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Abstract

cancer biomarkers.

With the recent addition of anti-angiogenic agents to cancer treatment, the angiogenesis regulators in platelets are
gaining importance. Platelet factor 4 (PF-4/CXCL4) and Connective tissue activating peptide Il (CTAP-II) are two
platelet-associated chemokines that modulate tumor angiogenesis, inflammation within the tumor
microenvironment, and in turn tumor growth. Here, we review the role of PF-4 and CTAP-IIl in the regulation of
tumor angiogenesis; the results of clinical trial using recombinant PF-4 (rPF-4); and the use of PF-4 and CTAP-III as

Keywords: Platelet, PF-4, CTAP-IIl, Cancer, Angiogenesis, IL-8, Inflamnmation

Introduction

Angiogenesis regulators are sequestered in platelets [1].
Platelet factor 4 and Connective tissue activating peptide
III constitute two major platelet CXC chemokines [2].
CXC chemokines have four highly conserved cystein resi-
dues with the two N-terminal cysteines separated by one
amino acid residue. CXC chemokines are subdivided into
two classes, ELR" and ELR’, based on the presence or ab-
sence of specific amino acid sequence (ELR, Glu-Leu-Arg)
[3]. CXC chemokines are generally implicated in inflam-
matory angiogenesis, and the ELR motif plays an import-
ant role in whether the specific CXC chemokine promotes
or inhibits angiogenesis. ELR-containing chemokines,
such as CTAP-III, are pro-angiogenic, while ELR-lacking
chemokines, such as PF-4 are angiostatic [3-5].

The following is a review of the role of PF-4 and CTAP-
III in inhibition and regulation of tumor angiogenesis, re-
spectively; results from rPF-4 clinical trial; and PF-4 and
CTAP-III as cancer biomarkers.

PF-4 physiology and function
PF-4 is heparin-binding polypeptide belonging to the ELR
CXC chemokine family. PF-4 is a tetrameric molecule,
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with each subunit consisting of 70 amino acid residues
with molecular weight 7.8 kDa [6]. The human gene
encoding PF-4 maps to 4q12-21 [7]. PF-4 is synthesized
almost exclusively by megakaryocytes and sequestered in
platelet a-granules [8]. Upon activation, platelets release
tetrameric PF-4 bound to two molecules of chondroitin
sulphate proteoglycan, which is displaced by heparin bind-
ing [9]. Physiological platelet levels of PF-4 have been
reported about 7-22 ng PF-4/10° cells [10,11] which is
about 150 pg/ml. Plasma levels of PF-4 are strongly
dependent on platelet activation in vitro [10-14]; e.g. the
levels in plasma supplemented by inhibitors of platelet
function are as low as 1.8 + 1 ng/ml [13], while levels of
PF-4 measured in citrated tubes can be as high as 150-
360 ng/ml (10,14). Similarly, high serum levels (about
5 pg/ml) correlate with platelet counts [13].

PF-4 shows both procoagulant and anticoagulant activ-
ity. It can prevent heparin binding to antithrombin leading
to inhibition of heparin-dependent thrombin inactivation
[15]. On the other hand, the inhibition of factor XII
(intrinsic or contact activation pathway) and that of vita-
min K-dependent coagulation factors can lead to PF-
4-mediated anticoagulant activity [16,17]. PF-4 further
inhibits coagulation by generation of activated protein C
by thrombomodulin binding [18]. In addition to its func-
tion in thrombosis and hemostasis, PF-4 plays an import-
ant role in wound healing, atherosclerosis and tumor
biology mainly through its ability to regulate angiogenesis
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and function of different immune cell types. Furthermore,
PF-4 [19-23] as well as CTAP-III [19] have been shown to
inhibit megakaryocytopoiesis. PF-4 also inhibits prolifera-
tion of erythroid and granulocyte/macrophage colonies
[20,24] and CD34+ progenitors via IL-8 interaction [25].

CTAP-IIl physiology and function

CTAP III is a major platelet ELR" CXC chemokine with
molecular weight 9.3 kDa [26]. It is produced not only
by megakaryocytes but also by monocytes, lymphocytes
and neutrophils [27,28]. CTAP-III, along with f-
thromboglobulin (B-TG), platelet basic protein (PBP)
and neutrophil-activating peptide 2 (NAP-2, CXCL7)
belongs to -thromboglobulin-like proteins (Figure 1).
CTAP-III is converted from a precursor PBP, the major
megakaryocytes variant, during megakaryocyte matur-
ation and platelet formation [29]. After its release from
platelet a-granules, CTAP-III can be proteolytically
cleaved to B-TG [26,30] and/or NAP-2 [31,32] with
chemotactic activity [33]. The exact mechanism of the
cleavage regulation is unknown. Although CTAP-III, f3-
TG and NAP-2 are all NH,-terminal truncated variants
of the PBP precursor, each possesses a very distinct bio-
logical function. NAP-2 acts like a typical CXC chemo-
kine while longer forms (PBP and CTAP-III) has no that
activity [33]. The PBP gene is localized to 4q12-q13 in
the vicinity PF-4 gene [7]. The manner in which CTAP-
III stimulates connective tissue cells [26,34,35] and its
immunoregulatory activity as a precursor of NAP-2 [31]
are summarized in Table 1.

Platelet regulation of tumor angiogenesis and tumor
growth

Angiogenesis in adults play an important role in wound
healing, female reproductive cycle but also in pathologic
processes, such as diabetic retinopathy, cancer and other
inflammatory disorders [41]. The process of angiogenesis
is regulated by balance of positive and negative regula-
tors. Platelet a-granules contain both types of angiogen-
esis regulators and consequently, platelets are involved in
tumor angiogenesis [42-44]. Positive regulators of angio-
genesis include platelet-derived growth factor (PDGF),
vascular endothelial growth factor (VEGF), fibroblast
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growth factor-2 (FGF-2) etc,; and angiogenesis inhibitors
include PF-4, endostatin, thrombospondin-1 etc. [45].
Italiano et al. (2008) reported that angiogenic and anti-
angiogenic factors are stored in distinct sets of a-granules
and their release is regulated by selective activation of
different thrombin receptors [46].

The role of PF-4 and CTAP-III in regulation of angio-
genesis and within the tumor microenvironment is de-
scribed in following paragraphs and the main features
are summarized in Figure 2.

PF-4, as an angiogenesis inhibitor

PF-4 inhibits migration and proliferation [47,56,57] of
endothelial cells (EC) and angiogenesis both in vitro [58]
and in vivo [57,59] via several mechanisms. Firstly, PF-4
binds positive angiogenesis regulators such as VEGEF,
bFGF and thus prevents their receptor binding and
bFGF dimerization [47,48,60,61]. More specifically, PF-4
also impedes growth factor binding to its proteoglycan re-
ceptors by competition for heparin and heparan sulphate
(HS) sites or by displacement growth factor from these
sites [47,48]. Lasagni et al. (2003) has described PF-4 re-
ceptor CXCR3B, a variant of chemokine receptor CXCR3,
which is expressed on microvascular endothelium and ac-
tivated T-lymphocytes [62]. PF-4/CXCR3B signaling plays
a role in transduction of apoptotic signal and inhibition of
proliferation in endothelium [62,63]. A further mechanism
of inhibition of endothelial cell growth and proliferation
has recently been reported by Woller et al. (2008) showing
that reactive oxygen radicals released from PF-4-activated
monocytes are responsible for the induction of apoptosis
in EC [64]. PF-4 also prevents entry of EC into S phase
and DNA synthesis [56]. A PF-4 variant (CXCL4L1/PE-
4var) differing from its native compound in three amino
acids at the peptide carboxy-terminal part is even more
potent angiogenesis inhibitor, and its role in cancer bio-
logy is reviewed by Vandercappellen et al. 2011 [65].

PF-4 also exerts its anti-angiogenic activity via inhib-
ition of pro-angiogenic cytokine IL-8. IL-8, also a CXC
chemokine family member, has been shown to enhance
endothelial cell survival, proliferation, and production
of matrix metalloproteinases which further stimulates
tumor angiogenesis, and consequently tumor growth

PBP (94 aa, 10.3 kDa)
CTAPIII (85 aa, 9.3 kDa)

ISSTKGQTKR NLAK GKEESLDSDLY A ELR CMCIKTTSGIHPKNIQSLEVIGKGTHCNQVEVIATLKDGRKICLDPDAPRIKKIVQKKLAGDESAD|

NAP-2 (70 aa, 7.6 kDa )
B-TG (81 aa, 8.8 kDa)

Figure 1 Amino acid sequences of B-thromboglobulin-like proteins [36].
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Table 1 CTAP Il biological functions

Regulation of hematopoiesis

Inhibition of megakaryocytopoiesis [19]
Immunoregulatory activity Histamine release by basophils [37]
Precursor of NAP-2 [31]

Angiogenesis Chemotaxis of EC in vitro [5]

Connective tissue cells
metabolism

Mitogenesis [34]
Glycolysis [34]

Hyaluronic acid and GAGs

synthesis [22,34]

Prostaglandin E, secretion [22]

Plasminogen activator synthesis [35]
Others Stimulation of glucose transport [38]

Transcellular mediator of the cellular
sphingomyelin import [39]

Heparanase activity [40]

and metastasis [52]. IL-8 exhibits its signaling via
CXCR?2 receptor which is under normal conditions an-
tagonized by PF-4 [50]. Moreover, PF-4/IL-8 hete-
rodimers have stronger anti-proliferative activity on
endothelial cells than PF-4 alone [49]. Inhibitory effect
of recombinant PF-4 on tumor growth and metastasis
[66,67] is most likely consequence of tumor angiogenesis
inhibition, because PF-4 does not inhibit proliferation of
tumor cells in vitro [66]. Gene therapy by PF-4 gene
transfer has also shown anticancer effect in vivo [68,69].

Regulation of tumor angiogenesis and tumor growth:
connection with tumor microenvironment and the
immune system
Inflammation is the primary and likely the most import-
ant host protective reaction to tissue and cellular dam-
age. However, many pathological processes including
cancer may recruit inflammatory response. Immune cells
are endowed with a dual role: as a defense mechanism,
or as a supporter of tumor growth particularly by stimu-
lation of EC and tumor neovascularization in a process
referred to as “inflammatory angiogenesis”. It is thought
to be due changes within a tumor microenvironment
that stimulates immune regulators to release cytokines
and growth factors that lead to promotion of tissue re-
modeling, angiogenesis and tumor growth [70].
Although PF-4 belongs to the chemokine family it
doesn’t show significant chemotactic activity for neutro-
phils [36,70-72]. Yet, PF-4 is involved in regulation of
other cell types through other mechanisms which
involve complex spectrum of functions on immune cells
as summarized in Table 2. Reports on the ability of PF-4
to stimulate innate immune response predominate
suggesting that rather than using inflammation to stimu-
late tumor growth, PF-4 stimulates immune cancer
surveillance and tumor inhibition.
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CTAP-Ill, as an angiogenesis modulator and stimulator of
inflammation
There is not much information about the role of CTAP-
II in angiogenesis but expression studies suggest that
CTAP-III plays an important role in tumor growth and
progression. CTAP-III has been reported to mediate
chemotaxis of EC in vitro and stimulate angiogenesis
in vivo [5]. Of these various cleavage products of PBP, only
CTARP III possesses heparanase activity rendering it a very
distinct role in modulating tumor progression [53].
NAP-2/CXCL7, CTAP-1II cleavage product, has been
shown to stimulate angiogenesis in vivo [83]. NAP-2 also
stimulates neutrophil degranulation leading to increased
vascular permeability [84]. Together, CTAP-III and NAP-
2 collaborate in degrading heparin and heparan sulphate
[40], important components of extracellular matrix and
anchoring proteins for many heparin-binding regulators
of angiogenesis. As the surface of inflammatory and endo-
thelial cells in the tumor microenvironment expresses
increased amounts of HS, local blood coagulation, fibrin
deposition, cell adhesion and tumor growth are facilitated.
Tang et al. 2008 reported that CXCL7 transfected breast
cells acquired invasive properties and demonstrated
elevated heparanase activity, which caused remodeling of
extracellular matrix and facilitate cancer metastasis [53].
NAP-2 is formed through further cleavage of PBP and
CTAP-III in the presence of leukocyte proteases [31,32,51].
While its precursors do not show pro-inflammatory activity,
NAP-2 stimulates both chemotaxis and neutrophil de-
granulation through chemokine receptors CXCR-1 and
CXCR-2 [33,51]. The amino-terminal residues of NAP-2
extended variants probably mask ELR motif, a crucial neu-
trophil receptor binding domain, leading to predominantly
inhibitory chemokine activity [85]. However, it has been
shown that continuous accumulation of NAP-2, as a pro-
duct of PBP and CTAP-III proteolysis, results in anti-
inflammatory activity by desensitization of neutrophils
through down-regulation of chemokine receptors, espe-
cially CXCR-2. This finding suggests that NAP-2 has dual
function and that interaction of the various PBP cleavage
products produces a very finely tuned system.

PF-4 in clinical trials

Clinical trials testing recombinant PF-4 have been com-
pleted in metastatic colon cancer [86], AIDS-related
Kaposi’s sarcoma [87,88], metastatic melanoma, renal
cell carcinoma [89] and high-grade glioma [90]. The
phase I trial in patients with metastatic colorectal cancer
evaluated 9 patients who had failed 5-FU treatment.
Subjects received rPF-4 at doses ranging from 0.3 to
3.0 mg/kg via 30-minute infusion, three additional
patients were treated with the 3 mg/kg dose using a 6-
hour infusion. Of the 11 evaluable patients, rPF-4 was
well tolerated at the doses and schedules tested, but no
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Figure 2 PF-4 and CTAP-III/NAP-2 connection and their role in tumor angiogenesis and progression. The interaction of various
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components of the wound or tumor stroma depends on the presence or absence of different tissue proteases and on the reciprocal interaction
of the various cells. PF-4 inhibits angiogenesis by (1) competitive inhibition of pro-angiogenic growth factors binding to HS sites in the tissues,
where HS serve as co-receptor of growth factor receptors, such as VEGFR2 [47,48]; (2) by binding of IL-8 to form PF-4/IL-8 heterodimers [49] (3)
and by antagonising of CXCR2, IL-8 receptor, which is involved in regulation inflammation and angiogenesis [50]. (4) IL-8, released by tumor as

well as stroma and endothelial cells, induces chemotaxis of inflammatory cells [51] and angiogenesis [52] (5) by signaling through CXCR2
receptor [52]. The CXCL7/CTAP-IIl acts in a number of different ways: (6) CTAP-III is cleaved by leukocyte proteases to NAP-2 [31,32]; (7) NAP-2
splits HS from glycosaminosulfates (GAG) in the stroma, leading to interruption of extracellular matrix (ECM) protein-protein interactions and
release of heparan sulphate-bound growth factors, such as VEGF [40]. (8) The remodeled ECM at the side of inflammation and angiogenesis
enables the interaction of the released growth factors (e.g. VEGF) with their respective receptors and leads to modulation of angiogenesis and
regulation of tumor spreading [53]; (9) CTAP-IIl stimulates further GAG synthesis [54] on the surface of endothelial cell injury leading to increased
PF-4 production and localization of heparin binding angiogenesis regulators. (10) NAP-2 regulates activity and expression of CXCR2 [51,55].

clinical responses to treatment rPF-4 were observed.
Similar results were observed in phase I study of recom-
binant platelet factor 4 in patients with metastatic me-
lanoma and renal cell carcinoma. Three dosage groups
with 3 patients at each level of 0.3, 1.0 and 3.0 mg/kg were
evaluated. Recombinant PF-4 was given as a 6-hour infu-
sion on days 1, 8-10 and 15-19 and could be given in two
5 day courses on days 29-33 and 43-47. All patients
completed the initial 9 doses and 4 completed the 19
additional doses. There was no hematopoietic, hepatic,
renal or coagulation toxicity, and most of the symptoms
were attributed to the underlying disease. No dose re-
sponse was recorded. Six patients progressed and two
were stable during the 7 week study period. The authors
concluded that rPF-4 had no biological activity at the
doses and schedules used.

These perceived failures may be due to the fact that PF-4,
similarly to other biologic response modifiers, is a sensitizer
to cytotoxic chemotherapy rather than a cytotoxic agent

and its effect may not be detected in monotherapy setting.
Furthermore, establishing a maximally tolerated dose of
rPF-4 in phase I may be inappropriate. Most biologic re-
sponse modifiers, rPF-4 included, have U-shaped response
curves and maximum effect is achieved at mid-range. High
doses lead to toxicities caused by undesirable (and unneces-
sary) off-target effects. Thus, the goal when using biologic
response modifiers such as rPF-4 should be the determin-
ation of a biologically effective dose. However, establishing
the optimal dose may be very difficult in absence of vali-
dated surrogate markers for its biological activity. At least
for now, the choice of phase I trial designs and appropriate
end points may need to be guided by the mechanism of
action of the agent like rPF-4. Currently no phase II trials
with rPF-4 have been continued.

PF-4 and CTAP-IIl as biomarkers of tumor growth
PF-4 and CTAP-III can be used as biomarkers of tumor
growth [1,10,91,92]. Yee et al. (2009) identified higher
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Table 2 PF-4 biological functions
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Procoagulant activity

Anticoagulant activity

Inhibition of heparin-dependent thrombin inactivation [15]

Inhibition of factor XII [16] and vitamin K dependent coagulation factors [17]

Generation of activated protein C [18]

Regulation of hematopoiesis

Inhibition of megakaryocytopoiesis [19-24]

Survival of hematopoietic and progenitor cells [73]

Inhibition of BFU-E, CFU-GM and CD34+ progenitors proliferation [24,25]

Immunoregulatory activity

Stimulation of neutrophil adhesion and secondary granule exocytosis [36,71,72,74]

Stimulation of monocyte adhesion and activation [64,75,76]

Induction of monocyte differentiation into macrophage [77] and APC [78]

Stimulation of eosinophil adhesion [79]

Stimulation of histamine release by basophils [80]

Activation of NK cells and IL-8 release [81]

Inhibition of T-cell activation and proliferation [82]

Anti-angiogenic activity

Growth factors (VEGF, bFGF) binding [47,48,60]

Competition with growth factors (VEGF, bFGF) for glycosaminoglycan (GAGs) binding [47,48]

Prevention of EC entry into S phase and inhibition of DNA synthesis [56]

Monocyte ROS mediated cytotoxicity for EC [64]

serum levels of CTAP-III in pulmonary venous than in
arterial blood using mass spectrometry (MS) and im-
munoassay [93]. While the levels of CTAP-III decreased
after curative surgical resection, the elevated levels did
not decrease in patients with residual disease after resec-
tion. Elevated blood levels of CTAP-III were detectable
for up to 29 months before clinical diagnosis of lung
cancer [93]. Increased levels of plasma CTAP-III were
also detected using MS and ELISA in patients with lung
cancer [94].

Grisaru et al. (2000) studied tissue expression of CTAP-
II in cervical cancer specimens using immunostaining
[95]. In normal epithelium CTAP-III was distributed in all
of the epithelial layers, except in the highly active and pro-
liferating basal cells. Cells of invasive cervical carcinoma
did not stain for CTAP-III, and the presence of CTAP-III
was limited to endothelial cells of capillary blood vessels.
Moreover, CTAP-III staining pattern correlated positively
with the degree of epithelial cell differentiation and with
the stage of CIN [95] suggesting the role of CTAP-III in
tumor progression and angiogenesis.

As it appears, PF-4 is concentrated in platelets and lit-
tle is detected in plasma [91,92]. Platelet levels of PF-4
as determined by surface-enhanced laser desorption/
ionization time-of-flight MS (SELDI TOF MS) are up-
regulated following implantation of human tumor xeno-
grafts in mice but fall in tumor progression. In contrast,
the levels of PF-4 in plasma remained unchanged
[1,91,92]. We had proposed that elevated platelet levels
in tumor-bearing mice present feedback loop mecha-
nism in response to the induction of pro-angiogenic
factors by the growing tumor [91]. Study in patients with

early colorectal cancer showed statistically significant
increase in PF-4 in platelets coincident with a rise in
pro-angiogenic factors, such as VEGF and PDGF, com-
pared to healthy controls, while changes in plasma levels
of PF-4 remained insignificant [92]. It is likely that PF-4
rather than being released from platelets in circulation,
binds locally to the HS at sites of platelet adhesion.

Conclusions

Until recently, PF-4 has been studied in the past mainly
in the setting of heparin-induced thrombocytopenia.
The clinical translation of its biological effects in sup-
pression of tumor growth, prevention of atherosclerotic
plague, endometriosis, chronic inflammation and other
angiogenesis-dependent diseases may have been hin-
dered by a lack of understanding of its biological effects
and mechanism of action. We have summarized emer-
ging data on role of PF-4 and CTAP-III in regulation of
tumor growth. It appears that the role of these two
chemokines in modulation of tumor dynamics cannot be
separated from the role of platelets and inflammation
within the tumor microenvironment. While much of the
biology of platelet-associated PF-4 and CTAP-III is likely
to be harnessed with therapeutic intent only in the fu-
ture, an obvious immediate clinical application may be
to use them as biomarkers of cancer presence and/or
therapeutic response. The more conventional biological
samples such as serum or plasma have certainly not lead
to emergence of any reliable biomarker. However, since
angiogenesis regulators are sequestered in platelets,
measurement of these chemokines in platelets may give
a much better reflection of the actual angiogenic
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process. Finally, PF-4 is a locally acting protein whose
role is to modulate the stroma of the wound or the
tumor and its systemic administration may not ensure
its bioavailability within the respective microenviron-
ment. Perhaps the delivery of a recombinant PF-4 via
platelets as its natural vehicle may provide a more
biologically relevant treatment modality and improve its
therapeutic potential.
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