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Abstract
Androgen deprivation therapy (ADT) is the standard of care treatment for advance stage prostate cancer. 
Treatment with ADT develops resistance in multiple ways leading to the development of castration-resistant 
prostate cancer (CRPC). Present research establishes that prostate cancer stem-like cells (CSCs) play a central 
role in the development of treatment resistance followed by disease progression. Prostate CSCs are capable of self-
renewal, differentiation, and regenerating tumor heterogeneity. The stemness properties in prostate CSCs arise due 
to various factors such as androgen receptor mutation and variants, epigenetic and genetic modifications leading to 
alteration in the tumor microenvironment, changes in ATP-binding cassette (ABC) transporters, and adaptations in 
molecular signaling pathways. ADT reprograms prostate tumor cellular machinery leading to the expression of 
various stem cell markers such as Aldehyde Dehydrogenase 1 Family Member A1 (ALDH1A1), Prominin 1 
(PROM1/CD133), Indian blood group (CD44), SRY-Box Transcription Factor 2 (Sox2), POU Class 5 Homeobox 
1(POU5F1/Oct4), Nanog and ABC transporters. These markers indicate enhanced self-renewal and stemness 
stimulating CRPC evolution, metastatic colonization, and resistance to antiandrogens. In this review, we discuss the 
role of ADT in prostate CSCs differentiation and acquisition of CRPC, their isolation, identification and 
characterization, as well as the factors and pathways contributing to CSCs expansion and therapeutic 
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opportunities.
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cancer, androgen deprivation therapy

INTRODUCTION 
Prostate cancer is the most commonly diagnosed cancer in the United States, and approximately 50% of the 
men diagnosed with advance stage prostate cancer undergo androgen deprivation therapy (ADT)[1]. US 
Food and Drug Administration approved ADT to treat metastatic prostate cancer as a neo-adjuvant in post-
radiation therapy[2]. ADT has also been accepted as the first-line treatment for prostate tumors that have 
extended to the lymph nodes, and biochemical recurrence followed by prostate-specific antigen (PSA) 
resurgence, asymptomatic metastatic and locally advanced disease[3]. Since androgen receptor (AR) is 
essential for the function, survival, and differentiation of prostatic tissue, ADT reduces androgens necessary 
to block cancer progression[4]. Accumulating data suggests that androgens are important players in the 
human body in maintaining physiological functions[5-6]. Androgen receptor holds a key function in prostatic 
epithelial cells’ growth and proliferation in response to testosterone[7]. ADT comprises the use of the first-
generation antiandrogens such as bicalutamide, nilutamide or flutamide that solely targets AR translocation 
to the nucleus and prevent downstream signaling. The second-generation antiandrogens viz. enzalutamide, 
apalutamide and darolutamide, as well as inhibitors of androgen biosynthesis such as abiraterone acetate, 
improve upon this mechanism[8]. Changes in the function of AR signaling result in tumor suppression to 
tumor promotion, where the disease eventually progresses to the emergence of castration-resistant prostate 
cancer (CRPC)[9]. Accumulated evidence suggests that ADT has a significant role in the management of 
metastatic prostate cancer; it reduces complications and enhances overall survival[2,10-11]. In a study based on 
Cochrane meta-analysis, the neo-adjuvant ADT with radical prostatectomy significantly improves adverse 
histopathologic parameters such as surgical margin or pathologic tumor stage[12]. Studies reported that 
prostate cancer patients undergoing radiotherapy together with ADT treatment further increases the 
probability of disease-free survival[12-13]. This combinatorial treatment is well accepted and highlighted in the 
guidelines of the American Urological Association and European Association of Urology[14-15]. However, 
numerous studies indicate that ADT is associated with a multitude of side effects that can impact the quality 
of life[16-18]. These include fatigue, loss of libido, arterial stiffness, erectile dysfunction, hot flushes, new-onset 
diabetes mellitus, altered body composition, osteoporosis and induced skeletal complications, and cognitive 
decline[16-18]. Some recent findings also demonstrated that ADT treatment might increase cardiovascular-
mediated morbidity and mortality[19-20].

Prostate cancer resistance during ADT treatment is reported in in vitro models of recurrence and CRPC 
patients[21]. CRPC development is linked with genes associated with AR signaling, both at transcription and 
translation levels[21]. A study including multiple isogenic tumor xenograft models demonstrated increased 
AR expression in recurrent tumor samples compared to paired androgen-sensitive samples[22]. AR 
stabilization alters the rate of post-translational modifications and interaction with heat shock proteins 
which ultimately modulates normal cellular physiology[23]. Studies also reported that stabilization of AR is 
positively associated with ADT resistance, which may be linked with CRPC[4, 24]. Phosphorylation at 
particular sites and enrichment of growth factors reactivate AR, which further increases prostate cancer 
proliferation under low androgen levels[25]. Apart from AR stabilization and phosphorylation, the mutation 
in AR gene is also associated with resistance development[26]. A point mutation was reported in the lymph 
node of a patient with metastatic prostate cancer and causes amino acid substitution at position 878, 
threonine to alanine[27]. This amino acid substitution results in response to non-androgen hormones that 
enhance resistance to ADT treatment. Some other reported mutations are W742C, H875Y/T, F877L and 
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L702H in response to resistance development against enzalutamide, nilutamide, flutamide and 
bicalutamide[28-29]. Other factors such as different AR splice variant expression, aberrant glucocorticoids and 
glucocorticoid receptor expression, impairment of DNA repair pathway, miRNAs, cellular metabolism, and 
alterations in enzymatic and signaling pathways tightly support resistance development in response to 
ADT[30-31].

Emerging research implicates that cancer stem cells (CSCs) are key to the development of therapeutic 
resistance, and studies have also established a link to ADT relapse tumors[32]. Subsequent work has shown 
that ADT increases the enrichment of CSCs populations which are inherently treatment-resistant having 
the ability to promote CRPC[33]. The CSC hypothesis is an emerging model that describes several molecular 
characteristics of cancer. CSCs facilitate the development of a cellular hierarchy, maintain a CSC rich-pool, 
differentiate into a proliferating progeny, and assist the formation of a heterogeneous tumor[34]. As a result, 
there is a strong consensus that CSCs are the cells of origin in cancer and have the propensity of cancers to 
relapse, metastasize, and develop resistance to conventional therapies[34]. In this review, we describe the role 
of ADT in CSC differentiation during CRPC acquisition, their isolation, identification and characterization. 
Outlining the underlying mechanisms triggered by ADT and highlighting potential CSCs targets could aid 
in the development of future therapeutic strategies in prostate cancer patients leading to improved 
outcomes.

PROSTATE CANCER STEM-LIKE CELLS
Stem cell markers in prostate cancer 
Normal stem cells possess the intrinsic capacity for unlimited replicative potential as well as differentiation 
into all lineages of mature cells required for tissue and/or organ maintenance[35].  In general, cancer cells 
possess cellular heterogeneity and inherent genetic instability, which makes them immortal in 
characteristics. CSCs are commonly defined as cells that demonstrate characteristics similar to a normal 
stem cell, including lack of senescence, self-renewal capacity and pluripotency[36]. This type of cancer cell 
possesses the ability to develop a cellular hierarchy, facilitating the maintenance of a CSC pool while 
differentiating into a proliferating progeny, enabling the formation and growth of a heterogeneous tumor.

The prostate gland consists of basal (undifferentiated), differentiated and neuroendocrine cells[37]. The basal 
cells are androgen-independent and express cytokeratin 5, cytokeratin 14, Tumor Protein P63, and Cell 
Surface Glycoprotein (CD44) markers[38-40]. They also express much less AR, PSA and prostatic acid 
phosphatase (PAP)[38-40].  Differentiated cells include glandular epithelial and secretory luminal cells, which 
express AR, PSA, PAP, cytokeratin 8 and cytokeratin 18[41]. The neuroendocrine cells are androgen-
independent and do not secrete PSA[42]. Prostate cancer stem cells are androgen-independent cells that give 
rise to androgen-sensitive progenitor cells[38]. These progenitor cells in the presence of androgens 
differentiate into androgen-dependent cells. A number of research studies indicate that CSCs are considered 
as the cells of origin in cancer and have been linked to tumorigenesis, treatment resistance and cancer 
relapse[41].

Several research studies identified prostate CSCs genes that are important for self-renewal, pluripotency, 
resistance and serve as markers for identification[43]. Stem cell antigen-1, aldehyde dehydrogenases (ALDH), 
CD133 (PROM1), trophoblast cell surface antigen 2 and CD44 are markers to identify prostate CSCs in the 
basal compartment[44]. The other common markers include CD44, CD24, and CD49 Antigen-Like Family 
Member D (also known as Integrin Subunit Alpha 4), which have been tightly associated with prostate 
CSCs[45]. Another study identified a rare prostate cancer stem cell maker, KIT Proto-Oncogene, Receptor 
Tyrosine Kinase (KIT) in adult mouse prostatic stem cell population, which possess cancer stem cell-like 
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features such as differentiation and self-renewal[46]. The prostate CSCs enriched in CD133+ cells isolated 
from established primary human prostate cancer cell lines and in alpha(2)beta(1)-integrin subunit 
phenotype identified as genetically unstable with clonogenic formation and invasive potential[47]. Yu et al.[48] 
have identified high ALDH1 activity in LNCaP and PC-3 prostate cancer cells associated with CSC-like 
properties; in particular, ALDHhi/CD44+ cells possess a high clonogenic function and tumorigenic potential. 
A study conducted on prostate cancer tissue specimens indicated Oct4, Sox2 and Nanog genes as prostate 
CSC markers[49]. Collins et al.[50] further demonstrate in the mouse xenograft model that elevated levels of 
ALDH support stemness in cells; indeed, ALDHhi/CD44+/α2β1+ cells are enhanced during castration and 
were critical in the development of antiandrogen resistance. Further, cells possessing similar phenotypes 
were isolated from clinical specimens and analyzed for self-renewal and spheroid formation. The outcome 
showed that ALDHhi/CD44+/α2β1+ cells significantly support cell proliferation and colony formation[51]. A 
study performed on patient biopsies samples (Gleason score range 5-6) suggested that CD133+/CD44+/ATP-
binding cassette sub-family G member 2 (ABCG2)+/CD24− cells actively participate in spheroid 
formation[52]. In addition, primary tumor cells containing Enhancer of Zeste 2 Polycomb Repressive 
Complex 2 Subunit (EZH2+)/E-cadherin- markers are highly associated with tumor recurrence [Table 1][53].

Molecular pathways in the generation of prostate cancer stem-like cells post ADT
AR is a key transcription factor involved in androgen-dependent prostate cancer growth. Targeting AR with 
the first-generation antiandrogens does not inhibit inter or intramolecular N-C interactions required for the 
nuclear localization[57]. At the diagnosis of metastatic CRPC, the common genomic alteration event found in 
AR is amplification and AR mutation[58]. These AR genomic alterations dysregulate the signaling pathway in 
patients and demonstrate a compensatory resistance mechanism via increasing AR expression in response 
to the potent AR inhibition by enzalutamide, which results in diminished efficacy of treatment overtime[59]. 
In a systemic study, exome sequencing of 150 metastatic CRPC biopsy specimens demonstrated 63% of AR 
mutation and amplification in comparison to 440 primary prostate cancer tissues[60]. Apart from AR 
mutation, AR variants such as ARV7 were also reported for resistance development and support androgen-
independent growth of prostate cancer cells[61]. Prostate cancer patients who underwent ADT showed 
hematopoiesis from pluripotent stem cells, PI3K/AKT signaling, ERK/MAPK signaling, and Wnt/β-catenin 
signaling, and the role of Nanog in mammalian embryonic stem cell pluripotency signaling pathways were 
overrepresented [Figure 1]. This information revealed that the genomic alteration in AR either by 
amplification or mutation tends to increase the expression of associated stem cell markers.

With reference to hematopoiesis, pluripotent stem cells, the expression of transmembrane receptors genes, 
which includes CD4, CD247, CD3E, CD8A, CSF3, CXCL8, and family members of immunoglobulin heavy 
constant gamma proteins (IGHA1, IGHD, IGHG1, IGHG2, IGHG3, IGHM) and the expression of 
cytokines such as IL6 and IL10 were increased in patients undergoing ADT [Table 2].

Isolation, identification and characterization of prostate cancer stem cells
Extensive work has shown that CSCs from primary prostate tumors or established cancer cell lines can be 
isolated from a heterogeneous population using cell surface markers, such as CD44 and CD133, aldehyde 
dehydrogenase (ALDH) activity using the ALDEFLUOR assay, and Hoechst dye to identify the side 
population[62-63]. Isolation of prostate CSCs has been performed by several groups. The first CSC isolation 
was performed from patients undergoing radical prostatectomy[64]. These CSCs exhibited a significant 
capacity for self-renewal and the ability to regenerate the phenotypically mixed populations of non-
clonogenic cells. The prostate CSCs were isolated using the CD44/α2β1high/CD133+ phenotype and 
demonstrated high clonogenic and invasive capacity of basal cell origin with high levels of genetic 
instability[64-65]. A study by Rajasekhar et al.[66] observed that CSCs expressing human pluripotent stem cell 
marker TRA-60-1+ /CD151+ /CD166+ possess high self-renewal and differentiation ability, and were able to 
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Table 1. Prostate cancer stem cells markers

Pathways Markers names Gene symbol Ref.

KIT proto-oncogene, receptor tyrosine kinase CD117/c-kit

Prominin 1 CD133

Indian blood group CD44

α2β1 integrin ITGB1

Integrin Subunit Alpha 6 α6 integrin

C-X-C motif chemokine receptor 4 CXCR4

Epithelial cell adhesion molecule EPCAM

Cytokeratin 5 KRT5

Kallikrein related peptidase 3 KLK3/PSA

Tumor-associated calcium signal transducer 2 Trop2

Activated leukocyte cell adhesion molecule ALCAM

Aldehyde dehydrogenase 1 family member A1 ALDH1

Transglutaminase 2 TG2

Tumor progression

Enhancer of zeste 2 polycomb repressive complex 2 subunit EZH2

[43,54-56] 

KIT proto-oncogene, receptor tyrosine kinase CD117/c

C-X-C motif chemokine receptor CXCR4

Epithelial cell adhesion molecule EPCAM

E-cadherin/ cadherin 1 CDH1

Indian blood group CD44

Metastatic colonization and 
growth

Enhancer of zeste 2 polycomb repressive complex 2 subunit EZH2

[43,56]

KIT proto-oncogene, receptor tyrosine kinase CD117/c-kit

α2β1 integrin ITGB1

Integrin subunit alpha 6 ITGA6

E-cadherin/ cadherin 1 CDH1

Epithelial cell adhesion molecule EPCAM

C-X-C motif chemokine receptor 4 CXCR4

Enhancer of zeste 2 polycomb repressive complex 2 subunit EZH2

Aldehyde dehydrogenase 1 family member A1 ALDH1

Transglutaminase 2 TG2

Activated leukocyte cell adhesion molecule CD166/ALCAM

Kallikrein related peptidase 3 KLK3/PSA

Androgen receptor splice variant 7 AR-V7

Recurrence and therapeutic 
resistance

ATP binding cassette subfamily G member 2 (junior blood group) ABCG2

[43,54-56] 

Prominin 1 CD133

Cytokeratin 5 KRT5

Kallikrein related peptidase 3 KLK3/PSA

Aldehyde dehydrogenase 1 family member A1 ALDH1

Activated leukocyte cell adhesion molecule CD166/ALCAM

C-X-C motif chemokine receptor 4 CXCR4

Tumor-associated calcium signal transducer 2 Trop2

Integrin subunit alpha 6 α6 integrin

[43,55]

α2β1 integrin ITGB1

Self-renewal capacity

Indian blood group CD44

Prominin 1 CD133

Indian blood group CD44

E-cadherin/ cadherin 1 CDH1

Kallikrein related peptidase 3 KLK3/PSA

Aldehyde dehydrogenase 1 family member A1 ALDH1

Stemness gene expression

Enhancer of zeste 2 polycomb repressive complex 2 subunit EZH2

[43,54]
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Table 2. List of genes, location, types, along with fold changes value associated with hematopoiesis pluripotent stem cells

Gene symbol Gene name Fold change in ADT Location Type(s)

CD4 CD4 molecule 1.829 Plasma membrane transmembrane receptor

CD247 CD247 molecule 1.437 Plasma membrane transmembrane receptor

CD3E CD3e molecule 1.597 Plasma membrane transmembrane receptor

CD8A CD8a molecule 1.469 Plasma membrane other

CSF3 colony stimulating factor 3 5.074 Extracellular space cytokine

CXCL8 C-X-C motif chemokine ligand 8 3.395 Extracellular space cytokine

FCER1G Fc fragment of IgE receptor Ig 1.815 Plasma membrane transmembrane receptor

IGHA1 immunoglobulin heavy constant alpha 1 3.2 Extracellular space other

IGHD immunoglobulin heavy constant delta 2.58 Extracellular space other

IGHG1 immunoglobulin heavy constant gamma 1 (G1m marker) 2.139 Extracellular space other

IGHG2 immunoglobulin heavy constant gamma 2 (G2m marker) 3.362 Plasma membrane other

IGHG3 immunoglobulin heavy constant gamma 3 (G3m marker) 2.922 Extracellular space other

IGHM immunoglobulin heavy constant mu 2.946 Plasma membrane transmembrane receptor

IL6 interleukin 6 6.333 Extracellular space cytokine

IL10 interleukin 10 1.764 Extracellular space cytokine

LIF LIF interleukin 6 family cytokine 2.636 Extracellular space cytokine

Figure 1. Canonical signaling pathway overrepresented in prostate cancer patients under ADT. These pathways play a critical role in 
driving cancer stem-like cell phenotype. The red bar represents the genes upregulated and green is downregulated and overlaid with 
IPA database. The X-axis in the graph represents the signaling pathways while the Y-axis showed -log (P-value) and percentage (%). 
ADT: Androgen deprivation therapy

reiterate tumor heterogeneity in serial in vivo transplantations. More recent studies have identified that a 
majority of prostate tumors harbor prostate-specific TMPRSS2 gene and the ERG oncogene (TMPRSS2: 



Page 465Kushwaha et al. Cancer Drug Resist 2022;5:459-71 https://dx.doi.org/10.20517/cdr.2022.07

ERG) gene fusion which could be used as a stem cell marker with high specificity providing ERG-driven 
survival advantages[67]. Moreover, ALDH1high prostate cancer cells have been shown to exhibit several CSC 
characteristics such as clonogenicity, migration, tumorigenicity, and propensity to form metastases 
in vivo[68]. Another method to enrich the CSC population is developing tumorspheres in cell culture with a 
higher in vivo tumor incidence rate[69].

Our group and others have demonstrated fluorescence-activated cell sorting and magnetic-activated cell 
sorting utilizing various human prostate cancer cell lines[70-71]. Other studies showed that CD44 and CD133 
were associated with high Nanog expression in prostate carcinoma cell lines[71]. Nanog has shown to be 
predominantly expressed from the NanogP8 pseudogene in a panel of prostate carcinoma cells including 
DU145, LNCaP, and PC-3 and primary prostate carcinoma cells. NanogP8 expression was enriched several 
folds in CD133+ and CD133+/CD44+ CSCs compared to non-CSCs[71]. Human prostate cancer PC-3 cells 
displayed high CD44+/CD133+ CSC-like features including enhanced tumor sphere formation and elevated 
Nanog levels. Similarly, CD117+/ABCG2+ cells isolated from 22Rv1 prostate cancer cells overexpress the 
core stem cell transcription factors, Nanog, Oct3/4, and Sox2, and the CSC marker CD133[72]. A recent study 
from our group has demonstrated high expression of ALDH1high, Oct4 and Sox2 in clinical prostate cancer 
specimens undergoing ADT, compared to grade-matched controls[73].

Most standard therapies for prostate cancer primarily affect cancer cells, but CSCs undergo G0/G1 phase 
cell cycle arrest and remain static, thus evading cell death from chemotherapeutic drugs[74]. Experimental 
data also suggest that CSCs are resistant to conventional chemotherapy and radiation and may be the cells 
responsible for disease recurrence and/or progression[75]. A study showed that CD133+ had a high capacity to 
proliferate in vitro and have AR+ phenotype[76]. These CD133+ cells form branched spheroids structure in a 
3D culture system and generate prostatic-like acini in vivo[76]. Hence, the drug-resistant characteristic of 
CSCs is useful to isolate and identify CSCs. Previous studies have shown that radiotherapy combined with 
hypoxic culture can also be used to enrich CSCs population[77].

Therapeutic opportunities for prostate cancer stem-like cells
Prostate cancer patients undergo treatment therapy such as radiotherapy or chemotherapy, resulting in 
shrinkage of tumors[78]. However, after therapy, some cells accumulate genetic/epigenetic changes that result 
in loss of control on self-renewal potential. These cells, referred to as prostate CSCs, reprogram the tumor 
environment to their benefit, supporting increased survival, self-renewal, and tumor recurrence[64]. Research 
showed that cellular immunotherapy has some beneficial role in the treatment of prostate cancer[79]. The T 
cell-based immunotherapy showed a positive response to prostate cancer patients with metastatic CRPC 
and increased the overall survival[79]. A research group prepared an immunogenic peptide derived from 
dendritic cells sensitized to CD44 and EpCAM followed by co-culture with the expanded peripheral blood 
lymphocyte (PBL)-derived cytokine-induced killer cell[80]. This study showed that dendritic cells- cytokine-
induced killer cells exhibit remarkable cytotoxicity against prostate cancer stem-like cells-enriched prostate 
spheroids both in vitro and in vivo[80]. In addition to these findings, several other cellular events impart 
growth advantages to CSCs. In this context, various signaling pathways such as Wnt/β-catenin, hedgehog, 
NF-κB and Notch; ABC transporters and tumor microenvironment could be the putative target(s) for 
prostate CSCs[81] [Figure 2].

Wnt signaling pathway is involved in various cellular processes and is crucial for cell fate determination, cell 
polarity, cell migration, neural patterning and organogenesis during embryonic development. Wnt pathway 
is also associated with the maintenance of stem cells in a self-renewing state[82]. A study demonstrated that 
Wnt signaling activation is oncogenic in the prostate and supports CRPC growth in vivo[83]. This study also 
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Figure 2. Signaling pathways regulating CSCs and the use of inhibitors in suppressing these pathways. These molecules thereof could be 
developed as potential therapeutics. The denotes in the figure are: Hedgehog signaling pathway (HH), notch intracellular domain 
(NICD), phosphorylation (P), smoothened (SMO), Wnt signaling pathways (Wnt), nuclear factor of kappa light polypeptide gene 
enhancer in B-cells inhibitor, alpha (IkBα), RELA Proto-Oncogene (RelA), Frizzled (FZD), casein kinase I (CKI), Axin (AXIN), APC 
Regulator of WNT Signaling Pathway (APC), Dishevelled (Dvl), Glycogen Synthase Kinase (GSK), IkappaB Kinase (IKK).

showed that increased Wnt signaling induces neuroendocrine differentiation, epithelial-mesenchymal 
transition and drives stem cell-like features to prostate cancer cells. A number of small molecule inhibitors 
and monoclonal antibodies have been tested to inhibit the Wnt signaling pathway. Wnt signaling inhibitors 
such as 3289-8625, Foxy-5, and OMP-54F28 have been reported to inhibit prostate cancer cell growth[84-86]. 
A porcupine (palmitoylation of Wnt ligands) inhibitor LGK974 combined with docetaxel and paclitaxel also 
showed remarkable effectiveness on solid tumors[64]. A monoclonal antibody vantictumab (OMP-18R5) 
blocks canonical Wnt signaling pathways and inhibits prostate cancer progression[87].

Hedgehog signaling pathways play an important role in the development of prostate cancer. Hedgehog 
signaling targets genes involved in prostate CSCs survival, proliferation, and metastasis[88]. This signaling 
also enhanced the overexpression of ABC transporters in prostate cancer cells[88]. Hedgehog signaling 
inhibitor sonidegib (LDE-225) suppresses the key genes including Oct4, Nanog, c-Myc, and Sox2 involved in 
self-renewal and stemness potential[89]. Gli transcription factor inhibitor GANT-61 inhibits PTCH1 
expression and tumor growth in vivo[90]. Other Hedgehog signaling inhibitors such as vismodegib, 
itraconazole and orteronel either alone or in combination and/or surgery inhibit prostate cancer growth[64].
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Upregulation of the NF-κB pathway has been observed in cancer stem cells[91]. Various studies also 
demonstrated that NF-κB signaling was upregulated in prostate cancer cells and associated with increased 
progression, chemotherapy resistance, metastasis and recurrence[92]. Several clinical trials have been 
performed by targeting the NF-κB signaling pathway. Clinical trial NCT01695473 used PI3K inhibitor 
BKM120, which acts downstream of NF-κB in high-risk localized prostate cancer patients[93]. NCT00118092 
clinical trial was performed using heat shock protein 90 inhibitor 17-(allylamino)-17-
demethoxygeldanamycin to treat metastatic prostate cancer patients[94]. Aspirin, a reported drug for 
inflammation-regulated cancer, was utilized in clinical trial NCT02757365[95]. This trial demonstrated that 
aspirin suppresses CRPC progression.

Notch signaling pathways are well known for their contribution to self-renewal, differentiation, resistance 
and stemness development[96]. Interaction of Notch receptor and ligand facilitates NICD production 
through gamma-secretase, which translocates to the nucleus and initiates transcription of self-renewal, 
stemness, and other CSC development associated genes[97]. In this context, a number of gamma-secretase 
inhibitory agents were identified. A clinical trial (NCT01200810) was performed in prostate cancer patients 
using gamma-secretase inhibitor RO4929097 with bicalutamide[98]. This trial compares PSA expression with 
time after surgery/radiation and combined treatment[98].

Alteration in ABC transporter genes and tumor microenvironment tightly regulates cellular physiology and 
transcriptomic machinery in prostate CSCs[99]. The tumor microenvironment plays a decisive role in 
regulating CSCs progression[100]. It also facilitates abnormal cancer signaling pathways, epithelial-
mesenchymal transition, invasion, etc. Overexpression of ABC transporters exports therapeutic drugs 
outside the cells, which makes them resistant to the drug[101]. Several lines of research have been performed 
to target the ABC transporters. An ABC transporter efflux inhibitor verapamil inhibits prostate cancer 
proliferation by inhibiting the potassium ion channel[102]. Cyclosporin A, another ABC transporter inhibitor, 
inactivates NFATc1 (nuclear factor of activated T-cells) in biochemical recurrence and CRPC[103].

CONCLUSION
Despite thorough research for mechanisms leading to CRPC as a result of resistance to antiandrogens in the 
past few decades, our understanding remains limited. ADT causes complex alterations within tumors in 
terms of factors and pathways as well as its epigenetics and genetics affecting the tumor microenvironment. 
Several research studies showed that aberrant cellular signaling, generation of AR variants, and AR 
mutation support the development of drug resistance. The accumulative effects of these factors also 
contribute to the generation of prostate cancer stem-like cells. CSCs are the reservoir of cancer cells that 
exhibit surface markers such as ALDH, CD133 and CD44, possessing properties of self-renewal and the 
ability to reestablish the heterogeneous tumor cell population promoting metastatic colonization, self-
renewal, and recurrence. Research showed that targeting prostate CSCs could be a better strategy for the 
treatment of CRPC. In this direction, various small molecule inhibitors, antibodies and other combinatorial 
treatments have been evaluated in various clinical trials. The outcome demonstrated that these therapies 
increased overall survival in prostate cancer patients. However, the lifespan increment of prostate cancer 
patients is still challenging for clinicians as all these drug therapies become resistant after a certain time of 
treatment.
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