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Summary 

The interaction of solid-solid phase transitions with convection in the 
Earth’s mantle involves, for univariant systems: (1) effects of latent heat 
and advection of ambient temperature on the position of the phase 
boundary and on its associated body force, and (2) the coupling of latent 
heat with the ordinary thermal expansivity of the material. For divariant 
systems, an effective thermal expansion coefficient and a modified adiabatic 
temperature gradient may be defined for the phase transition zone. Linear 
stability theory for a fluid layer with a univariant phase change is reviewed 
and applied to the endothermic spinel-oxide transformation. The theory 
of the stability of a fluid layer with a divariant phase transformation is 
developed and critical Rayleigh numbers are given for a model of the 
olivine-spinel transition. Of special interest is the case where the Earth’s 
temperature gradient exceeds the adiabatic temperature gradient outside 
the phase transition zone but is smaller than the increased adiabatic 
temperature gradient in the two-phase olivine-spinel region. The thermal 
structure of the descending lithosphere is calculated, including the effects 
of frictional heating on the slip zone and of the olivine-spinel and spinel- 
oxide transitions; temperature contrasts of 700 OK can exist between the 
slab and adjacent mantle at 800 km depth. The net body force on the 
descending slab due to thermal contraction and the major mineralogical 
phase changes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis downward. The olivine-spinel transition may be respon- 
sible for the tensional focal mechanisms of intermediate depth earthquakes 
while the spinel-oxide transformation may be related to the compressional 
focal mechanisms of deep earthquakes. 

Introduction 

From both seismological (Anderson 1967; Johnson 1967; Archambeau, Flinn zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& 
Lambert 1969; Wiggins & Helmberger 1973) and high pressure mineralogical (Aki- 
mot0 & Fujisawa 1968; Ringwood 1970; Bassett & Ming 1972; Kumazawa et al. 1974; 
Ming & Bassett 1975) evidence, it is generally agreed that there are at least two major 
phase transitions in the Earth’s mantle. They are believed to be the changes of phase 
from olivine to spinel at about 350-400 km depth and from spinel to a post spinel 
structure at about 650 km depth, primarily as a result of the large increase in pressure 
with depth in the Earth’s interior. Since changes in density and the release or absorp- 

* Received in original zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAform 1974 September 20. 
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tion of latent heat accompany phase transformations, the character of motions in the 
Earth's mantle can be profoundly affected. 

The importance of mineralogical phase changes was first indicated by Birch (1952) 
who argued, on the basis of the theory of elastic properties, for the existence of phase 
transitions between 400 and 900 km depth. Vening Meinesz (1962) carried out an 
analysis for moving fluid parcels undergoing a univariant phase change in a transition 
zone and found that the phase change could promote instability. Both Knopoff (1964) 
and Verhoogen (1965) discussed the problem of convection through a phase change 
and concluded that the transition would act as an obstacle to the flow. The mathe- 
matical linear stability analysis of a fluid layer with a univariant phase change has 
been carried out by Schubert, Turcotte zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Oxburgh (1970), Busse & Schubert (1971) 
and Schubert & Turcotte (1971). Schubert zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal. (1970) applied this theory to the 
olivine-spinel phase change and found that it could have a destabilizing effect in the 
presence of a negative temperature gradient. The stability analysis, taking into account 
both the ordinary Rayleigh instability associated with thermal expansion and a phase 
change instability driven by the density difference between the phases, was carried out 
by Schubert & Turcotte (1971), who also found that the olivine-spinel phase change 
in the presence of a negative temperature gradient may enhance deep mantle convec- 
tion. 

Ringwood (1972) pointed out that an enhanced adiabatic gradient in the two- 
phase transition region would tend to inhibit mantle convection currents. 

We show in this paper that, although the adiabatic gradient in the olivine-spinel 
phase change zone has a stabilizing influence, overall the phase transformation may 
promote instability. Finite-amplitude numerical calculations (Richter 1973a) show 
that convection through a univariant model of the olivine-spinel phase change is 
possible for subcritical Rayleigh numbers and, at higher Rayleigh numbers, convection 
is enhanced compared to a fluid without a phase change, PeltiCr (1973) treated the 
stability problem for a layer of fluid containing a univariant phase transition and with 
variable physical properties, such as viscosity and thermal conductivity; his results 
are in agreement with those obtained earlier by Schubert & Turcotte (1971). 

In addition to the phenomenon of stability, we must consider the finite-amplitude 
effects of phase transformations on the descending lithospheric slab. The influence 
of the heat liberated by the olivine-spinel phase change on the temperature structure 
of the downgoing slab has been included by Hasebe, Fujii & Uyeda (1970), Turcotte & 
Schubert (1971, 1973) and Toksoz, Minear & Julian (1971). The idea that phase 
changes can provide a substantial amount of downward body force to the sinking 
lithosphere has been emphasized by Schubert & Turcotte (1971), Turcotte & Schubert 
(1971) and Griggs (1972). The additional body force due to the elevation of the phase 
boundary in the relatively cold slab is comparable to the body force due to thermal 
contraction. Here, we consider the further influence of the spinel-post-spinel phase 
change on the thermal structure and body force of the downgoing slab. The possible 
importance of phase-change-induced stresses in the descending lithosphere has been 
speculated upon by Isacks & Molnar (1971) on the basis of focal mechanism solutions 
of intermediate and deep earthquakes. Smith & Toksoz (1972), basing themselves on 
numerical calculations of stress distribution in the descending slab, have reported 
that the olivine-spinel transition induced local stress concentrations in its vicinity; the 
slab tends to be in tension above zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA350 km and in compression below this depth in 
agreement with the findings of Isacks & Molnar (1971). Our calculation of the body 
force in the downgoing slab, which includes the spinel-post-spinel phase change, 
yields a distribution which implies similar tensional and compressional stresses above 
and below the 350-km discontinuity. 

The present paper has two major objectives. First, we extend the analyses of 
Schubert et al. (1970), Schubert & Turcotte (1971) and Busse & Schubert (1971) on 
the stability of fluid layers containing univariant phase transitions to the case where 
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the phase transformations are divariant in nature, as are the mineralogical phase 
changes in the Earth (Verhoogen 1965). It is demonstrated that the most important 
characteristics of the divariant olivine-spinel system are an effective coefficient of 
volume expansion some one to two orders of magnitude larger than single phase 
thermal expansion coefficients thus tending to enhance convective instability, and an 
adiabatic temperature gradient in the transition region larger than single phase 
gradients, thus tending to promote stability. The effect on layer stability of phase 
boundary distortion or displacement does not appear in the linear stability analysis 
of a divariant phase transformation. The phenomenon is present in the system with 
univariant phase changes and in the case of finite amplitude motions through any 
type of phase change, e.g. the motion of the descending slab through the 400 km 
olivine-spinel transition. 

Our second objective is to apply the univariant and divariant stability analyses, 
and the analysis of the finite amplitude motion of the descending slab through a phase 
change to the two major phase transitions. Recent experimental work (Bassett zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& 
Ming 1972; Kumazawa zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal. 1974; Ming & Bassett 1975) has shown that the spinel- 
post-spinel phase change involves the decomposition of spinel to its component 
oxides. If the thermochemical calculations of Ahrens & Syono (1967) adequately 
describe the thermodynamics of this transition, then its endothermic character leads 
to effects on convection which contrast interestingly with those of the exothermic 
olivine-spinel transformation. We will assume in this paper that the spinel-oxide 
transition is indeed endothermic. With this assumption, the spinel-oxide transition 
merits special discussion. If the spinel-oxide transition were exothermic, the phase 
change would influence convection in a manner analogous to the olivine-spinel 
transition. 

The following sequence of reactions summarizes the series of phase changes that 
olivine undergoes at increasing depths in the Earth’s interior: 

Q > O  Q > O  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a- (Mgl-,Fex),Si04- /3- (Mg,-,Fe,),Si04---ty- (Mgl-,Fe,)2Si04 

olivine structure modified spinel spinel structure 
structure 

%. 2( 1 - x)MgO + (2x)FeO + SiOz 

periclase wustite stishovite 

oxide assemblage 
\ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv / 

The parameter x, which represents the mole fraction of fayalite in olivine, is believed 
to lie between 0.15 and 0.25 on the basis of petrological and seismological data 
(Ahrens 1973; Anderson 1970). The latent heat of reaction is denoted by Q; for 
Q > 0 the reaction is considered exothermic and for Q < 0 it is considered endo- 
thermic. Each reaction yields a phase of higher density. 

Univariant phase change stability 

In this section we review the physical principles underlying the theory of the 
stability of a layer of Boussinesq fluid containing two phases with a univariant phase 
change boundary (Schubert et al. 1970; Schubert & Turcotte 1971; Busse & Schubert 
1971). Although the solid-solid transitions in the earth are polyvariant in nature, the 
univariant system is a relevant approximation because of the relatively small width 
of transition zones as compared with their depths and the largely forsterite com- 
position of the upper mantle. Further, an important aspect of the physics of convec- 
tion through a phase change, namely the displacement of the phase boundary, is 
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Role of phase transitions in a dynamic mantle 
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(Exot her m id 

Phase Boundary Distortion 

Ambient Latent Heat i Temperature 

Advection of 

Destabilizing 

Ordinary 
Thermal 

Ex pans i v i  t y  

Latent Heat zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt 

Spinel-Post 
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(En do? he r m i c )  

Stabil izing 

Stabil izing Stabil izing 

FIG. 2. Summary of the stabilizing and destabilizing effects of exothermic and 
endothermic univariant phase changes associated with phase boundary distortion 

and ordinary thermal expansivity plus latent heat. 

brought out by considering univariant transitions; in a later section we reconsider the 
stability problem from the point of view of a divariant system. 

From Gibbs phase rule of equilibrium thermodynamics, the univariant phase 
change equilibrium curve in temperature zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT and pressure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp space, i.e. the Clapeyron 
curve, provides a unique relationship between p and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT. The slope of the Clapeyron 
curve y is, according to the Gibbs-Duhem equation (Guggenheim 1967) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

QPI P Z  

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAp = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApz - p1 is the change in density at the phase transition (the subscripts 
1 and 2 refer to the upper and lower phases, respectively), and Q is the latent heat 
required per unit mass to change material of phase 2 into that of phase 1. For the 
olivine-spinel phase change, the dense phase (spinel) lies beneath the light phase 
(olivine), heat is evolved when olivine changes into spinel, and Q, Ap, and y are all 
positive. In the case of the spinel-post-spinel transition, the light phase (spinel) also 
lies above the heavy phase and Ap > 0. We assume, following Ahrens & Syono 
(1963, since the transition involves a breakdown to the component oxides (Bassett & 
Ming 1972; Kumazawa et ul. 1974; Ming & Bassett 1975), that the reaction is endo- 
thermic when spinel disproportionates to the oxides, i.e. Q and thus y are negative. 

The system is assumed to be in thermodynamic equilibrium so that the location 
of the phase boundary is determined by the intersection of the Clapeyron curve with 
the pressure-temperature curve for the fluid layer. In the perturbed state the phase 
boundary will be displaced from its initial position. If the less dense phase lies above 
the more dense phase, the slope of the pressure-temperature curve (assumed positive 
as in the case of the Earth) exceeds the slope of the Clapeyron curve, for y positive. 

The stability, or instability, of a univariant phase transition is determined by a 
number of competing effects associated with the ordinary thermal expansivity of the 
material and the displacement of the phase boundary coupled with the density 
difference between the phases. Consider the situations for the olivine-spinel (exo- 
thermic) and spinel-post-spinel (endothermic) transitions as shown in Fig. 1. The 
Clapeyron curves are drawn solid while the ambient pressure-temperature curves are 
dashed. The Earth’s interior has a negative temperature gradient, i.e. T decreases 
upward. On a p T  plot the geotherm has a positive slope. We proceed to discuss 
the stabilizing and destabilizing mechanisms associated with the phase changes, as 
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710 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
illustrated in Fig. 1 and summarized in Fig. 2. The ordinary Rayleigh convective 
instability mechanism associated with a single-phase fluid heated from below and 
cooled from above will not be explicitly discussed; the effect is included, of course, in 
our quantitative stability computations. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

G. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASchubert, D. A. Yuen and D. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL. Turcotte 

Ordinary thermal expansivity and latent heat 

A parcel of fluid moving downward through the olivine-spinel (exothermic) phase 
change is heated by latent heat release. It thus experiences an upward, stabilizing 
buoyancy force because of ordinary thermal expansion. In contrast, a parcel moving 
downward through the spinel-post-spinel (endothermic) phase transition cools by 
supplying the requisite latent heat, contracts due to thermal expansivity and is sub- 
jected to a downward destabilizing body force. The situations, depicted in Figs 1 
and 2, show that latent heat release or absorption when coupled with thermal expan- 
sion or contraction influences stability in opposite ways for the two major phase 
transitions considered here. 

Phase boundary distortion and latent heat 

The release or absorption of latent heat influences the stability of a univariant 
phase change in another way, namely by contributing to the displacement of the phase 
boundary. Because of the heat evolved (absorbed) when material moves downward 
through the olivine-spinel (spinel-post-spinel) phase change, the local temperature 
tends to increase (decrease) and since the phase change interface must remain on the 
Clapeyron curve, the boundary is displaced downward to higher pressure (Fig. 1). 
A vertical column of material containing more of the light phase and weighing less 
than an ambient undisturbed column, experiences an upward stabilizing hydrostatic 
pressure head (Fig. 2). An analogous argument applies to material moving upward 
through the phase transition. The situation is summarized in Figs 1 and 2; latent heat 
release, when coupled with both thermal expansivity and phase boundary distortion 
is a stabilizing influence for the olivine-spinel transition. For the spinel-post-spinel 
transformation latent heat coupled with phase boundary distortion provides a 
stabilizing effect; when latent heat is considered together with ordinary thermal 
expansion its influence is destabilizing. 

Phase boundary distortion and advection zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof ambient temperature 

Material particles moving through the phase boundary induce local temperature 
perturbations and thus phase boundary displacement because the particles tend to 
retain the hotter or colder ambient temperature from below or above the equilibrium 
phase boundary location. Parcels moving upward (downward) induce positive 
(negative) temperature perturbations at the phase boundary because the ambient 
temperature increases with depth or pressure. Since the phase boundary must remain 
on the Clapeyron curve, such a positive (negative) thermal perturbation causes the 
phase boundary to distort downward (upward), i.e. opposite to the direction of 
material transport in the case of the olivine-spinel transition since zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy is positive. 
However, for the spinel-post-spinel transition, for which y is negative, the phase 
boundary is displaced in the same sense as the motion of material through the transi- 
tion. By considering the weight of a vertical column through the displaced phase 
boundary relative to that of an ambient fluid column, it is clear that phase boundary 
distortion which opposes material motion is destabilizing while interface displacement 
which is in the same sense as the material transport is stabilizing. Figs 1 and 2 illustrate 
how thermal perturbations caused by advection of the mean temperature lead to 
instability in the case of the olivine-spinel transformation and stability in the case of 
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Role of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAphase transitions in a dynamic mantle 71 1 

the spinel-post-spinel transition. Advection of the ambient temperature by the 
descending slab and phase boundary displacement therein provides an important 
example of this effect in mantle convection. 

The conditions under which a phase change will enhance or hinder solid state 
convection are thus seen to involve a competition between several opposing effects. 
Only quantitative stability computations can determine which of the physical effects 
predominate. It is interesting that phase boundary distortion provides both stabilizing 
and destabilizing tendencies for the olivine-spinel transition while for the spinel-post- 
spinel case it is wholly stabilizing. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Quantitative stability computations 

The results of the linearized theory of univariant phase change stability (Schubert zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& 
Turcotte 1971) can be discussed in terms of the following dimensionless parameters 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAct is the ordinary coefficient of thermal expansion, p is the magnitude of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
RB crit 

s=o 

I I I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI I 1 

10-2 lo-’ 1 10 102 I 03 104 

RQ 
FIG. 3. The minimum Rayleigh number zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARB,,,, for convection through the univari- 
ant exothermic phase boundary as a function of the latent heat parameter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARQ for 
various values of the phase boundary distortion parameter S. The cross-hatched 
region corresponds to the parameter values most representative of the olivine 

spinel transition in the Earth’s mantle. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/4
2
/2

/7
0
5
/6

5
1
9
8
3
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2
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1ooor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

c zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.- 
u zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

G .  Schubert, D. A. Yuen and D. L. Turcotte zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
i 

S=-1.5 

- -1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.o - 

- 
1 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.85 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

-0.75 
- 

- 
1 

I 

- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.50 I 

00.0 10.0 1 .o 0.1 0.01 

FIG. 4. The minimum Rayleigh number RBcrlt for convection through the univari- 
ant endothermic phase boundary as a function of RQ for various values of S. 
The cross-hatched region corresponds to the parameter values most characteristic 

of the spinel-oxide transition in the Earth’s mantle. 

ambient negative temperature gradient (geothermal gradient), and B, is the adiabatic 
temperature gradient for a univariant system given by 

The adiabatic temperature gradient is assumed to have the same value for both 
phases; it is to be evaluated at the position of the undisturbed phase boundary. The 
parameter g is the acceleration of gravity, p is the density which is approximately 
equal to p1 and p z ,  i.e. A p  < p zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw p 1  M p z ,  2 0  is the thickness of the fluid layer (the 
phase boundary is placed at the centre of the layer), K is the thermal diffusivity, v is 
the kinematic viscosity, and cp is the ordinary specific heat at constant pressure. We 
assume that K ,  v, cp and a have the same values for both phases. 

The parameter R, is the ordinary Rayleigh number; when R, exceeds a certain 
critical value, RBcrlt, convective instability sets in. Alternatively, the critical Rayleigh 
number provides a minimum value of the superadiabatic temperature gradient above 
which the system will convect. The parameter S is the phase boundary displacement 
parameter; it represents the ratio of the fractional density change in the phase transi- 
tion to the fractional density change associated with thermal expansion. For the 
olivine-spinel phase transition, S is a positive quantity whereas for the spinel-post- 
spinel transformation S is negative. The parameter R, is of the form of a Rayleigh 
number based on the temperature difference (Qlc,); it measures the influence of the 
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Role of phase transitions in a dynamic mantle zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA713 

latent heat released in the phase transition. For the olivine-spinel transition zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARQ is 
positive while for the spinel-post-spinel change it is negative. 

We have calculated critical Rayleigh numbers for the two major mineralogical 
phase changes from the eigenvalue equation given by Schubert zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Turcotte (1971), 
which is based upon stress-free, constant temperature, rigid boundaries for the fluid 
layer. Because the physical, thermodynamic, and rheological properies of the mantle 
are not known accurately, we computed values of Rpcrlt as a function of RQ with S 
as a parameter. The results are shown in Fig. 3 for the olivine-spinel phase change 
and i n  Fig. 4 for the spinel-post-spinel transition. The cross-hatched regions represent 
those we consider to be most representative of the Earth's mantle. 

Un ivariant zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA01 ivine-spinel stability 

To assess the relative importance of the olivine-spinel (or spinel-post-spinel) phase 
change on fluid layer stability we must compare RpCrl, for a fluid in which the transition 
occurs to the critical Rayleigh number R;crlt for a single-phase fluid layer. For 
RQ = S = 0, or no phase change, we recover the case of ordinary Rayleigh instability 
for which R;,r,t = ( 2 7 ~ ~ ) / ( 2 ~ )  = 41.094 (Chandrasekhar 1961). Fig. 3 shows the 
stabilizing effect of latent heat release at the phase change interface; as the parameter 
R,  increases, the critical Rayleigh number for a fixed value of S also increases though 
rather slowly for RQ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc 10. For RQ sufficiently large, the critical Rayleigh number 
becomes insensitive to the value of S and it eventually exceeds the critical Rayleigh 
number of 657.504 (Chandrasekhar 1961). We find from Fig. 3 that Rpcrlt decreases 
as S increases for fixed RQ. This reflects the fact that as S increases, phase boundary 
distortion coupled with the fractional density change associated with the phase 
transition becomes increasingly important as compared with the density change 
associated with ordinary thermal expansion, and the phase change plays a more 
significant role in driving the instability, thus reducing the critical Rayleigh number. 

Table 1 lists the values of those parameters relevant to the computation of RQ 
and S for the olivine-spinel phase change in the Earth's upper mantle. The resultant 
ranges in values of RQ and S are indicated by the cross-hatched region of Fig. 3. Many 
possible earth models with the olivine-spinel phase change are more unstable to 
convection than a single-phase model without the transition. This can be seen in the 
alternate presentation of the results of the stability computations shown in Fig. 5. 
The RpCrlt us RQ plot can be transformed into a graph of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( p  - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApa),,,, us v ,  i.e. a graph 

Table 1 

Parameters for  the stability analysis of the univariant olivine-spinel transformation 

3x10-50K- '  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 a 5 3 . 5 ~ 1 0 - ~ " K - '  

0-08 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 Ap/p  2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.10 
30b/"K 2 y 5 62b/"K 
1800°K 5 T 5 1900°K 
1022cm2s-1 s Y s 1024cmZs-1 

10-zcm2s-1 5 K 5 ~ X ~ O - ~ C ~ ~ S - '  
300 km S D 5 400 krn 

l"Kkm-' 5 fl-5 5"Kkm-' 
c,, z 1 * 2 5 ~ 1 O ~ e r g g - ' ~ K - '  
0.50 5 S 5 18 
5 2 R,  5 6x10' 

Jacobs (1956), Skinner (1966), Schubert, Turcotte & 

Akimoto & Fujisawa (1968), Ringwood & Major (1970) 
Akirnoto & Fujisawa (1968), Ringwood & Major (1970) 
Schubert ct al. (1969) 
McKenzie (1967), Stocker & Ashby (1973), Cathles 

Schatz & Simmons (1972) 
Archarnbeau et al. (1969), Wiggins & Helmberger (1973), 

Masst (1974) 
Schubert et al. (1969) 
Jacobs (1956) 

Oxburgh (1969) 

(1971), Brennen (1974) 
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714 G. Schubert, D. A. Yuen and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI). L. Turcotte 

FIG. 5. The minimum superadiabatic temperature gradient (j- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAja)crlc for 
instability in the Earth's mantle as a function of kinematic viscosity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY.  The dashed 
lines represent the stability curves zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfor single-cell and double-cell convection in a 
mantle without a phase change (Rayleigh-Benard stability). The solid lines 
represent the stability curves for a mantle with the olivine-spinel phase change, 
on the basis of both the univariant and the divariant stability theories. For a 
given value of Y ,  the curve with the smallest value of (j- represents the most 

destabilizing mechanism, according to linear theory. 

of minimum superadiabatic temperature gradient required for the onset of convec- 
tion us kinematic viscosity, for a particular set of parameter values for the other 
quantities appearing in the dimensionless parameters. In the construction of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
' single-cell univariant phase change ' curve of Fig. 5 ,  we use the following values 
appropriate to the olivine-spinel transformation: D = 400 km, Ap/p = 0.08, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
y = 40 bar& Q = 40 cal/g, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALX = 3 x lo-' K-', g = lo3 cm zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs - ~  and /3y/pg < 1 which 
yields S = 0.76. The ' single cell R-B ' line of Fig. 5 is the stability curve for onset 
of Rayleigh-BCnard convection in a single phase fluid with thickness zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA20. The 
' double cell R-B ' curve of Fig. 5 is the stability boundary for the onset of ordinary 
Rayleigh-BCnard convection in a single-phase fluid layer of thickness D. This 
stability boundary is relevant to the possibility that the onset of convection might 
occur as double-cell convection above and below the phase change rather than as 
single-cell convection through the transition. Also shown in Fig. 5 is the stability 
curve for single-cell convection through the phase change based on a divariant theory 
of stability to be discussed later. The figure shows that for v less than about 3 x 
to loz3 cm2 s- ', double-cell convection requires a somewhat smaller superadiabatic 
temperature gradient to occur than single cell convection through the phase change. 
For v between 3 x or loz3 and loz4 cm2 s-l, convection through the phase change 
is the preferred mode although the layer would be more unstable if the phase change 
were absent. If v is larger than about loz4 cm2 s-l  the phase change makes the layer 
more unstable to single-cell convection than if the transition were not present. 
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Role of phase transitions in a dynamic mantle zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA715 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Un ivar iant sp inel-pos t spinel stability 

Critical Rayleigh numbers for negative values of S and RQ as appropriate for the 
spinel-post spinel phase change are given in Fig. 4. The cross-hatched region delineates 
the range of plausible earth models defined by the parameter values given in Table 2. 
Within this region, RBcrtt can be no more than twice the value of RB*cri,, the ordinary 
critical Rayleigh number for single-phase fluid instability. It is possible for RflCri, to 
be less than RB*cllt for some reasonable earth models so that the spinel-post-spinel 
transformation would make the layer more unstable to convection than it would be 
if the phase change did not exist. 

From Fig. 4 we see that the effect of IS( and lRQl on RBFrit are opposite to their 
influence on the olivine-spinel transition. This is clear from the fact that as IS1 
increases in magnitude, i.e. as phase boundary distortion becomes more important, 
the configuration becomes more stable. For the case S zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0 there is no phase boundary 
displacement and the latent heat effect proves to be a destabilizing influence. As in the 
case of the olivine-spinel phase change, RPcrit is generally insensitive to IRQJ, until 
IRQ1 reaches sufficiently large values dependent on IS(. In all, one can conclude that 
the spinel-post-spinel transition appears to be rather unstable. A finite amplitude 
calculation of convection through this phase change (Richter 1973b) at R,  = 125, 
RQ = -60, and S = -0.15 confirms that it does not act as a barrier to vertical 
motions. According to the linear stability curve of Fig. 4, convection would occur 
through the 650-km phase change at the above values of R ,  and S for R ,  an order of 
magnitude smaller than considered in the numerical finite-amplitude example. 

The endothermic spinel-post-spinel phase transformation cannot be the ' mechani- 
cal brake' to convection invoked by Kumazawa et aE. (1974) and Jackson, Lieber- 
mann & Ringwood (1974). The idea of partition differentiation of Fe and Mg between 
the lower and upper mantle through a horizon at about 700 km depth (Garlick 1969; 
Kumazawa et al. 1974) is to be questioned if convection can penetrate the phase 
change. The feasibility of convection through the 650-km discontinuity also calls to 
question the Mereu, Simpson & King (1974) interpretation, based on Q contrasts for 
body waves, of a return convective flow at this depth. 

Even on the basis of an extensive set of normal mode data (Anderssen & Cleary 
1974; Gilbert & Dziewonski 1975) and a new shear wave velocity model for the 
upper 1200 km of the mantle from waveforms and travel times (Helmberger & Engen 
1974), it is presently not possible to adequately resolve the fine structure of the density 
and the seismic velocities in the region of the two seismic discontinuities, where the 

Table 2 

Parameters zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfor the stability analysis of the univariant spinel-oxide transformation 

Jacobs (1956), Ito, Kawada & Akimoto (1974) 
Ahrens & Syono (1967), Anderson (1967), Davies (1974) 
Ahrens & Syono (1967), Bassett & Ming (1972) 
Schubert et al. (1969) 
McKenzie (1967), Stocker & Ashby (1973), Cathles 

Schatz & Simmons (1972) 
Archambeau zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAer al. (1969), Wiggins & Helmberger (1973), 

Schubert et al. (1969) 
Jacobs (1956) 

(1971), Brennen (1974) 

Mass6 (1974) 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/4
2
/2

/7
0
5
/6

5
1
9
8
3
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



716 G. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASchubert, D. A. Yuen and D. L. Tcrcotte 

phase changes are presumed to take place. We cannot yet distinguish, seismologically, 
a static from a dynamic equilibrium between the upper and the lower mantle; a possible 
consequence of the former is a chemically layered mantle, whose profound stabilizing 
influence on convection has been emphasized by Richter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Johnson (1974). In this 
connection, separate convection cells could exist within each chemically homogeneous 
region of the mantle. Recent work on the relationship between acoustic velocity and 
mean atomic weight (Liebermann 1973; Lieberniann & Ringwood 1973; Davies 1974; 
Wang & Simmons 1972) has shown that the iron enrichment of the lower mantle 
(Anderson & Jordan 1970) may have been an overestimate. The zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAoverall olivine-spinel- 
oxides transition could thus occur at uniform composition. 

Stability of a divariant phase transformation 

In the previous section on phase transitions and their effects on mantle dynamics, 
a single component, or univariant system was treated. However, from mineralogical 
and geochemical data the Earth is actually a polyvariant system with many com- 
ponents coexisting at the same pressure and temperature. We present here the first 
quantitative treatment of the stability of a fluid layer with a divariant phase transition. 
As part of the theory, we develop the necessary thermodynamic formalism for the 
divariant system. 

From equilibrium thermodynamics one can invoke the Gibbs phase rule for 
non-reacting chemical species to obtain the number of thermodynamic degrees of 
freedom F for a given physical-chemical system: F = C - P + 2 ,  where C is the 
number of components in the ensemble, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP is the number of co-existing phases. 
Therefore, a univariant system undergoing a phase change has one degree of thermo- 
dynamic freedom, namely the Clapeyron or equilibrium curve which relates pressure 
p and temperature zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT in a unique manner. For a divariant system undergoing a phase 
transition, there is an additional degree of freedom and within the divariant two-phase 
region there is a no a priori relationship between T and p .  We proceed to establish 
the thermodynamic formalism required for the stability analysis of a layer of fluid 
with a divariant phase change. The theory is valid for any such phase transformation, 
however, for clarity in discussion and simplicity of notation we use the olivine-spinel 
transition as the representative phase change. 

Basic state 

For the binary system of MgzSiO,, forsterite, and Fe,Si04, fayalite, the thermo- 
dynamic variables T, p ,  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx, the mole fraction of forsterite, provide a complete des- 
cription of the system. From the experimentally determined phase diagrams (Ring- 
wood & Major 1966, 1970; Akimoto & Fujisawa 1968; Ahrens 1973) one can 
construct the two implicit functions F,(7', p ,  x) = 0 and F,(T, p ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx) = 0 which rep- 
resent the upper and lower surfaces of the divariant two-phase region, as sketched 
in Fig. 6. For simplicity, we do not distinguish between the y and j?-phases, which 
have nearly the same free energies (Ringwood & Major 1970). The overall composition 
of the system x = xo is a constant. Since F = 2, within the two-phase region the 
system can exist in equilibrium at any T, p point in the xo plane lying between the 
surfaces F ,  = 0 and F ,  = 0, in contrast to the univariant case where there is a 
definite relationship, the Clapeyron curve, between T and p .  

In the motionless state, we suppose that the two-phase region extends from a 
depth D - d  to the depth D +d (this notation is convenient for the stability analysis to 
follow). The depth to the centre of the transition zone D and the thickness of the 
region 2d are determined as follows. From the definitions of FU and FL, we have 

F,{T(D+d)Y P ( D + 4 ,  xo> = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA07 (6) 

F,{T(D-d) ,  P ( D - 4 ,  xo> = 0, (7) 
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Role of phase transitions in a dynamic mantle zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA717 

FIG. 6. Schematic phase diagram of the Mg2Si04-FezSi04 binary system in 
pressure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp ,  temperature T and composition zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA,y space. F,(T,p, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx) = 0 and 
F,(T,p, x) = 0 are the surfaces separating the two-phase region from the pure 

phase regions. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The hydrostatic variation of pressure with depth leads to 

D - d  

p ( D - d )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= g  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp d z ,  
surface 

where pol is the density of olivine, and 
D i d  

p ( D + d )  = p ( D - d ) + g  1 pdz ,  
D - d  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(9) 

where p is the density in the two-phase region (henceforth an overbar will denote a 
property of the transition zone between single phases). 

Equations (6)-(9) suffice to determine D and d if the temperature is known as a 
function of depth (the conduction temperature profile is assumed, as appropriate to 
the basic state of a stability analysis) and we understand how to evaluate the density. 

In terms of the forsterite mole fraction xo, the density of olivine can be written 
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718 G. Schubert, D. A. Yuen and D. L. Turcotte 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp;: and p;: are the densities of pure forsterite and pure fayalite in the olivine 
phase, respectively, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMWf0 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMW,, are the molecular weights of forsterite and 
fayalite. Although p;: and p;: are different by as much as 30-40 per cent, the molar 
volumes of forsterite and fayalite in olivine are nearly the same, i.e. 

(Chung 1971), so that we may approximate p"' by 

PO' x PI:xo zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ P ; N  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-xo>. 

A similar result holds for the density of spinel psp, 

The densities of olivine and spinel as a function of Fe/Mg ratio, temperature and 
pressure are given by Chung (1971, 1972). 

To describe the density in the two-phase region, we must use the lever-rule (Ehlers 
1972) to determine the compositions of the olivine and spinel phases which vary 

X zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAXO 

X U  

0 
P 

pressure 

FIG. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7. An isothermal cross-section of the three-dimensional phase diagram in 
Fig. 6 illustrating the principle of the lever rule. xo is the mole fraction of 
forsterite in the pure olivine or spinel phases. xL and xu are determined at a par- 
ticular value of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp according to the figure. The scale for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx ranges from 0 (pure 

Fe2Si04) to 1 (pure Mg2Si04). 
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Role of phase transitions in a dynamic mantle 719 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
through the transition zone. The situation is sketched in Fig. 7, from which we find 

xsp zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= mole fraction of spinel in two-phase region 

- X L ( T  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP) -xo - 
X L ( T  P) -xu( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT P) 

xol = mole fraction of olivine in two-phase region 

- - xo-xu(T PI 
XL(7-Y P)-Xu(T, P) 

where xu(T, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp )  is the mole fraction (molar composition in per cent) of forsterite in the 
spinel component of the two-phase system and xL(T p )  is the mole fraction of for- 
sterite in the olivine member of the two-phase system. The overall mole fraction of 
forsterite for both phases is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx,,. 

The molar weight of the two-phase assemblage is 

M W,,(x0' xL + xsp xu) + M W,,(x0'(l -xL) + x"(1 -xu)). 

Assuming ideal solution behaviour, i.e. that the volumes of the components are 
additive, we find that the molar volume of the two-phase system is 

The density of the two-phase assemblage zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi j  is the ratio of the molar weight to the 
molar volume, a quantity which may be approximately written as 

p = xo'xLp;:+xol(l -xL)p~~+x'px~ps~+x"P(l -xu)pS,p. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(15) 

This simplified expression for i j  requires 

approximations which are valid according to the density values reported by Chung 
(1971, 1972). 

From the curvatures of the phase space surfaces FU = 0 and F L  = 0, we can 
evaluate the expressions (ax"'/ap), and (d~"~ / i?T)~  which we will need shortly in our 
derivations of the effective coefficient of thermal expansion, specific heat and adiabatic 
gradient in the two-phase divariant region. Differentiating (14) we find 

which, if we approximate 

(%),= (") aP T and ( g ) p ~  (g) P , 
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can be written zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG. Schubert, D. A. Yuen and D. L. Turcotte 

From the phase diagrams of the olivine-spinel transition we find that (18) and 
(19) can be used for values of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx0 of geophysical interest, i.e. x0 between 0.85 and 0.90. 
According to Le Chhtelier's principle and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(axo1/aT), should be negative and 
positive quantities, respectively. These signs are in agreement with those implied 
by (18) and (19). 

Adiabatic gradient, specific heat and coeficienf of expansion in the two-phase divariant 
region 

For simplicity in what follows we will ignore the variations in composition of the 
olivine and spinel components in the two-phase divariant region, i.e. the properties of 
olivine and spinel will be evaluated at the composition xo of the overall system. For 
example, in the expression for the density in the two-phase divariant region (15) we 
assume xu zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx xL x x0 and derive 

p x xol p"' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ (1 - x"')p", (20) 

where p"' and psp are given by (1 1) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(12). Expression (20) is an excellent approxi- 
mation to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp throughout the two-phase divariant region of the olivine-spinel transition. 

We can see from (20) that perturbations in density in the two-phase region will 
arise from changes in pol and psp induced primarily by temperature fluctuations and 
from changes in x"' also mainly due to temperature variations. Differentiating (20) 
we find 

Neglecting effects of compressibility on the individual phases, we write 

6 p  = x"'(6p"1-6pSP) +6pSP+6x"'(p0'-p"). (21) 

(22) 

(23) 

6p"' x - pol zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa6 T, 

6pSP x - p S "  a6 T, 

where 6T is the temperature perturbation and we have assumed that both phases 
have the same ordinary coefficient of thermal expansion a. Using (22) and (23) in 
(21) we find 

where, as before Ap zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE psp - pol. 

pressure perturbations by 
Perturbations in the olivine mole fraction 6xo' are related to temperature and 

Using (1 8) and (19) and the empirical phase diagrams for the olivine-spinel transition, 
we find that 6x01 is due mainly to temperature perturbations, so that 
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Role of phase transitions in a dynamic mantle 72 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 

From (26) we can define an effective coefficient of thermal expansion for the two- 
phase divariant region 

For the olivine-spinel system and for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAxo zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz 0.85 we calculate that the phase change 
contribution to thermal expansion in the two-phase region (the second term on the 
right-hand side of (27)) is 0(10-4 to 10-3K-1), one to two orders of magnitude 
larger than ordinary thermal expansivity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtl. 

Liberation and absorption of latent heat in the two-phase region can be accounted 
for by the introduction of an effective specific heat zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZp. From the definition of specific 
heat at constant pressure 

as 
FP = T(m)p 

and 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAso' and ssp are evaluated at the composition zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAxo, we find 

j = xo' so' + ( I  - xO')sSP, 

In obtaining (30) we have assumed that the ordinary specific heat cp of the individual 
phases are identical. We will suppose, for simplicity, that Ep is a constant in the two- 
phase region. 

From (30) it is clear that the heat capacity at constant pressure has been increased 
in the two-phase divariant region. The same result holds for a heat-absorbing phase 
change, such as the spinel-oxide transition, since Le Chltelier's principle dictates that 
an increase in temperature would drive the two-phase system to the denser phase. The 
phase change contribution to Zp is at best of the same order of magnitude as the 
single-phase specific heat cp: Another consequence of the increase in Zp would be the 
decrease in E the thermal diffusivity in the two-phase divariant region. 

For a single component system, the magnitude of the adiabatic temperature 
gradient 8, is 

In the two-phase divariant region, the adiabatic temperature gradient 8, can be derived 
by differentiation of expression (29) for entropy zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
6 S = 6 T  ( As ( - :; ).+ (%qp+xol (( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG) p- (gq) 

where As = sol-ssp. By setting 6S equal to zero in (32) and substituting zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 p  = -pgdz, 
we can determine the ratio of 6T and 6z at constant entropy, so that 
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722 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG. Schubert, D. A. Yuen and D. L. Turcotte 

In obtaining (33) we employed the Maxwell relations for the individual phases and 
assumed that the ordinary thermal expansivity and specific heat at constant pressure 
were identical for each of the pure phases. For simplicity in determining the stability 
of the divariant phase change we treat 8, as a constant in the analysis of the next 
section. 

Ringwood's (1972) formula, (ApgT)/(pQ), for the magnitude of the effective 
adiabatic temperature gradient in a multi-component system is only an estimate 
provided by the ratio of the second terms in the numerator and denominator of (33). 
With zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(ax0'/dT), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx to 10-20K-', zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- (d~O'/ap)~ x lo-' to lo-' kbar-', 
TAsx40calg-', a x 3 ~ 1 0 - ~ " K - ' ,  g =  103cms-2, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT w2000"K, cP%O-3cal 
g-'"K-', p x 3 . 6 g ~ m - ~ ,  we find 8, = 1 to 2"Kkm-', smaller than Ringwood's 
(1972) estimate of 4 to 5"Kkm-'. In our model of the olivine-spinel transition, the 
adiabatic gradient is discontinuous at the two interfaces which bound the divariant 
two-phase region. 

Divariant phase change stability analysis 

Consider the stability of the olivine-spinel layer shown in Fig. 8. The two-phase 
divariant region occupies -d < z < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd, olivine lies between z = d and z = D, D > d ,  
and spinel is the phase between z = -d and z = - D. The properties a, K, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv,  p ,  f lay 
E and pa are treated as constants; from among the various properties of the system 

stress- free, isothermal z =  D 

1 

z =  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd 

z =  0 

Z =  -d 

3 

Z= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-D 
stress - free, /'so thermal 

FIG. 8. Divariant olivine-spinel layer of thickness 2 0  with a centred two-phase 
region of width 2d. The physical parameters are everywhere the same, except in 
the two-phase zone where the effective coefficient of thermal expansion zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACr and the 
adiabatic temperature gradient fla are different from u and pa in the pure phase 
regions. The stress-free and isothermal notations refer to the boundary conditions 

applied in the divariant phase change stability analysis. 
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Role of phase transitions in a dynamic mantle zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA723 

only the effective coefficient of thermal expansion zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACr and the adiabatic gradient pa in 
the two-phase zone are distinguished from their counterparts in the single-phase 
regions. We neglect the possible differences in the other properties between the two- 
phase and single-phase regions and between the pure olivine and spinel phases. It is 
conceivable that significant changes in thermodynamic or rheological properties, not 
included here, might accompany the mineralogical phase changes in the Earth. For 
example, Sammis & Dein (1974) have recently discussed the phenomenon of super- 
plasticity in phase transition zones from experimental observations of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP-or trans- 
formation in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACsCl at 733°K. We must regard such a change in the rheological 
behaviour of olivine-spinel as potentially important but presently rather speculative. 
In the undisturbed state there is a constant negative temperature gradient of absolute 
magnitude zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj? and a pressure gradient zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-pg throughout the fluid layer. The static state 
is, of course, horizontally homogeneous. The subscripts 1,2 and 3 refer to the olivine, 
olivine-spinel, and spinel regions, respectively. 

The linearized equations for the velocity perturbations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu, the temperature per- 
turbations 8 and the pressure perturbations n are 

(we assume each region can be treated as a Boussinesq fluid layer), 

where w is the vertical component of the perturbation velocity and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 is a unit vector 
in the positive z-direction. We have assumed that the state of marginal stability is 
given by (a)/(&) = 0, i.e. that the principle of exchange of stabilities is valid. 

The boundary conditions at z = 5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD are w = 8 = (a' w)/(dz2)  = 0, i.e. these 
boundaries are stress-free, isothermal ones. At the interfaces between the single- 
phase and two-phase regions, z = +d,  w, (Jw)/(Jz), (a2 w)/(az2), n, 8 and (aO)/(dz) are 
all continuous. This contrasts with the univariant case where the perturbation tem- 
perature gradient and perturbation pressure are discontinuous at the phase change 
interface. Thus, in the linearized treatment of the divariant phase change stability 
there is no distortion of the phase boundaries at the onset of instability; the density 
change and latent heat release are directly incorporated into the momentum and 
energy equations through Cr and 8, instead of via the boundary conditions on per- 
turbation heat flux and pressure as in the univariant phase change stability theory. 
When the motions reach finite amplitude, the two-phase divariant region will, of 
course, be displaced from its equilibrium (motionless) position in a manner similar to 
that of the univariant phase change interface. 

Without loss of generality, we consider the two-dimensional periodic solutions of 
(34)-(36) with horizontal wave number 1. The symmetric solutions for the vertical 
velocity and temperature perturbations in regions 1 and 3 are 

3 

n = l  
w 1 . 3  = C A,  sinh 6,( 1 +z/D), (3r) 
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where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASchubert, D. A. Yuen and D. L. Turcotte 

6: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZz zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD z  + (R, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1’ D2)+ exp (i(lr/3)(2n - l)), I (39) 
I n = 1,2,3. 

A,  are constants of integration and the upper and lower signs on the right-hand sides 
of (37) and (38) refer to regions 3 and 1, respectively. Equations (37) and (38) provide 
solutions for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw and 0 which automatically satisfy the boundary conditions on 
z = & D .  

The symmetric solution for the two-phase divariant region is 

where 

and 

3 

n = l  
wZ = C B, cosh6, ( z /D) ,  

8,’ = 1’ D2 + (((E/a)R, - R)12 D2}* exp (i(x/3)(2n - l)), I (42) 
I 11 = 1,2, 3. 

The boundary conditions at either z = d or z = -d  provide six equations for the six 
unknowns A,  and B,. These equations are homogeneous and by setting their 6 x 6 
coefficient determinant equal to zero we arrive at an eigenvalue equation for the 
Rayleigh number R,. 

The parameter R has the form of a Rayleigh number based on the amount by which 
the two-phase adiabatic temperature gradient exceeds that of the single phase region. 
For the olivine-spinel transformation, pa > zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApa and R is positive. The increased 
stabilizing influence of the adiabatic temperature gradient in the two-phase region was 
noted by Ringwood (1972). We can quantitatively assess the importance of the 
stabilizing influence of the increased adiabatic gradient in the two-phase region by 
determining the dependence of Rayleigh number on R .  Thus we will be concerned 
with the situation in which the basic temperature gradient B exceeds the adiabatic 
temperature gradient in the single-phase regions, j? > /la, but is less than the adiabatic 
temperature gradient in the two-phase zone jl < 8,. We also consider the case where 
P > Pa > P a *  

The Rayleigh number is a function of the following parameters 

R, = R,(lD, d / D ,  Elm,  R) .  (44) 

A minimum, critical Rayleigh number RBErlt exists for a certain value of ZD which 
depends upon the other dimensionless parameters d / D ,  Z/u and R;  we will henceforth 
only be interested in 

R,=,, = R,ori,(dlD, Ela, R).  (45) 

The divariant two-phase olivine-spinel region provides a destabilizing influence 
to compete with the stabilizing one associated with the increased adiabatic gradient. 
This destabilizing effect enters through the parameter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE/u. Since the effective co- 
efficient of thermal expansion is significantly larger in the two-phase olivine-spinel 
region, the buoyancy force driving convective instability is enhanced in this transition 
zone. Thus, by increasing d / D ,  the fractional width of the transition zone, buoyancy 
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Role of phase transitions in a dynamic mantle 725 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
can be enhanced throughout the fluid layer leading to a greater degree of instability. 
The overall effect of the phase change on stability of the fluid layer, as compared with 
the stability of a single phase fluid, requires quantitative evaluation of RBcrit. 

Richter's (1973a, b) finite amplitude calculations of convection through a uni- 
variant phase change included a finite width two-phase region centred about the 
intersection of the temperature-depth curve with the Clapeyron curve. In this way, 
both the mole-fraction distribution of olivine, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAxol, in the two-phase region and the 
thickness of the region were structured beforehand. A more realistic finite amplitude 
approach would be to incorporate the divariant nature of the olivine-spinel phase 
change by employing the three-dimensional zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAphase diagrams for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthis system. In this 

way, both the olivine mole-fraction structure in the two-phase region, the width of 
the region, and the distortions of the phase change interfaces can be properly 
accounted for. 

Our discussion of the stability of a divariant phase change has centred on the 
olivine-spinel transition as the prime example. Before proceeding further, it is 
worthwhile considering the spinel-post-spinel transformation. The spinel-oxide 
transition provides an interesting contrast to the olivine-spinel transformation, in that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
E/cr is less than unity and may even be negative in the former case. This can be seen 
physically by noting from Le ChAtelier's principle that the addition of heat to the 
spinel-oxide system would tend to evolve more of the oxide phase leading to an 
effective thermal expansivity smaller than the ordinary CI and perhaps even negative. 
Also, the adiabatic temperature gradient in the spinel-oxide transition zone would be 
reduced as compared with the ordinary pa. 

This is easily understood by considering the effect of adiabatically pressurizing a 
parcel of spinel. Upon transforming to the oxides heat would be absorbed thus tend- 
ing to reduce the temperature rise with compression. Thus, from the divariant point 
of view, there are also two competing effects governing the stability of the spinel-oxide 
transition, however, the roles of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA?i/a and 8, are reversed from the olivine-spinel 
transformation. 

Critical Rayieigh number for the divariant olivine-spinel phase change 

We first examine the tendency of the phase change itself to drive convection in the 
whole fluid layer by neglecting buoyancy in the single-phase regions, i.e. we take c(, 

the ordinary thermal expansion coefficient, equal to zero. Consequently, the adiabatic 
gradient in the pure olivine and spinel regions is also zero. The problem reduces to 
the stability of a fluid layer within which buoyancy forces are confined to a centred 
fraction d / D  of the layer, the remainder of the fluid being passive. The eigenvalue 
parameter for this problem is a Rayleigh number of the form 

the minimum critical value of which RBCrl, depends only on d / D .  
Fig. 9 shows RflCrit as a function of d / D .  For d / D  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1, RflErl1 corresponds to 

RB*crl, for the ordinary Rayleigh-BCnard problem since the buoyant region occupies 
the entire fluid layer. As d / D  decreases and less of the layer is buoyant, the critical 
Rayleigh number increases, but very slowly until d / D  becomes less than about 0.1. 
The onset of convection in the fluid layer is relatively insensitive to the reduction of 
buoyancy in a large portion of the layer. Of course, the stability of the whole system 
strongly increases as d / D  is further reduced below 0.1. As d / D  approaches zero, the 
critical Rayleigh number from this analysis would tend to infinity. However, with 
d / D  --f 0 the problem would approach that of the univariant phase boundary separat- 
ing two pure phases neither of which have ordinary thermal expansivity. This 
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10 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I .o .8 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.6 .4 .2 0 

d/D 
FIG. 9. The critical Rayleigh number RaCrl, for the onset of instability in a fluid 
layer of thickness 2 0  with a divariant two-phase region of width 2d. The layer is 
bouyant only in the phase transition zone, i.e. the ordinary thermal expansion 

coefficient is zero. 

problem has been treated by Schubert et al. (1970) who include the important effect 
of phase boundary distortion not accounted for in this divariant analysis. 

Next, we consider the case where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa and p, are non-zero in the two pure phase 
regions. We model the olivine-spinel transition by assuming d / D  = 0.05 and 
?i/ci  = 100. The results for RBFrIt as a function of R ,  the parameter which measures the 
stabilizing tendency of the increased adiabatic gradient in the two-phase region, are 
shown in Fig. 10. For zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 lo4 the layer with this divariant phase transformation is 
more unstable to convection than is a single-phase fluid layer with the same width D.  
As R increases, Rborlt also increases (the stabilizing effect of R), rather slowly for 
R 5 lo3 and then more rapidly for R between zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx lo3 and w lo5. For values of R 
above about lo6, RPcri, levels off at a value of about 1900; the dashed portion of the 
stability curve represents values of RBerit computed only approximately. 

The large increase in Rflcrl, at R of around lo4 can be understood as follows. The 
corresponding critical Rayleigh number in the two-phase region iTBErit is (E/a)Rflcrit - R .  
For R 5 lo4, Bscrit is positive, which means that 8, < pcrI,. Thus the undisturbed 
critical temperature gradient exceeds the adiabatic temperature gradient even in the 
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R zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
FIG. 10. The critical Rayleigh number zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARB,,,t for onset of convection in a fluid 
layer with a divariant phase transition zone. d / D  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.05 and E / u  = 100. R, the 
parameter relating the magnitudes of the adiabatic temperature gradients in the 

two-phase and single-phase regions is proportional to (8. - 8.). 

two-phase divariant region and with the increased buoyancy of this region the entire 
layer is more unstable than a layer without the phase change. For zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 lo4, is 
negative and 8, > fi,,,,. The undisturbed critical temperature gradient is smaller than 
the adiabatic gradient in the two-phase region and this stabilizing effect manifests itself 
by increased values of RBEr,,. The stabilizing effect ' saturates ', however, since RBElit 
is insensitive to further increases in R, for R sufficiently large. 

As in the univariant stability analysis, the quantitative divariant stability results 
from Fig. 10 can be recast into a plot of ( p -  pa),,,, us v, shown in Fig. 5 (we assumed 
8,- pa = 1-5 OK km-I in this computation). Qualitatively, there is little difference 
between the univariant and divariant stability curves of Fig. 5. The same conclusions 
which were drawn about convection through the olivine-spinel phase change based 
upon a univariant stability analysis apply to the phase transformation when analysed 
from the divariant approach. Convection is possible through a divariant phase 
transition zone, and may even be enhanced by the phase change, for reasonable values 
of the thermal and rheological properties of the Earth's mantle. 

Application to the descending slab 

The phase changes in the descending lithosphere at oceanic trenches provide a 
striking finite-amplitude example of the interaction of phase transformations and 
mantle convection. In this section, we discuss both the olivine-spinel and spinel-oxide 
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VOLCANIC HIGH HEAT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFLOW 

4 0 0 ° C  

8 0 0 ° C  

1200°C . . . . -. . . . . 

- 
1200'C 

1600°C 

-5001vn 

1700°C 

FIG. 11 .  Thermal structure of the descending lithosphere including the effects of 
frictional heating zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAon the slip zone and the olivine-spinel and spinel-oxide 
transitions. The thin lines denote the isotherms and the heavy lines represent the 
positions of the phase changes. The velocity of the plate approaching the trench 
is 8 cm yr-I. Other parameter values are given in the text. Note the relatively 
large elevation of the olivine-spinel phase change and the relatively small depres- 

sion of the spinel-oxide transition in the slab. 

transitions in the descending slab based on the assumptions that the slab penetrates 
the lower phase change and that this transition is indeed endothermic. 

Many authors have considered the temperature distribution in the descending slab 
(McKenzie 1969, 1970; Hasebe et al 1970; Oxburgh & Turcotte 1970; Minear & 
Toksoz 1970a, b; Toksoz et al. 1971; Griggs 1972). Following the first studies of the 
elevation of the olivine-spinel phase boundary in the descending slab (Schubert zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet 
al. 1970; Schubert & Turcotte 1971), subsequent calculations (Turcotte & Schubert 
1971, 1973; Toksoz et al. 1971) included this effect. In Fig. 1 1  we show the thermal 
structure of a typical descending slab including the olivine-spinel and spinel-oxide 
phase changes. 

Determination of the thermal structure of a descending slab requires many 
assumptions. Temperatures within the rigid slab are subject to the least error since 
the rheological properties of the material are known. The temperature distribution 
given in Fig. 11 is based on the calculations of Turcotte & Schubert (1973). The angle 
of dip is 45" and the velocity of the plate approaching the trench is 8 cmiyr. Within 
the slab we assume the thermal conductivity k is lo-' cal cm-' s-' OK-' and the 
thermal diffusivity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK is 1.15 x lo-* cm2 s-'. On the upper boundary of the descending 
slab frictional heating occurs until the melt temperature is reached along the slip zone. 
The frictional heating is produced by a constant coefficient of frictionf= 0.054. It is 
assumed that the melt temperature T, = lo00 "C. This value may be several hundred 
degrees too high or too low depending on the water content of the descending crust, 
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Role of phase transitions in a dynamic mantle zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA729 

as discussed by WylIie (1973). The shear stress on the slip zone at the depth where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT, 
is attained is 2.04 kb. It is assumed that the volcanic line lies above the point on the 
descending slab where melting first occurs, in this case 125 km behind the trench. In 
fact, the observed location of the volcanic line was used to specify the frictional heating 
on the slip zone (Turcotte zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Schubert 1973). 

Behind the volcanic line a region of anomalously high heat flow and high seismic 
attenuation is often observed. The Sea of Japan is an example. We assume that this 
region extends 200 km beyond the volcanic line. We also assume that the temperature 
on the slip zone is buffered at the melt temperature beneath this region, i.e. to a 
depth of 325 km. The isotherms above the descending slab in this region can only be 
estimated; they are shown by dashed lines. Convective transport of heat by magmas 
may occur in this region, or a secondary flow process in the mantle may dominate. 
Behind the anomalous region the overlying mantle is assumed to have a typical 
continental geotherm (Froidevaux & Schubert 1975). Approaching the trench the 
oceanic plate is assumed to have a boundary layer geotherm (Turcotte & Oxburgh 
1969) corresponding to a surface heat flow of 0-8 pcal cm-' s- . Beneath the 
boundary layer the oceanic geotherm is taken to be adiabatic. It is worth noting that 
at about 400 km depth, the calculated suboceanic and subcontinental temperatures 
are similar. 

The changes in depth of the phase transitions in the descending slab are primarily 
determined by the magnitudes of the slopes of the Clapeyron curves. For the olivine- 
spinel phase change we take the value zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy = 40 bar OK-' (Schubert & Turcotte 1971). 
Since the slope of the Clapeyron curve is positive for the olivine-spinel transition the 
boundary is elevated as shown in Fig. 11. The maximum elevation is 115 km. Also 
associated with the olivine-spinel phase change is a heat release Q = 40 cal/g (at 
1600°C) which heats the descending slab. The result is the displacement of the 
isotherms across the phase boundary shown in Fig. 11. 

For the spinel-oxide phase change, we take the slope of the Clapeyron curve to be 
y = -13bars"K-' (Ahrens & Syono 1967). Since the slope is negative the phase 
boundary is depressed in the descending slab (Fig. 11) .  The maximum depression is 
only 30km. Also associated with this phase change is an absorption of heat 
Q = -18calg-'; the temperature of the descending slab is decreased across the 
phase boundary resulting in the isotherm displacement shown in Fig. 11. 

Clearly, the downward force on the descending slab is one of the important driving 
mechanisms for plate tectonics. Two contributions to this body force have been 
recognized (Schubert & Turcotte 1971), the negative buoyancy force associated with 
the thermal contraction of the slab and the elevation of the olivine-spinel phase 
boundary. 

The body force per unit length parallel to the trench axis and per unit depth along 
the slab is given in Fig. 12. The coefficient of thermal expansion cz is taken to be 
3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA10-50K-' at the surface, decreasing to 2 x 10-50K-1 at a depth of 900 km. The 
density increases associated with the olivine-spinel and spinel-oxide phase changes 
are taken to be 0.24 g cm-3 and 0.4 g ~ m - ~ ,  respectively. Positive forces are down 
along the slab, negative forces up. The maximum downward force per unit depth 
and per unit length along the trench due to thermal contraction is 0.65 kb. The 
additional downward body force due to the olivine-spinel phase change is clearly 
shown between the depths of 285 km and 400 km. The maximum additional down- 
ward body force per unit depth and per unit length along the trench axis due to the 
olivine-spinel phase change is 2.6 kb. The upward body force due to the spinel-oxide 
phase change is shown between the depths 650km and 680km. The maximum 
upward body force per unit depth and per unit length of trench is 2.8 kb. The total 
gravitational body force on the descending slab to a given depth is the integral of the 
curve given in Fig. 2. The total downward body force due to the olivine-spinel phase 
change is considerably larger than the upward body force due to the spinel-oxide zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

cc 
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200 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA400 600 

DEPTH, km 

800 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 
FIG. 12. The gravitational body force per unit distance parallel to the trench and 
per unit depth on the slab considered in Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11. Thermal contrasts between the 
descending slab and the adjacent mantle and the vertical displacements of the two 
phase change boundaries relative to the surrounding mantle contribute to the body 

force. 

phase change because of the larger displacement of the olivine-spinel phase change 
from its undisturbed equilibrium depth. 

The upward body force due to the spinel-oxide phase change may be responsible 
for the predominance of compressional focal mechanisms in deep earthquakes 
between depths of 500 and 700 km (Isacks & Molnar 1971). Similarly, the downward 
body force due to the olivine-spinel phase change may be responsible for the tensional 
focal mechanisms associated with intermediate depth earthquakes between 100 and 
300 km. 

In the previous section on the effect of the spinel-oxide transition on the stability 
of a fluid layer, it was shown that for reasonable earth models the ‘mechanical 
brake effect ’ due to this phase change is insufficient to prevent convection through this 
phase boundary. Our finite amplitude example of the descending lithosphere, wherein 
both major phase changes are incorporated, confirms that the net body force on the 
slab is downward, supporting the possibility that the downgoing slab indeed penetrates 
below the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA650 km phase change. This is in contrast to the view that the lithosphere 
ceases to exist as a separate entity below 700 km due to the absence of earthquakes 
below this depth (Isacks & Molnar 1971; Mereu zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet al. 1974). From Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11  we see that 
temperature contrasts of up to 700 OK between the slab and the adjacent mantle can 
exist down to depths of 800-900km. Recent seismological evidence based on 
differential travel times (Jordan & Lynn 1974) imply strong lateral temperature con- 
trasts of hundreds of degrees between 600 km and 1400 km beneath the Caribbean. 
This observation supports the above thermal calculations and provides evidence for 
the penetration of the descending slab to depths greater than that of the spinel-oxide 
transition. 
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Gilbert zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Dziewonski (1975) from the temporal variation of the seismic moment 
tensor and the evidence of precursive compression for two deep earthquakes suggest 
that the compressive stress release may be due to a metastable phase transition 
(Dennis & Walker 1965). However, the reaction rate of the olivine-spinel phase 
change (Kasahara & Tsukahara 1971) is likely to be sufficiently rapid to suppress this 
non-equilibrium tendency (Ringwood 1972). 

Summary and conclusions 

We have reviewed the physics of the stability of a fluid layer containing a uni- 
variant phase transition, identifying those effects which are stabilizing and destabilizing 
for both exothermic (olivine-spinel) and endothermic (spinel-oxide) reactions. 
Univariant phase change stability theory provides critical Rayleigh numbers RBcrlt 
for the onset of convection in a fluid layer which depend on RQ a latent heat para- 
meter and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS a phase boundary distortion parameter. Values of RBFrIf have been given 
for the endothermic reaction for which RQ and S are negative; earlier papers have 
presented the values of RBcrIt pertinent to the exothermic reaction where R, and S are 
positive. The critical Rayleigh numbers have been used to construct plots of 
(/I - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApa),,,,, the minimum or critical superadiabatic temperature gradient required for 
the onset of convection, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAus v, the kinematic viscosity of the fluid layer, for both the 
olivine-spinel and spinel-oxide transitions. A comparison of these critical Rayleigh 
numbers or temperature gradients with those for convection in a single phase layer 
or for separate convection above and below the phase change boundary delineate the 
range of parameters wherein the phase changes provide stabilizing or destabilizing 
influences on convection. Both the olivine-spinel and spinel-oxide transitions may 
promote instability in the Earth’s mantle. 

After deriving the correct form of the thermodynamic quantities required to 
describe a two-phase region in a divariant system, e.g. the effective coefficient of 
thermal expansion and the adiabatic temperature gradient, we presented the linearized 
stability theory for the onset of convection in a layer of fluid with a divariant phase 
transition. For the olivine-spinel phase change, an increased effective thermal 
expansivity in the two-phase region promotes instability, while an increased adiabatic 
temperature gradient in the transition zone provides a stabilizing effect. These effects 
are reversed in the spinel-oxide case where the effective two-phase thermal expansion 
coefficient is smaller than that of the pure phases and where the adiabatic temperature 
gradient in the transition zone 8, is smaller than the adiabatic temperature gradient in 
the single phase regions pa. Critical Rayleigh numbers are computed for the olivine- 
spinel phase change as a function of a dimensionless parameter proportional to 
(pa-&). When the critical temperature gradient p,,,, is larger than pa and pa, the 
layer with the divariant phase change is more unstable than a single-phase fluid layer, 
whereas when ficrlt > pa but p,,,, < pa, the phase change is stabilizing. One arrives 
at the same overall conclusions about the stabilizing or destabilizing nature of the 
mineralogical phase changes in the Earth’s mantle independent of whether the 
transitions are viewed as univariant or divariant transformations. 

We computed the thermal structure of the descending slab, including the effects 
of the olivine-spinel and spinel-oxide transitions. The olivine-spinel phase boundary 
is elevated 115 km and the spinel-oxide transition is lowered by 30 km in the slab. A 
net downward gravitational body force acts on the slab as a result of the two major 
phase transitions therein. The downward body force due to the olivine-spinel phase 
change may account for the tensional focal mechanisms associated with intermediate 
depth earthquakes while the upward body force of the spinel-oxide transition may 
be responsible for the predominance of compressional focal mechanisms in deep 
earthquakes. 
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We have demonstrated that mantle convection could penetrate the major 
mineralogical phase changes in the Earth’s mantle; indeed, these phase changes may 
enhance the intensity of convection and play a major role as a driving force for plate 
tectonics zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. 
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