium of EPCs induced a
strong migratory response of mature endothelial cells,
which was significantly inhibited by VEGF and SDF-1
neutralizing antibodies. Taken together, EPCs exhibit a
high expression of angiogenic growth factors that have a
direct effect on mature endothelial cell migration and lead
to improved neovascularization after ischemia.

Altogether, these studies suggest that several types of bone
marrow-derived cells, consisting of either a mixture of dif-
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ferent types of cells, or selected subpopulations of stem
cells and circulating progenitor cells, have the capacity to
express and secrete paracrine factors that lead to increased
neovascularization following ischemia. Although these
studies demonstrate an increased release of paracrine fac-
tors into the culture media and increased tissue expression
of these paracrine factors upon cell transplantation, only
some of the studies address whether these paracrine fac-
tors are released from the in vivo transplanted cells or
whether the transplanted cells modulate endogenous tis-
sue cytokine and growth factor levels. In a recent study,
Cho et al. [36], demonstrated that the intramyocardial
injection of human EPCs into mice led to the upregula-
tion of a variety of angiogenic and anti-apoptotic factors,
such as VEGF-A, FGF-2, IGF-1, HGF, Ang-1, and SDF-1,
and these cells led to sustained upregulation of host
endogenous factors, such as VEGF-A, FGF-2, Ang-1, Ang-
2, PIGF, HGF, IGF-1, PDGF-B, and SDF-1, strongly sug-
gesting that these endogenous factors may have contrib-
uted to the EPC-induced cardiac protection. Furthermore,
Tateno et al. [37], using a hind limb ischemia model,
demonstrated using IL-1β-deficient mice that the inability
of muscle cells to secrete IL-1β reduced induction of ang-
iogenic factors and impaired the neovascularization
induced by BM-MNC transplantation. Regardless of
whether the effects on elevated perfusion or neovasculari-
zation of ischemic tissue are due to paracrine factors from
the stem cells themselves or whether these paracrine fac-
tors modulate endogenous cells to release factors promot-
ing neovascularization, it is clear that transplanted BMSCs
have a vasculogenic capacity and have the ability to
improve function. However, it is becoming increasingly
clear that the effects of stem cell-derived paracrine factors
is not limited to their vasculogenic capacity, but also to
their ability to modulate other mechanisms known to be
involved in the development of heart failure.

Cell-derived paracrine factors and cardiac myocyte 
protection
The protection of the cardiac myocyte from cell death has
remained an attractive target for many therapeutic treat-
ments for heart disease. Apoptosis, also known as pro-
grammed cell death, and necrosis play major roles in
mediating ischemic injury and tissue remodeling. Thus,
the possibility that cell therapy leads to protection against
death of the cardiac muscle brings a new mechanism of
the beneficial effects of stem cell therapy into focus. The
measurement of paracrine factors from cultured stem cells
as well as enhancement strategies provide evidence that
stem cell-derived factors act directly to protect against car-
diac myocyte cell death. Specifically, VEGF, bFGF, IGF,
and SDF-1 were shown to be secreted by anoxic BMSCs,
and the cell supernatants or the transplantation of these
cells led to a decrease in cardiac myocyte apoptosis in vitro
and in vivo and led to an upregulation of the well-known

anti-apoptotic protein Bcl-2 in cardiac myocytes [27,38].
Furthermore, the overexpression of some of these factors
in the heart has further substantiated their protective role
in the heart after injury. For example, the intramyocardial
injection of adenoviruses overexpressing VEGF led to
decreased infarct size and increased expression of Bcl-2
[39], and injection of human recombinant bFGF also pre-
vented ischemia-induced myocardial death and increased
expression of Bcl-2 [40]. In addition, enhancement strate-
gies targeted at improving the in vivo survival of the stem
cells themselves has also proven to decrease cardiac myo-
cyte death via the secretion of paracrine factors. The over-
expression of the survival protein Akt in MSCs led to a
decrease in cardiac myocyte apoptosis in vitro and their
myocardial transplantation led to a decrease in infarct size
[41-44]. In addition to secreting VEGF, bFGF, IGF, and
SDF-1, Akt-overexpressing MSCs also secrete HGF, thy-
mosin β4 (TB4), and secreted frizzled related protein 2
(Sfrp2) [45]. HGF has been shown to be protective in
acute MI [46], and specifically anti-apoptotic, as shown by
HGF gene transfer [47], intravenous HGF treatment [48],
or its overexpression in transplanted MSCs [44]. TB4, a G-
actin sequestering peptide, was also shown to directly pro-
mote survival of embryonic and postnatal cardiac myo-
cytes in culture, and after coronary artery ligation in mice,
TB4 treatment resulted in enhanced myocardial survival
[49]. Sfrp2 released from Akt-overexpressing MSCs also
leads to a decrease in cell death of isolated hypoxic cardiac
myocytes in culture and specifically blocks the pro-apop-
totic effects of Wnt3a [45].

Altogether, these studies demonstrate that paracrine fac-
tors from exogenously transplanted BMSCs expressing c-
kit and Sca-1, or transplanted MSCs aid in prevention of
cardiac myocyte cell death and, thus, in the preservation
of muscle mass. However, the exact molecular pathways
leading to this protection are not well defined and are
likely to involve modulation of both caspase-dependent
and caspase-independent pathways of cell death. This
additionally discovered benefit of stem cell therapy for the
treatment of the heart following injury may not be limited
to cardiac myocyte protection. Since myocardial injury
leads to an infiltration of inflammatory cells and upregu-
lation of cytokines, stem cell therapy may additionally tar-
get these pathways involved in pathophysiological
remodeling.

Cell-derived paracrine factors and inflammation
There are two forms of immunity, innate and adaptive.
Innate immune responses are phylogenetically conserved
and initiate a quick response against a pathogen or myo-
cardial injury, whereas adaptive immune responses
involve antigen recognition and subsequent antibody
generation. The regulation of these two types of immune
responses in the heart involves upregulation and interac-
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tion of pro-inflammatory and anti-inflammatory
cytokines. In response to stress, the heart increases expres-
sion of a variety of pro-inflammatory and anti-inflamma-
tory cytokines, which play a dual role in the heart. Initial
inflammatory cytokine expression is necessary for main-
taining homeostatic responses within the heart after stress
or injury; however, the dysregulation and sustained
upregulation of certain cytokines ultimately leads to
adverse remodelling and heart failure [50]. The specific
regulation of expression and concentration of both pro-
inflammatory and anti-inflammatory cytokines and their
specific interactions is complex and incompletely under-
stood in the heart, but may comprise a mechanism under-
lying the beneficial effects of stem cell therapy. There is
increasing evidence that stem cells themselves, specifically
MSCs, secrete a variety of pro-inflammatory and anti-
inflammatory cytokines and that these cytokines may
directly act to limit deleterious, sustained endogenous
inflammation in the heart. Thus, administration of MSCs
led to a downregulation of the cytokines TNF-α, IL-1β and
IL-6, which are known to be involved in adverse LV
remodelling [51]. Furthermore, the transplantation of
MSCs attenuated myocardial dysfunction in a rat model
of acute myocarditis [52]. Specifically, the authors dem-
onstrated that MSC transplantation led to a decrease in
CD68-positive inflammatory cells and decreased MCP-1
expression. Furthermore, the MSC-derived conditioned
media protected isolated adult rat cardiac myocytes from
MCP-1-induced injury, suggesting that the anti-inflamma-
tory effects were due to paracrine factors released from
these stem cells. Clearly, MSCs seem to possess anti-
inflammatory properties, specifically through cytokine
expression and infiltration of inflammatory cells, but
these effects may not influence all aspects of innate immu-
nity. The infiltration of neutrophils after MI, as measured
by myeloid peroxidise (MPO) activity, did not appear to
differ between intramyocardially transplanted singly
cloned MSCs, unselected MSCs, BM-MNCs, or peripheral
blood mononuclear cells (PBMNCs) [53]. While most
studies focused on defining the role of adaptive immunity
in the heart use models of autoimmune myocarditis or
organ transplantation, it is becoming increasingly clear
that T lymphocytes play a role in MI. Specifically, Varda-
Bloom et al. [54] have shown that infiltration of T lym-
phocytes into the heart following MI, and in vitro co-cul-
ture of T lymphocytes from post-MI rats with isolated
cardiac myocytes from a non-infarcted rat heart resulted
in cytotoxicity of the cardiac myocytes. Accordingly, it is
well established that MSCs play a role in suppressing
adaptive immune responses. Specifically, MSCs sup-
pressed T lymphocyte proliferation and MSCs co-cultured
with purified subpopulations of immune cells altered
cytokine secretion and induced a more anti-inflammatory
phenotype [55,56]. It is clear that MSCs have a direct
immunomodulatory role in the adaptive immune

response, but the entire story of whether this immu-
nomodulation occurs in the heart after MSC transplanta-
tion is far from complete; also, whether other stem cell
populations play an immunomodulatory role in the heart
has not been tested. These cells may directly modulate T
lymphocyte function in the heart, leading to either protec-
tion against their cytotoxicity or, alternatively, modula-
tion of their role in cardiac remodelling. Specifically, T
lymphocytes co-cultured with cardiac fibroblasts led to an
increase in cardiac fibroblast pro-collagen expression
[57], suggesting that the in vivo suppression of T lym-
phocyte accumulation or function may also inhibit myo-
cardial fibrosis. Thus, alterations in the innate and
adaptive immune responses in the heart by transplanted
stem cells may serve as another mechanism contributing
to the improvement in LV function and the attenuation of
adverse LV remodelling.

Cell-derived paracrine factors and fibrosis
Most of the studies using stem cell therapy after MI have
shown a reduction in fibrosis. However, in most studies it
was not clearly defined whether the decreased fibrosis was
simply due to replacement of dead myocardium or
whether the paracrine factors released from these different
subpopulations of stem cells may have had direct effects
on the extracellular matrix. Nevertheless, in one study, a
direct effect on fibrosis by stem cells was demonstrated;
MSC-conditioned medium significantly attenuated prolif-
eration of cardiac fibroblasts and upregulated elastin,
myocardin and DNA-damage inducible transcript 3 [58].
Furthermore, MSC-conditioned medium significantly
downregulated type I and III collagen expression, and sig-
nificantly suppressed type III collagen promoter activity
[58]. In a subsequent study, the intravenous injection of
human multipotent stromal cells led to decreased fibrosis,
and gene expression analysis of cultured cells revealed an
upregulation of several matrix-modulating factors, such as
matrix metalloproteinase-2 (MMP-2), tissue inhibitors of
matrix metalloproteinases (TIMP)-1 and TIMP-2, and the
matricellular proteins thrombospondin-1 and tenacin C,
suggesting that these cells may have a direct effect on
extracellular matrix remodeling [59]. Importantly, trans-
plantation of MSCs led to decreased fibrosis in a rat model
of dilated cardiomyopathy [60]. Specifically, the trans-
plantation of these cells decreased MMP-2 and MMP-9
protein expression. Several paracrine factors released from
stem cells, such as HGF, adrenomedullin (AM), TB4, and
IL-1β, have previously been shown to directly reduce car-
diac fibrosis. For example, adenovirus-mediated HGF
gene transfer before ischemia led to decreased fibrosis
[47], and treatment of dilated cardiomyopathic Syrian
hamsters with HGF for three weeks suppressed cardiac
fibrosis and led to a decrease in TGF-β1 and type I colla-
gen expression [61]. AM administration also inhibited LV
remodeling in heart failure [62] and specifically inhibited
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the proliferation of cardiac fibroblasts through a cAMP-
dependent pathway [63]. TB4, harboring collagenase
activity, has been shown to be important in cardiac heal-
ing after MI, and these effects may be mediated by its
derivative, N-acetyl-seryl-aspartyl-lysyl-proline (Ac-
SDKP). Ac-SDKP was reported to reduce LV fibrosis in
hypertensive rats, reverse fibrosis and have collagenase
activity, similar to TB4 [64]. IL-1β, also secreted from sev-
eral populations of stem cells, has a direct anti-prolifera-
tive effect on cardiac fibroblasts [65]. Not only do the
paracrine factors released from MSCs modulate myocar-
dial fibrosis, but also cytokine or growth factor precondi-
tioning of these MSCs leads suppression of fibrosis. For
example, myocardially transplanted MSCs precondi-
tioned with SDF-1 led to a decrease in fibrosis after 4
weeks MI which was abrogated using a CXCR4 antagonist
[66]Moreover, the intramyocardial injection of TGF-β-
pretreated CD117+ cells led to a decrease in collagen fiber
accumulation in the infarcted region [67]. Altogether,
these studies suggest that stem cell-derived paracrine fac-
tors play a role in extracellular matrix remodeling that
may contribute to the observed improvements in LV func-
tion after stem cell transplantation.

Cell-derived paracrine factors and contractility and 
bioenergetics
Although few studies have investigated a direct role of
bone marrow-derived cells on cardiac myocyte contractil-
ity and bioenergetic function, it is becoming increasingly
clear that paracrine factors may act via this mechanism. In
one study, the intravenous injection of MSCs preserved LV
systolic function after MI without decreasing infarct size,
suggesting that, in this case, MSCs did not protect against
cardiac myocyte death but may have had a more direct
effect on cardiac myocyte contractility [68]. Furthermore,
incubation of supernatants from BM-MNCs with isolated
adult cardiac myocytes cultured for 72 hours led to an
increase in fractional shortening, the maximal rate of re-
lengthening, the maximal rate of shortening, and the
amplitude of the calcium ratio of the individual myocytes,
suggesting that paracrine factors released from stem cells
have a direct effect on the preservation of cardiac myocyte
contractile capacity. This is further substantiated by an
investigation determining whether myocardial stem cell
transplantation leads to changes in enzymes that modu-
late intracellular calcium and mediate cardiac myocyte
contraction. Using a population of heart-derived stem
cells expressing Sca-1 but lacking CD31, it was shown that
the intramyocardial injection of these cells following MI
led to a higher phosphocreatine/ATP ratio compared to
non-stem cell-treated hearts and higher creatine kinase-
mt, creatine kinase-m, and mitochondrial ATPase-β, sug-
gesting improved bioenergetic characteristics [69]. Fur-
thermore, the intramyocardial injection of a stock of
swine multipotent adult progenitor cells ('pMultistem

cells') led to a recovery of border zone subendocardial
phosphocreatine/ATP ratios and increased expression of
creatine kinase-mt and creatine kinase-m isoforms after
MI [70]. Altogether, these studies suggest that bone mar-
row-derived cells have the capacity to modulate calcium
handling, and preserve cardiac contractility and bioener-
getics. Whether these improvements directly limit struc-
tural and contractile abnormalities in heart disease or
whether these improvements occur in parallel with, or in
addition to, other stem cell-mediated beneficial effects
remains to be determined.

Cell-derived paracrine factors and endogenous repair
Another mechanism of cell therapy includes the ability of
transplanted cells to promote endogenous repair, which
may include modulation of cardiac-resident stem cells
and epicardial progenitor cells by specifically regulating
endogenous or stem cell-derived paracrine factors. One
study demonstrated that cardiac stem cells and early com-
mitted cells expressing c-kit, MDR1, and Sca-1 express c-
Met and IGF-1 receptors and synthesize and secrete corre-
sponding ligands, HGF and IGF-1, suggesting that these
factors may act in an autocrine manner to regulate the
functionality of these cells [71]. Furthermore, since these
cells express receptors for HGF and IGF-1, it is possible
that paracrine factors secreted from transplanted BMSCs
into the myocardium or transplanted circulating blood-
derived progenitor cells may regulate the functionality of
these cardiac resident stem cells, thereby leading to car-
diac repair and protection. Consistent with this hypothe-
sis, supernatants of myeloid EPCs were shown to induce
migration of cardiac stem cells [72]. These preliminary
data suggest that a complex cross-talk may exist between
transplanted stem cells and the endogenous cardiac cell
pool. The delineation of these pathways will be important
for the future of stem cell therapy in heart failure.

Paracrine factors from non-bone marrow derived stem 
cells
Stem cells from sources other than those derived from
bone marrow are also the subject of numerous investiga-
tions. For example, mesenchymal stem cells can also be
isolated from adipose tissue [73], muscle [74], umbilical
cord blood [75], and a variety of other tissues [76-80]. It
has also been suggested that MSCs can be found in all
post-mitotic organs and tissues, including vessel walls
[81]. It is not entirely clear whether these cells function
identically in improving cardiac performance to MSCs
derived from the bone marrow. Using a hind limb
ischemia model, one study suggested that MSCs isolated
from adipose tissue have a greater angiogenic capacity
than MSCs isolated from bone marrow [82], and these
cells had higher expression levels of MMP-3 and MMP-9.
Alternatively, these cells, derived from either adipose tis-
sue or bone marrow, have similar capacities to secrete
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paracrine factors. Cultured adipose derived stem cells
(ASCs) secrete large amounts of VEGF, HGF, and TGF-β,
and high levels of VEGF when subjected to hypoxic condi-
tions. The conditioned media from hypoxic ASCs signifi-
cantly increased endothelial cell growth and reduced
endothelial cell apoptosis, and transplantation of these
cells into ischemic hind limbs led to improved perfusion,
suggesting paracrine factors from these cells promote neo-
vascularization [83]. Interestingly, the ability of ASCs to
promote survival, proliferation, and migration of mature
and progenitor endothelial cells in vitro and to promote
reperfusion in a mouse hind limb ischemia model
appears to be dependent on HGF [84]. In the heart, the
transplantation of adult progenitor cells derived from
either adipose tissue or bone marrow led to a decrease in
myocardial pro-inflammatory and pro-apoptotic signal-
ing and, thus, to cardiac protection against ischemia [85].
As researchers continue to study and compare stem cells
from diverse organs and tissues, it will become evident
whether overlapping or divergent mechanisms exist
between these cells, and which paracrine factors are
released from cells. These ongoing studies will prove ben-
eficial in identifying which cell type may be optimal for
the treatment of ischemic diseases and, ultimately, for the
treatment of heart failure.

Conclusion
Paracrine factors from stem cells transplanted into the
myocardium play an important role in modulating LV
remodeling after an ischemic injury. It should be noted
that the evidence supporting this idea is based on numer-
ous studies in animal models. The contribution of the
paracrine effects in clinical trials (compared to cell intrin-
sic functions) cannot be exactly determined as long as
autologous cells are implanted and the availability of tis-
sue restricts information on local cytokine production.
However, the clinically used cell populations, namely
total bone marrow nuclear cells [26,86], cultured
endothelial progenitor cells [36,72], and MSCs [28,29,41-
45], were all shown to release paracrine factors when
transplanted into ischemia models. In the future, not only
will it be important to determine which paracrine factors
are up- or down-regulated, but also to characterize the
spatio-temporal release and the local concentrations pro-
duced by the injected or infused cell populations. Further-
more, an understanding of synergistic or additive
interactions between these factors is crucial, as well as of
whether these factors act on one or a combination of
mechanisms that lead to heart failure. This may ultimately
lead to the generation of pharmacological agents that can
be used to treat heart failure, possibly negating the need
for cell-based therapy altogether, (see Figure 1).
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Actions of stem cell derived paracrine factors on the heartFigure 1 (see previous page)
Actions of stem cell derived paracrine factors on the heart. Stem cells transplanted into the myocardium release numerous fac-
tors that may act in an autocrine manner or paracrine manner to modulate the implanted cells themselves, or the endogenous 
cells of the heart, including cardiac myocytes, fibroblasts, endothelial cells, vascular smooth muscle cells, and cardiac stem cells. 
These factors include a variety of growth factors, cytokines, and extracellular matrix proteins that may lead to upregulation of 
several endogenous growth factors, cytokines, and extracellular matrix proteins, thereby tightly regulating neovascularization, 
protection against cell death, inflammation, fibrosis, contractility, bioenergetics, and endogenous repair. Regulation of these 
processes, either singly or in combination, by stem cell transplantation ultimately leads to improvement in left ventricular func-
tion following myocardial infarction. Future research in discovering novel stem-derived paracrine factors and their precise 
mechanistic roles in heart repair and fibrosis may ultimately lead to the generation of novel therapeutic agents for the treat-
ment of heart failure.
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