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ABSTRACT

Loop formation in long molecules occurs many places in nature, from solutions of carbon

nanotubes to polymers inside a cell.  In this article, we review theoretical studies of the

static and dynamic properties of polymer loops.  For example, long polymers must search

many configurations to find a "target" binding site, while short polymers are stiff and

resist bending.  In between, there is an optimal loop size, which balances the entropy of

long loops against the energetic cost of short loops.  We show that such simple pictures

of loop formation can explain several long-standing observations in DNA replication,

quantitatively.
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INTRODUCTION

Over the last decade, many new, exciting

experimental techniques to manipulate single

molecules have been developed that have

renewed interest in the classical theory of

single-chain polymers [1-3].  One case, the

looping of polymers, has important

applications of current interest.  For example,

Sano et al. [4] used covalent reactions to

produce ring-shaped carbon nanotubes.  In

biology, the long molecule par excellence is

DNA, and looping in DNA is important in

several different contexts.  For example,

Goddard et al. [5] studied the opening and

closing dynamics of short, single-stranded

DNA fragments ("molecular beacons"), finding

that their rigidity depends strongly on the

specific nucleotide sequence.  The sensitivity

to sequence can be used to diagnose rapidly

diseases that correlate with changes in a single,

specific nucleotide in a genome ("single-

nucleotide polymorphism," or SNP) [6].  In

living cells, at scales of hundreds of bases,

DNA looping plays an important role in gene

regulation, where, for example, it can multiply

greatly enzyme reaction rates by allowing a

DNA-bound protein to interact with a target

site on the same DNA molecule much more

frequently than a free protein would [7, 8].

Loops may also appear in complex DNA-

protein structures, such as the 30-nm chromatin

fibre, at scales of thousands of bases, or even

longer [9].  Finally, in a non-DNA example,

the looping of an amino acid chain is one of the

key issues in protein folding; the resulting

"loop regions" often form the binding sites of

other molecules [10].

All of these examples involve long

molecules with an intrinsic stiffness.  In this

article, we review some of the theoretical

studies done on polymer looping, paying

particular attention to the role of stiffness in

defining a characteristic loop size. We then

show that models incorporating the effects of

looping can help in interpreting experimental

data on DNA replication.

THEORETICAL APPROACHES TO

MODELING POLYMERS

Configurations

We first review the overall

classification of polymer models, both discrete

and continuous.  The simplest discrete polymer

model is the freely jointed chain (FJC).  Fig.

1A shows a model FJC as a chain of freely

joined vectors of fixed length b0.  The FJC

ignores both monomer interactions and finite

chain stiffness and can be thought of as a

random walk of a fixed step length, where each

step is independent of the previous trajectory.

Usually, the “size” of a polymer chains is

defined as 
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R 
2 , and one can derive a very

simple scaling law 
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When N Æ •,  the distribution of end-to-end

vectors   
r 
R  is Gaussian.  In a variant of the FJC,

beads are separated by freely jointed linear

springs, which leads to a Gaussian distribution

of bond lengths.  For large N, the FJC and this

"Gaussian-chain" model behave identically.

A more realistic discrete model of

polymer, the freely rotating chain (FRC), is

shown in Fig. 1B.  The FRC consists of vectors

with fixed bond angle, but with completely free

dihedral angles, thus naturally incorporating a

finite stiffness.  In the FRC, 
  

r 
R 
2

 can be

calculated exactly in a straightforward way,
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and it is easy to show that the FRC also follows

the same scaling law in N as the FJC.  Next ,

we define a quantity called the "persistence

length" as

(2)

  

lp = lim
N Æ•

r 
R •

r 
u 
0

=
b
0

1- cosq
,

which is the average length of the projection of

the end-to-end vector   
r 
R  along the direction of

the first bond vector.  As we shall show below,

the persistence length is a measure of chain

stiffness.

Figure 1.  Discrete models of polymer. (A) Freely
Jointed Chain (FJC)  (B) Freely rotating chain.

The continuous limit of the FRC is the

Kraty-Porod (KP) wormlike chain [11].  We

define the total contour length L = N⋅b0 and the

contour distance s (0 ≤ s ≤ L) from the zero'th

to the i'th vector by s = i⋅b0.  We then take the

limit N Æ  • , b0 Æ  0, and q  Æ  0, with

constraints that the chain length L  and the

persistence length lp remain constant.  The

discrete chain contour then becomes a

continuous, differentiable space curve.  The

statistical properties of the KP wormlike chain

are determined by an effective free energy

(3)
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where k≡ lp *kBT is the bending modulus of the

polymer, and the unit tangent vector 
  

r 
u s( )  at s

on the curve is defined as 
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d
r 
r s( )
ds

, with

  

r 
r s( )  is the position vector.  We note that

imposing the constraint of fixed polymer

length, 
  

r 
u s( ) =1, is one of the major difficulties

in handling the model analytically [12].

Several quantities, nonetheless, are

known exactly.  One of the most important is

the spatial correlation function for unit tangent

vectors [13],
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Using Eq. 4, we can also calculate
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In Eq. 5. for L<<lp, we have 
  

r 
R 
2

= L
2
: the rod

is rigid.  For L>>lp, we have
  

r 
R 
2

= 2lp L , which

is identical to Eq. 1 if we identify b0' = 2lp and

N' = L/ b0' as effective segment lengths and

polymerization indices, respectively.  The

behaviour in these two limits shows that the KP

wormlike chain interpolates between the rigid

rod and the Gaussian chain.  Hence, the

persistence length lp is a measure of the chain

stiffness in the KP model.  One often uses a

dimensionless chain length, l = L/lp.

We note that neither the KP nor the

lattice models considers the torsional energy of

a chain, which can lead to complications such

as supercoiling and knotting [14].  The helical

wormlike (HW) chain model has both bending

and torsional energies, and it has been very

successful in applications involving short
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lengths of DNA.  Formally, the HW chain is

obtained from a discrete chain with coupled

rotations (the dihedral-angle distributions are

non-uniform) [15].

The Looping Problem

We now turn our attention to the

looping problem for semiflexible polymers.

Imagine a dilute solution of semiflexible

polymers with two sticky ends in equilibrium

(Fig. 2).  (For dilute solutions, one can ignore

inter-chain reactions.)  For simplicity, we also

assume the distribution of contour lengths of

polymers to be uniform.  In single-polymer-

chain problems, a central quantity for

characterizing chain conformations is the

distribution function  of the end-to-end vector

  

r 
R , 

  
G

r 
R ; L( ), where L is the total contour length.

Then 
  
G

r 
R ; L( ) can be identified with the

probability density for finding the two ends of

the polymer chain separated by   

r 
R  and

  
G

r 
R = 0; L( )  with the ring-closure probability

[16].  If we consider G(R=0; L) as a function

of L , it is the number of closed-chain

configurations for a polymer of length L.

Figure 2. A semiflexible polymer with two sticky
ends in a dilute solution.  Here, we assume that the
end-to-end interaction is short ranged, so that the
two ends react only if the two ends meet by
diffusion.

Because of the intrinsic stiffness of the

KP chain, 
  
G

r 
R = 0; L( )  shows a completely

different behaviour from that of Gaussian

chains, where entropy determines all.  Loops of

semiflexible chains cannot have arbitrary sizes:

It costs too much energy to bend a stiff

polymer into a loop whose length is

comparable to the persistence length lp, thus

favoring larger loops.  On the other hand, as

loop sizes increase, a larger configuration

space must be searched, thus favoring shorter

loops.  The optimal loop size, which balances

energy and entropy, is 3-4 times the persistence

length.

For the ideal phantom FJC with no

stiffness, the end-to-end distribution function

  
G

r 
R ; L( ) is known exactly and converges to a

Gaussian distribution in the large-N limit, with

mean-square average end-to-end distance

  

r 
R 
2

= N b
0

2
 or 2Llp (see earlier definition

below Eq. 5).  The “persistence length” lp is

independent of temperature because its

microscopic origin lies in steric constraints

rather than in the bending rigidity of the

backbone [15].  The effect of excluded volume

or self-avoidance profoundly changes the

properties of flexible chains, and its analytical

treatment is difficult.  For a semiflexible

polymer whose size is comparable to the

persistence length, however, we can reasonably

ignore the effect of excluded volume, which

become quantitatively important only for long

chains.  Given the long history of the KP

wormlike chain, it is surprising that a good

approximation to 
  
G

r 
R ; L( ) for L @  lp was

obtained only recently by Wilhelm and Frey

[17], and then in a slightly different form by

Thirumalai and Ha [18] (Note: for L  ≥ 10lp,

  
G

r 
R ; L( ) is well-described by the Daniels

approximation, which is an asymptotic

expansion about a Gaussian distribution [19]).

Previous authors had started from chains near

the rod limit, expanding in powers of l = L / 2lp

to obtain corrections.  Although these

calculations are quite involved, they do not

produce even qualitatively correct results.  For

the ring-closure probability G(R = 0; L),

however, we note that Yamakawa and
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Stockmayer have obtained an approximate

expression that is qualitatively correct, using

the KP model [20].  Later, Shimada and

Yamakawa extended their results to the helical

wormlike chain model [21], deriving an often-

used approximate expression for the ring-

closure probability, valid for L < 10 lp [22],

(6)

G R = 0;l( ) = 28.01⋅ l-5 ⋅ exp -
7.027

l
+ 0.492 ⋅ l

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

In Eq. 6, the different configurations of

dihedral angles have been averaged over.

Dynamics Of Loop Formation

In the previous section, we described the

conformations of polymers in thermodynamic

equilibrium.  In biology, the only systems in

equilibrium are dead, and one is forced to think

also about non-equilibrium conditions and

about dynamics.  For loops, we have focused

on 
  
G

r 
R = 0; L( ) ,  the number of loop

configurations for a polymer of length L .

Often, what we really want to know is the rate

of loop formation and other similar questions.

We can imagine two limiting cases.  Let us first

imagine that when the two ends of the polymer

meet, the probability of sticking (binding) is

very low.  The polymer has ample time to

sample all available configurations before

actually binding.  (We assume that the binding,

once it occurs, is irreversible.  The opposite

case, where the loop opens and closes many

times, is termed a "living polymer" [23].)  The

time to form a loop would then be

approximately

(7)

t
R
L( ) =

dRG R;L( )Ú
G R = 0;L( )

⋅h
0

-1
⋅ t

0

where the G-factors are the number of non-

loop conformations per loop conformation, h0

is the probability for ends to stick per

encounter, and t0 is the time to explore one

configuration.  In this "quasistatic" picture, the

G-factors are obtained from static, equilibrium

theory, and dynamics enters only in the

calculation of t0.  In analogy with other

chemical processes, this is often known as the

reaction-controlled limit.

Alternatively, if the sticking probability

h0 ª 1, a loop will form the very first time the

ends meet.  The time to form a loop, tD, is then

a "first-passage time:" it is the time randomly

diffusing ends require to encounter each other.

This is often termed the diffusion-controlled

limit (see, for example, [24] and references

therein).

Most work on biological systems

assumes, often implicitly and usually without

much justification, that the first limit pertains.

In our own work, below, we follow that

tradition, but it is useful to briefly sketch some

of the theoretical approaches to "true"

dynamics.

The overall framework begins with a

model for the dynamics of the polymer chain.

The traditional starting point is the Rouse

model, which is a Gaussian chain with the

beads subject to local friction, in the strongly

overdamped limit.  In the Zimm model, the

beads interact with their nearest neighbours via

springs and with more distant neighbours

hydrodynamically:  the motion of one bead

stirs the fluid, which exerts a force on distant

beads.  The Rouse and Zimm models can be

used to estimate t0 in Eq. 7.  (For dilute

solutions, the Zimm model does a much better

job.)

In the diffusion-controlled limit,

Wilemski and Fixman (WF) have extended the

Rouse model [25].  In the latter, the polymer's

state "diffuses" through configuration space.  In

their extension, WF add a "sink" that freezes

the polymer's state when it wanders into a loop

configuration.  Unfortunately, Rouse models

are not quantitatively accurate for dilute

polymer solutions, and the better Zimm

calculation has not been done.
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A cruder way of looking at the

dynamics of loop formation is to group all of

the open configurations together, giving a

"two-state" system, where the polymer is either

in a "linear" or "loop" state (for flexible

polymers, see [26] and references therein).  At

time t = 0, we assume that the conformations of

all the polymers in the solution are linear.  If

the end-sticking reaction is irreversible, all the

polymers will eventually form loops even if

there is a bending energy (Fig. 3A).  In other

words, there is a transition from one state

(linear) to another (loop) due to thermal

fluctuations, which enables the stiff polymer to

overcome the bending energy.  This problem is

equivalent to the well-known Kramers problem

in non-equilibrium statistical mechanics [27],

where a particle is trapped in a potential well

but thermal fluctuations provide an energy

source that allows the trapped particle to

escape (Fig. 3B).  If one considers the rigid-rod

limit of the KP chain, the effective potential

energy becomes Eeff =
k

2

q 2

L
, where k  is the

bending modulus of the stiff chain and L is the

total contour length (Fig. 3C).  One can then

show that the “escape” rate r = tD
-1 is

(8)

r = J q ª 2p( ) ª f l,C( ) ⋅ e
-

¢ C 

l ,

where J  is the current of right-moving

probability and C’ is a constant factor.  The

prefactor f is a slowly varying function of a

reduced chain length l and a set of constants C

that includes the friction coefficient g.  Eq. 8

predicts a rapid suppression of escape rate for

small l.  Since t  increases monotonically as l2

[28] for large l, (flexible-chain limit), by

interpolating these two extreme cases, one still

expects an optimum value of l > 0 for the

maximum escape rate or minimum loop-

closure time.  Thus, even in a dynamical

picture, one expects qualitatively the same

picture as in the quasistatic case:  loops are

suppressed for Lª lp, form most rapidly for L ª

few lp, with the probability tailing off for

longer L's.  This  equivalence justifies our use

of the quasistatic limit, where, if we are merely

interested in relative numbers of loops of

different sizes, the factor t0 is roughly constant

and only static information is required.

Figure 3. Two-state model of loop formation and
the Kramers escape problem.  (A) Semiflexible
polymers in a dilute solution.  The reaction is
irreversible and eventually all the linear polymers in
the solution form loops.  (B) A classical (not
quantum) Brownian particle is trapped in a potential
well of height W.  Because of the thermal energy,
the particle has a non-zero probability to escape
from the well.  J(x) is the flux of right moving
probability.  (C) Bending of a rigid rod.  A rigid rod

has to overcome a “potential” energy Eeff =
k

2

q 2

L
 in

order to bend, where k is the bending modulus.

EXPERIMENTAL APPLICATION TO

DNA REPLICATION

The recent complete sequencing of the

human genome has stimulated great interest in

modeling various aspects of DNA.  The

function of DNA is to store genetic information

in a way that can be interpreted by the cell and

replicated for future generations.  The amount

of information is large: the human genome, for

example, consists of about 3*109 nucleotide
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base pairs (bp) (We note that lengths of DNA

are often measured in base pairs: 1 Mb

(megabases) = 103 kb (kilobases) = 106 b

(bases) or bp).  Cells have very sophisticated

micro-machineries to copy this information

quickly and accurately.  Although the

organization of the genome for DNA

replication varies considerably from species to

species, the duplication of most eukaryotic

genomes shares a number of common features:

(1) DNA replication starts at a large number

of sites, "origins of replication."  The amount

of DNA replicated from each origin is

known, informally, as an "eye" because of its

appearance in electron microscopy.

(2) The position of each potential origin that

is "competent" to initiate DNA replication is

determined before the beginning of the

synthesis part of the cell cycle ("S-phase"),

when several proteins, including the origin

recognition complex (ORC) bind to DNA,

forming a pre-replication complex (pre-RC).

(3) During S-phase, a particular potential

origin may or may not be activated.  Each

origin is activated not more than once during

the cell-division cycle.

(4) DNA synthesis propagates at replication

forks bidirectionally with propagation speed

or fork velocity v, from each activated origin.

(5) DNA synthesis stops when two newly

replicated regions of DNA meet.

Processes (3)-(5), depicted in Fig. 4A,

can be described by a stochastic model that is

formally equivalent to nucleation-and-growth

models developed in the 1930s [29-31].  The

“Kolmogorov-Johnson-Mehl-Avrami” (KJMA)

model has since been widely used by

metallurgists and other scientists to analyze the

freezing of liquids.  To understand the model,

consider an ice-cube tray that you fill with

water and put in a freezer.  Some time later, it

is all frozen.  In the meantime, three processes

have occurred:

(1) nucleation of discrete solid domains

(analogous to the replicated regions);

(2) growth of the domains;

(3) coalescence when two expanding

domains meet.

Of course, in the case of DNA, the

"freezing" is one dimensional.  But that makes

the model much easier to solve, and, indeed,

theoretical physicists in the 1980s and 1990s

had devoted some effort to the one-dimensional

KJMA model [32, 33], not because there was

any real application but because one could

pursue analytic and numerical work much

further than in three dimensions!

Inspired by this analogy, we applied the

KJMA model to data from the recent

“molecular combing" [34] experiment by

Herrick et al. [35-37].  These experiments used

two-colour fluorescent labeling of DNA bases.

One begins (in a test tube, alas) by labeling the

bases used in replicating the DNA with, say, a

red dye.  At some point, during the replication

process, one floods the test tube with green-

labeled bases and allows the replication cycle

to go to completion.  One then chops up the

DNA into fragments that are examined under a

microscope.  Regions that replicated before

adding the dye are red, while those labeled

afterwards are predominantly green.  The

alternating red-and-green regions form a kind

of snapshot of the replication state of the DNA

fragment at the time the second dye was added.

Varying that time in different runs allows one

to systematically look at the progression of

replication throughout S-phase.  From images

of these DNA fragments, we can form statistics

about replicated lengths ("eyes"), non-

replicated lengths ("holes"), and distances

between origins ("eye-to-eye" lengths).  Our

problem then becomes the reverse of the usual

application of the KJMA to problems in

materials science.  In the latter, one generally

knows the temperature of the material, and

hence the nucleation rate, as a function of time,

and one wishes to predict the fraction
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solidified, the size of solid domains, etc.  In our

case, we have information about the eyes,

holes, and eye-to-eye lengths, and we wish to

infer the rates of origin initiation I(t)

throughout S-phase.

Figure 4. Space-time diagram of one-dimensional
nucleation and growth.  (A)  The replicated/solid
domain is shown as a bubble, or “eye”.  (B) The

probability for a point x  at time t  to remain

unreplicated is determined by the requirement that
there be no initiations in the shaded area. Here, I(t)
is the initiation probability per unit time per unit
unreplicated length.  See Eq. 9.

Fortunately, it is possible to "invert" the

KJMA model, so that from experimental data

such as the average length of replicated

fragments as a function of the fraction f of total

DNA replicated (Fig. 5A), we could extract

various parameters that govern the kinetics of

DNA replication in early-embryo Xenopus

l a e v i s , a type of frog often used in

developmental studies [36].  In particular, the

frequency of origin firings I(t) and the fork

velocity v were determined directly from the

data (Fig. 5B).  Once we know I(t) and v,

almost all quantities such as the mean sizes of

replicated and unreplicated domains can be

calculated either analytically or numerically.

For example, from the space-time diagram in

Fig. 4B, the fraction of DNA f replicated a time

t after the start of S-phase is given by

(9)

f t( ) =1- 1- I t( )dxdt( )
x,tŒD

’

=1- e
-v I t( ) t - t( )dt

0

t

Ú

Notice that the extracted I(t) gives

information about the time evolution of the

overall origin initiation rate but not about the

origin distribution along the genome.  The

lack of spatial information reflects the nature

of the kinetic model used, where all spatial

information was averaged out to create a

“mean-field,” spatially homogeneous model.

But are the initiations of individual origins

independent of each other?  Does origin

activation enhance and/or suppress initiation

of its neighboring origins?

Figure 5.  Inverting the KJMA model.  (A) <eye
size> vs. fraction replicated f.  (B) One can apply
the KJMA model to extract (invert) the spatially
averaged (“mean-field”) probability of initiation I(t)
from the data shown in (A).

To answer such questions, we need to

understand more about the biology of

replication.  In eukaryotic organisms, origin

initiation occurs in several steps:

1. In the G1-phase of the cell cycle, several

proteins (ORC complexes, Cdc6, Cdt1) bind

to the DNA.

2. Each of the attached ORC-Cdc6-Cdt1

complexes recruits 10-40 copies of the six

proteins MCM2-7.  They then also recruit the

proteins Cdc6 and Cdt1, forming a pre-

replication complex (pre-RC).

3. In S-phase, the pre-RC is activated via a

complex sequence of protein interactions,

allowing MCM2-7 to unwind the DNA to

start replication;

4. DNA replication is initiated (at most once

each cycle) at (some of) the pre-RCs.

Thus, we can sharpen our questions:

Since initiation must occur at one of the pre-
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RC sites, we may ask, How are pre-RCs

distributed along the genome?  Do the pre-RCs

initiate independently, or is there a correlation

between the activities of neighboring sites?

In Xenopus early embryos, the

assembly of pre-RC is DNA sequence

independent [38], but the amount of pre-RC

and the nature of its distribution along the

genome is controversial [39, 40].  Because the

duration of S-phase (ª 20 min.) is determined

by the largest separation between pre-RCs and

the replication-fork velocity (ª 10 bp/sec), this

separation has an absolute upper limit (ª 20 kb

for the  Xenopus); otherwise, one has the

"random-completion" problem [41]:  Even a

single large gap between origins will lengthen

S-phase, leading to a usually fatal abnormality

in the developing organism.  The limit is all the

more serious in that many of the mechanisms

that normally allow a cell to pause to allow

unreplicated areas to "catch up" are not present

in the early embryo.

Currently, there are two different views

on how to resolve the random-completion

problem.  The first is that the density of pre-

RCs is roughly the same as that of activated

origins [40]. "This would require some

regularity in pre-RC spacing, as well as almost

100% initiation efficiency.

The second is that the distribution of

pre-RC sites is random and that there are many

more pre-RC sites than origins [39, 42].  In this

case, the separation between pre-RC sites

should follow an exponential distribution [43].

The average density of sites must be high

enough that the long tail of large separations

has only a very small chance of producing a

fatally large origin gap.

In both scenarios presented above, many

people have speculated that the higher-order

structure of the DNA-protein complexes that

make up chromosomes ("chromatin") can have

loops and that these loops can impose some

regularity to the separation of replication

origins [39, 40, 44].  Here, we list some

observations that look somewhat scattered and

unrelated at first glance, but can all be

explained and related as consequences of

chromatin looping, providing a natural solution

to the random-completion problem:

(1) Initiations are inhibited for distances ≤ 2-

4 kb [39].

(2) Most initiations are separated by 5-15 kb

on Xenopus  sperm chromatin [40].  In a

similar system, early-embryo Drosophila (a

fruit fly), the average origin spacing is about

7.9 kb [45].

(3) There is a weak but statistically

significant positive correlation between the

sizes of neighboring replicated domains.

Large eyes tend to have large neighbours

[40].

(4)  Although one's first guess might be that

the proteins involved in DNA replication

would find the DNA and move along it, there

is evidence that the reverse is actually the

case:  Proteins such as the polymerases

required for replication are localized in

"replication factories" at discrete sites in the

cell nucleus, and the DNA comes to them

[46].

(5) In eukaryotic organisms, chromosomes

have several levels of higher-order structure,

each with its own length scale. The various

structures can be modeled as wormlike

chains.  In particular, the persistence length

of the “30-nm” fiber is about 30 nm, which

corresponds to 2-4 kb of DNA [8, 47, 48].

As we shall argue, these points are

natural consequences of the looping scenario.

In order to show this, we performed Monte-

Carlo simulations of the replication process.

One can think of DNA as one-dimensional

lattice (just like the 1-D Ising model with two

possible spin values, i.e., up and down), where

each lattice site is assigned either 1 or 0,

depending on whether the site has been

replicated or not, respectively.  For example, at

time t=0, all the lattice sites are 0.  One can

then convert I(t) defined earlier to the mean
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probability of initiation p t( ) = I t( ) ⋅Dx ⋅Dt  at

site x  and time t :  if p t( )  is larger than a

random positive real number smaller than 1

(standard Monte-Carlo step), there is an

initiation and the lattice value changes from 0

to 1.  Once an initiation occurs, the replicated

domain (1’s) grows bidirectionally with fork

velocity v.  In the simulations, each lattice is

updated with a typical timestep Dt = 0.2 min.

The natural size of lattice then would be v·Dt,

which is about 120 bp for the measured fork

velocity v = 600 bp/min.  The lattice scale is

then roughly the size of pre-RC.  We sample

the simulation results at the same time points as

the actual experiments (t = 25, 29, 32, 35, 39,

45 min.)  Each sampled molecule is cut at

random site to simulate the combing process.

The lattice is then “coarse grained” by

averaging over several pixels (typically four) in

order to take into account the resolution of

scanned optical images, which is about 0.24

µm = 0.48 kb.  Finally, the coarse-grained

fragments were analyzed to compile statistics

concerning replicon sizes, eye-to-eye sizes, etc.

that were directly compared to experimental

data [36].  One can refine the simulation to

include a site-specific probability of initiation

p(x, t).

It is easy to show that any scheme where

the probability of initiation depends only on

time and location along the genome cannot

give the kind of correlations noted in point (3),

above.  The basic idea is that the independence

of initiation events carries through to the sizes

of domains.  Only when initiations "know"

about prior events (i.e., prior initiations) do

correlations emerge.

This led us to consider other scenarios,

the most natural of which is one where a

replication factory "captures" the chromatin

(structured DNA) at some point along its

length.  Neighboring origin sites, which are

defined by ORCs assembled onto the genome,

can then loop back to the same factory for

initiation.  We assume that the loop-formation

dynamics are quasistatic, so that their size

distribution is governed by Eq. 6.  The looping

scenario is easy to incorporate into the Monte-

Carlo simulations.

As we have seen, loops of chromatin

cannot have an arbitrary size but should be 3-4

times lp (Eq. 6 implies a peak probability at L =

3.4*lp).  This translates into an expected

enhancement of initiations at origin separations

of 6 to 16 kb and a suppression for smaller

separations -- just what is observed!

Moreover, when we used the loop-

formation scenario in the simulation as a small

perturbation to the mean-field initiation

frequency I( t ) , we obtained a positive

correlation consistent with previously reported

value C = 0.16 by Blow et al.  We could also

reproduce the distribution of separations

between neighboring replicated domains.

While we do not have space to show the

detailed comparison of the models [49], we

give one example.  Fig. 6 shows histograms

that record the relative position inside a domain

of unreplicated DNA, or hole, of new origins.

Fig. 6A shows the distribution for small holes,

8-22 kb in length [50].  The experimental data

shows a strong peak near 0.5, implying a

tendency for origins to be as far away from

other replicating domains as possible.  By

contrast, the experimental data for large holes

shows a much more uniform distribution.  In

simulations that use random initiation, new

origins can appear almost anywhere in a hole,

regardless of its size.  This picture fits the

large-hole data (Fig. 6B) but not the small-hole

data (6A).  By contrast, when we put in the

effects of looping, which lead to a suppression

of origin initiation at very close spacings and

an enhancement of initiation at a larger,

characteristic distance, the simulation results

match more closely the data of Fig. 6A, while

continuing to agree with the large-hole case

[49].

Thus, by considering the effects of

chromatin loops in the context of our model of

DNA replication, we can explain the typical

size of replicated domains, the inhibition of
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origin initiation near already activated origins,

and the correlation in the initiation times of

neighbouring active origins.  The regularity of

origin spacings imposed, along with the

increasing I(t) in Fig. 5B, solve, in a natural

way, the random-completion problem.  Finally,

in a more stringent test, we can also fit the

detailed distributions from the Xenopus

experiment.  Models with purely random origin

activation give results that do not agree with

those distributions [49].

Figure 6. (A)  Histogram of positions of initiation
events for holes 8-22 kb in size.  The events are
determined by looking for replicated domains that
are small enough to be very likely to contain only a
single replication origin.  The state of the molecular
fragment is then propagated back in time to the
moment of initiation, where one records the hole
size and relative position of the initiation event
within the hole.  The inset shows a hole flanked by
two eyes.  The experimental histogram shows that
it is more likely that a new initiation occurs near the
centre of a hole, an observation compatible with the
looping scenario but not with the purely random
initiation scenario.  (B)  Holes larger than 22 kb.
The difference between experiment and simulations
(both random and loop formation) is much smaller
than for small holes in (A).

CONCLUSION

We have described above how the

statistical mechanics of polymer looping can

help explain a number of observations about

DNA replication.  As always, when two fields

touch, their meeting is not the end, but the

beginning of a long story.  Here, we can see

two kinds of further development.  The first

extends from polymer physics to biology,

where many other single-molecule experiments

are giving detailed information and where the

ideas described above may be applied.  The

molecular beacons described in the

introduction would be one such example.  The

detailed application of polymer theories also

suggests specific ways to conduct the

experiments so that the right information is

captured.

It is worth dwelling on the importance

of single-molecule experiments.  Traditional

work in biology, biochemistry, and biophysics

uses solutions of molecules.  Such experiments

give information about the average behaviour

of the studied molecules.  The great virtue of

single-molecule experiments is that they collect

information about individual  molecules.

Because noise is always important at molecular

scales, the behaviour of one individual

molecule will differ from the next.  One must

then study many such molecules, forming

probability densities for the quantities of

interest. In the Xenopus experiments, for

example, information was collected not just on

the average eye length but on the distribution

of eyes, as well.  This kind of detailed result

allowed us to distinguish between the random-

initiation and looping models.  Both models

can fit data such as the curve of average eye

size (Fig. 4A), but their distributions differ.

We note, too, that noise, probability

distributions, and correlations are the natural

business of statistical mechanics, making it the

right way to attack such problems.

The second extension of our work is

that, as is so often the case, the concrete

situations found in biological systems lead

naturally to new physical problems.  For

example, all studies of biological looping

problems to date have implicitly assumed the

"quasistatic" dynamics approximation

described above.  There has been little careful

thought as to when such a limit applies  and

when the dynamical, "first-passage-time" limit

is more appropriate.  As we have seen, few

results are available for "true" dynamics.
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Even in the quasistatic case, there are

further problems to pursue.  For example, in

the replication-factory picture, the DNA is

initially trapped at one site.  If a long piece

loops back, the large loop may subdivide into

smaller subloops.  Such "multiple looping" has

not yet been considered theoretically.  There is

much work to be done!
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