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Reactive oxygen species (ROS) are key players in the regulation of seed germination and
dormancy. Although their regulated accumulation is a prerequisite for germination, the
cellular basis of their action remains unknown, but very challenging to elucidate due to
the lack of specificity of these compounds that can potentially react with all biomolecules.
Among these, nucleic acids and proteins are very prone to oxidative damage. RNA is highly
sensitive to oxidation because of its single-stranded structure and the absence of a repair
system. Oxidation of mRNAs induces their decay through processing bodies or results in
the synthesis of aberrant proteins through altered translation. Depending on the oxidized
amino acid, ROS damage of proteins can be irreversible (i.e., carbonylation) thus triggering
the degradation of the oxidized proteins by the cytosolic 20S proteasome or can be reversed
through the action of thioredoxins, peroxiredoxins, or glutaredoxins (cysteine oxidation) or
by methionine sulfoxide reductase (methionine oxidation). Seed dormancy alleviation in
the dry state, referred to as after-ripening, requires both selective mRNA oxidation and
protein carbonylation. Similarly, seed imbibition of non-dormant seeds is associated with
targeted oxidation of a subset of proteins. Altogether, these specific features testify that
such oxidative modifications play important role in commitment of the cellular functioning
toward germination completion.
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INTRODUCTION
The chemical energy sequestered in plants during photosynthesis
accumulates in seeds, which are the major genetic delivery sys-
tems essential for plant biodiversity but also provide a food
source for animals and humans. Most seeds of plants growing
in temperate climates are dispersed in a dry mature state (called
orthodox seeds). They will pass through the complex process of
germination provided they are non-dormant and if the environ-
mental conditions are favorable, and the result is a young growing
plant (i.e., a seedling) from a quiescent dry seed. Seed germi-
nation commences with the uptake of water and is completed
with the appearance of the embryo through the seed surround-
ing structure(s). It is tightly regulated by temperature, oxygen,
and light conditions. Germination is also controlled by endoge-
nous factors such as the plant hormones abscisic acid (ABA) and
gibberellins (GA) that play a major role in regulating early seed
germination through the process of dormancy, which is a block
to the completion of germination of a mature intact viable seed
(Finch-Savage and Leubner-Metzger, 2006). This evolutionary
trait allows plant species to survive through unfavorable seasons
and enables seeds to remain quiescent until the conditions for
germination and seedling establishment become favorable again
(Finch-Savage and Leubner-Metzger, 2006; Donohue et al., 2010).
Therefore dormancy alleviation is associated with a widening of
the environmental conditions allowing seed germination.

Despite the huge progress that has been made the last decade
owing to the emergence of the -omics approaches, the molecular

mechanisms regulating seed germination and dormancy are far
from being resolved. For example, how a dormant seed acquires
the ability to germinate during a period of dry storage after har-
vest, so called after-ripening, is unknown. Reactive oxygen species
(ROS) have been proposed to be key players in seed germination
and dormancy (Bailly, 2004; Oracz et al., 2007; Bailly et al., 2008;
El-Maarouf-Bouteau and Bailly, 2008). It appears that seed ger-
mination occurs when the seed ROS content is enclosed within an
oxidative window that allows ROS signaling but not ROS damage
(Bailly et al., 2008). ROS are short-lived and reactive compounds
so that their effect as signaling molecules may be mediated by sec-
ondary messengers, such as proteins or even nucleic acids (Møller
and Sweetlove, 2010). The purpose of this review is to show that the
beneficial effect of ROS drives cell functioning toward germination
by specific oxidation of proteins and mRNAs.

SEEDS CONTINUOUSLY PRODUCE ROS
Reactive oxygen species originate from the reduction of oxygen,
which mainly gives rise to the most common species super-
oxide (O−·

2 ), hydrogen peroxide (H2O2), and hydroxyl radical
(HO·). Detailed mechanisms of ROS production in seeds have
already been described (Bailly, 2004), but it has to be underlined
that in a same organism, i.e., a seed, ROS can be produced by
non-enzymatic or enzymatic processes, depending on the devel-
opmental stage of the seed and on its moisture content. When
seeds are stored dry after their final maturation on the mother
plant, ROS are issued from autoxidative reactions that occur
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spontaneously and continuously. In contrast, seed imbibition is
associated with a tight regulation of ROS homeostasis, which
involves both ROS producing enzymes, such as nicotinamide ade-
nine dinucleotide phosphate (NADPH) oxidases, and ROS detox-
ifying enzymes (catalase, superoxide dismutase,. . .). Attention
has often been paid to identifying ROS sensors and transduc-
tion networks transmitting information about their homeostasis
within cell compartments or even from cell to cell (Mittler et al.,
2011). H2O2 is widely recognized for acting as a cellular messenger
because of its relative stability and because it can cross membranes
(Møller et al., 2007). However, H2O2 is a simple molecule and it
does not have the required specificity to selectively trigger complex
cellular processes, as those that are involved in the control of seed
germination. This implies that H2O2 is likely to act as a primary
messenger by oxidizing compounds that will in turn act as second
messengers (Møller and Sweetlove, 2010).

OXIDATION OF MESSENGER RNAs REGULATES SEED
TRANSLATIONAL ACTIVITY
Seeds accumulate high amounts of mRNAs during their matura-
tion program. It has been demonstrated that the pool of mRNA
accumulated during seed development is used upon imbibition
to ensure translation of the proteins required for completing ger-
mination (Rajjou et al., 2004; Nakabayashi et al., 2005; Kimura
and Nambara, 2010). As a consequence, de novo transcription is
probably not essential during early stages of germination (Rajjou
et al., 2004), thus suggesting that the pool of stored mRNA that
is translated during the early steps of seed imbibition governs
dormancy expression and germination potential. This implies
that the pool of transcripts translated during seed imbibition
differs between non-dormant and dormant seeds. Selective oxi-
dation of a pool of transcripts during after-ripening or early seed
imbibition is an attractive mechanism for explaining rapid modi-
fications of the pattern of translated proteins. RNA is much more
vulnerable to oxidative damage than DNA because of its single-
stranded structure, its cytoplasmic location and the absence of
efficient repair systems to minimize oxidative damage (Kong and
Lin, 2010). Many oxidative damages of bases have been iden-
tified in RNA (Barciszewski et al., 1999) but the most common
oxidized base in RNA is guanine, from which oxidation produces
8-hydroxyguanosine (8-OHG). 8-OHG results from a reaction of a
HO· with guanine to form a 3-hydroxyoctanoylcarnitine (C8-OH)
adduct radical and subsequently 8-OHG after the loss of an elec-
tron and proton. 8-OHG can be detected and quantified in tissues
using high-performance liquid chromatography-electrochemical
detection (HPLC-ECD) or antibodies. To date, mRNA oxidation
has mainly been observed in a wide range of diseases in animals
and humans (Poulsen et al., 2012). In Alzheimer’s disease, for
example, up to 50% of mRNAs in frontal cortices are oxidized
(Shan and Lin, 2006). In a pioneering study, Bazin et al. (2011)
recently reported that mRNA oxidation occurs during sunflower
seed dry after-ripening. They showed that the amount of 8-OHG
in poly(A)-RNA increases by 50% during dormancy alleviation in
the dry state, whilst this increase was not detectable when using
the total RNA population, which indicates that mRNAs were more
sensitive to oxidation than other RNA species in this system. As
in animals systems (Kong and Lin, 2010), this mRNA oxidation

in seeds was not random but highly selective, mainly targeting
24 stored mRNAs during sunflower seed after-ripening, most of
them corresponding to genes involved in cell signaling (Bazin et al.,
2011). For example, among these oxidized transcripts, protein
phosphatase 2C PPH1, mitogen-activated protein kinase phos-
phatase 1, and phenyl ammonia lyase 1 were identified. However,
the molecular basis for such selectivity is so far not known. Nev-
ertheless, selective oxidation of transcripts is highly relevant in
the context of dormancy and germination when one considers the
consequence of this process. Although repair of oxidized RNAs
has sometimes been reported (Aas et al., 2003), the major issues of
oxidized mRNAs are the suppression of the protein synthesis and
their degradation. As non-oxidized mRNAs, oxidized mRNAs are
recognized by ribosomes (Tanaka et al., 2007), but the presence
of oxidized bases causes translation errors and produces trun-
cated proteins mainly because of premature termination (Tanaka
et al., 2007; Chang et al., 2008). Bazin et al. (2011) and Chang et al.
(2008) demonstrated that mRNA oxidation caused reduced pro-
tein expression. In addition, it has been suggested that P-bodies,
which include decapping enzymes, activators of decapping, and
5′–3′ exonuclease, specifically degrade oxidized mRNAs and clean
the cell from these compounds (Sheth and Parker, 2006; Moreira
et al., 2008). Interestingly, it was demonstrated that ROS induced
the formation of cytoplasmic P-bodies (Shan et al., 2007). The
work of Bazin et al. (2011) therefore highlights a potential mech-
anism of seed dormancy alleviation in which targeted mRNA
oxidation can fine-tune the cell signaling pathway that controls
germination by targeting mRNA decay and by regulating selective
translation. It is of outstanding interest to determine whether this
process, which can rapidly regulate cell functioning, is involved in
other plant developmental processes or in response to stresses.

SELECTIVE PROTEIN OXIDATION DRIVES THE GERMINATION
PROCESS
Proteins are, with nucleic acids and lipids, the most sensitive
molecules to in vivo oxidation. Protein oxidation can be caused
directly by ROS or by co-products of oxidatively modified lipids,
amino acids, or sugars (Shacter, 2000). There are numerous differ-
ent types of protein oxidative modifications. Oxidative attack of
amino acyl moieties, such as Lys, Arg, Pro, and Thr, induces forma-
tion of carbonyl groups (aldehydes and ketones) on the side chains
(Nyström, 2005). Carbonylation is irreversible and not repairable
(Dalle-Donne et al., 2003). To avoid their toxic accumulation, car-
bonylated proteins are degraded through the action of the 20S
proteasome in the cytosol (Nyström, 2005).

Besides carbonylation, the two amino acids that are the most
prone to oxidative attack are Cys and Met, both of which contain
susceptible sulfur atoms (Shacter, 2000). Oxidation of Cys by ROS
promotes reversible disulfide bond formation and can also gener-
ate the oxidized derivatives sulfenic acid (Cys SOH), sulfinic acid
(Cys SO2H), or sulfonic acid (Cys SO3H; Rinalducci et al., 2008).
The major products of Met oxidation are S- and R-diastereomers
of Met sulfoxide (MetSO), which can be reversed through the spe-
cific action of methionine sulfoxide reductase (MSR) A and B on
S- and R-diastereomers, respectively (Davies, 2005). In addition, a
more severe attack of Met can result in the irreversible formation
of sulfone (MetSO2).
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Job et al. (2005) demonstrated that massive protein oxidation
occured during Arabidopsis seed germination. It was shown that
12S subunits of cruciferin, a legumin-type reserve protein, became
oxidized during seed maturation and that this protein disappeared
steadily upon seed imbibition reflecting its mobilization during
plantlet establishment. During pea seed germination, Barba-Espín
et al. (2011) also observed carbonylation of protein reserves such
as vicilins and pea albumin 2. Carbonylation of seed storage pro-
teins would help trigger their mobilization during germination
by destabilizing the compact seed storage protein complexes, thus
increasing their susceptibility toward proteolytic cleavage by 20S
proteasome (Job et al., 2005). Also, because of their abundance,
these seed storage proteins might be viewed as an efficient scaveng-
ing system for ROS that are actively generated during germination.
In parallel, the carbonylation of many proteins from the albumin
fraction occurred during imbibition of Arabidopsis and pea seeds
(Job et al., 2005; Barba-Espín et al., 2011). Oxidation was not ran-
domly distributed but targeted specific proteins such as glycolytic
enzymes, mitochondrial ATP synthase, aldose reductase, methion-
ine synthase, translation factors, and several molecular chaperones
(Job et al., 2005). Despite such accumulation of carbonylated pro-
teins, usually viewed as a factor of deterioration in the context of
aging in a variety of model systems, Arabidopsis seeds germinated
at a high rate and yielded vigorous plantlets suggesting that this
oxidative process is not deleterious. Specific protein carbonylation
might be required for protecting other cell components against
the effects of ROS that are issued from the recovery of metabolic
activity during seed imbibition. It can also be hypothesized that
impairment of some metabolic activities such as the oxidation of
glycolytic enzymes, for example, could lead to the activation of the
pentose phosphate pathway (PPP) thus providing reducing power
to the germinating seed (Job et al., 2005; Barba-Espín et al., 2011).
This is in good agreement with previous work suggesting a key
role for PPP in the completion of seed germination (Bewley and
Black, 1994).

Studying the relationship between dormancy and protein car-
bonylation brought several other lines of evidence showing the
beneficial effect of carbonylation in seed germination. Thus, Oracz
et al. (2007) documented that sunflower seed dry after-ripening is
associated with ROS accumulation, which induces selective pro-
tein oxidation in anhydrobiosis. Such a process appears to be a
prerequisite for dormancy alleviation since preventing ROS pro-
duction by storing dormant seeds at low moisture content blocks
this process. This mechanism has to be considered with regards
to the recent findings of Bazin et al. (2011) since both studies
clearly document that non-enzymatic processes leading to selec-
tive translation and selective protein degradation are probably
key events occurring during after-ripening. Müller et al. (2009)
also showed that Arabidopsis seed after-ripening is associated with
increased protein carbonylation. In addition, carbonylation of
specific proteins occurs upon treating dormant sunflower seeds
with either hydrogen cyanide or methylviologen, two dormancy-
releasing compounds (Oracz et al., 2007). Oracz et al. (2007) have
discussed the role of protein oxidation in dormancy alleviation
with regards to the nature of the carbonylated proteins identified.
For example these authors showed that alcohol dehydrogenase
is carbonylated in axes of all seeds undergoing germination,

which fits very well with the beneficial effect of alcohol on
breaking seed dormancy (Cohn et al., 1989; Corbineau et al.,
1991). As in Arabidopsis (Job et al., 2005), the oxidation of seed
reserve proteins seems also to be associated with sunflower seed
germination (Oracz et al., 2007).

Reversible disulfide bond formation from thiol groups of cys-
teine is probably the post-translational oxidative modification
that has been the most extensively studied in seed physiology
(Buchanan and Balmer, 2005; Arc et al., 2011). On the one hand,
oxidative conditions occurring during seed germination (Bailly,
2004) are likely to promote formation of disulfides bonds and
of mixed disulfides between glutathione and cysteinyl residues
(i.e., glutathionylation; Buchanan and Balmer, 2005). Formation
of disulfide bridges and glutathionylation would prevent irre-
versible oxidation of proteins and their subsequent degradation
(Dalle-Donne et al., 2007; Spadaro et al., 2010). In addition, disul-
fide bridges alter protein folding, stability and potential activity
(Buchanan and Balmer, 2005). For example, some components
of translation and transcription machineries are regulated by the
redox status and by ROS homeostasis (Buchanan and Balmer,
2005), but the redox regulation of transcription and translation
in germinating seeds has not been demonstrated yet. Interestingly,
Bykova et al. (2011) recently showed that wheat seed dormancy
is regulated by the protein redox thiol status during imbibition.
The redox changes occurring during imbibition of non-dormant
seeds, relating to ROS accumulation, would be associated with a
dramatic redox change of protein thiols, thus driving cell func-
tioning to germination, probably by interacting with hormone
signaling pathways (Bykova et al., 2011). On the other hand, seed
germination is associated with the reduction of disulfide bonds
owing to the regulatory action of thioredoxins, peroxiredoxins and
glutaredoxins (e.g., Marx et al., 2003; Wong et al., 2004; Alkhalfioui
et al., 2007). Formation of disulfide bonds occurs during matura-
tion drying and this process would be associated with the down
regulation of metabolic activities in mature seed (Buchanan and
Balmer,2005). In contrast, the resumption of an active metabolism
during seed imbibition would be related to the reduction of disul-
fide bonds of metabolic proteins. It has also been proposed that
the mobilization of protein reserves during germination would
require disulfide bond reduction since it increases solubility and
facilitates proteolytic attacks (Alkhalfioui et al., 2007). In sum-
mary, the studies related to the redox regulation of thiol groups
during germination bring a contrasted picture of their putative
role. This suggests that germination might be associated with a
subtle balance between oxidation and reduction of cysteines on
targeted proteins. Attention will have to be paid in the forthcom-
ing years to better elucidate the roles of thiol oxidation in seed
germination. One cannot exclude that the selective oxidation of
thiols by ROS could act in concert with the reduction of disulfides
by thioredoxin, peroxiredoxins, and glutaredoxins.

The consequences of Met redox changes are well documented
in mammals. Oien and Moskovitz (2008) proposed that the enzy-
matic regeneration of MetSO through MSR activity falls into three
categories: regulation of signaling pathways, Met acting as an
antioxidant for protecting proteins from higher oxidative events
and damage to protein function and subsequent formation of
protein-carbonyl adducts (Moskovitz and Oien, 2010). The MSR
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FIGURE 1 | Role of mRNA and protein oxidation in seed germination.

During non-dormant seed imbibition, ROS, accumulated during dry
after-ripening or produced during imbibition, trigger selective oxidation of
mRNA and proteins. Oxidation of mRNAs leads to their decay through
the action of P-bodies and/or to the alteration of translation. Proteins can
be irreversibly oxidized by carbonylation, which leads to their cytosolic
degradation through the 20S proteasome. Oxidation of cysteine and

methionine induces formation of disulfide bonds and methionine
sulfoxide, respectively. Reduction of disulfide bonds occurs through
the action of thioredoxins, peroxiredoxins, or glutaredoxins when
methionine sulfoxides are reduced to methionine by methionine sulfoxide
reductase (MSR). The selective oxidation of a subset of mRNAs and
proteins guides cell signaling pathways toward the completion of seed
germination.

system is present in most organisms from bacteria to human and it
has been well described by Rouhier et al. (2006) and Tarrago et al.
(2009) in plants. However, little information is available on MSR
substrates, i.e., oxidized methionine in proteins, due to the diffi-
culty to isolate these oxidized targets. Recently, a method allowing
MetSO identification by COFRADIC (combined fractional diag-
onal chromatography) proteomics technology has been set up in
mouse serum proteome (Ghesquiere et al., 2011). This permitted
the identification of 35 in vivo oxidized methionine sites in 27 dif-
ferent proteins. In leaf extracts, Tarrago et al. (2012) identified 24
protein partners of Arabidopsis plastidial MSRB1 using a strategy
based on affinity chromatography.

The major challenge of the upcoming studies dealing with
protein oxidation in seeds will certainly be to build up a
comprehensive scheme integrating the relationship between the
various post-translational modifications of proteins. For exam-
ple, the relationship between carbonylation, Met sulfoxidation
and phosphorylation have been unraveled recently showing that

sulfoxidation alters protein carbonylation and phosphorylation
(Hardin et al., 2009; Moskovitz and Oien, 2010; Oien et al., 2011).

CONCLUDING REMARKS
The discovery of the occurrence of oxidative modifications of
proteins and mRNAs in seed germination and breaking of dor-
mancy opens new avenues to better understand such complex
developmental processes. The identification of mRNA oxidation
in seeds allows proposing a hypothesis for explaining the mech-
anism underlying selective translation in non-dormant seeds. In
addition, the selective oxidative post-translational modifications
of proteins claim for a strong involvement of the suppression of
negative regulators of germination in the mechanisms associated
with dormancy release (Figure 1). These findings allow proposing
the hypothesis that ROS accumulation during seed imbibition and
subsequent oxidation of targeted mRNAs and proteins are impor-
tant features for regulation of seed germination, which will be the
topic of future studies.
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