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Abstract

Objective

Metabolic derangements, including insulin resistance and hyperlactatemia, are a major

complication of major trauma (e.g., burn injury) and affect the prognosis of burn patients.

Protein farnesylation, a posttranslational lipid modification of cysteine residues, has been

emerging as a potential component of inflammatory response in sepsis. However, farnesylation

has not yet been studied in major trauma. To study a role of farnesylation in burn-induced

metabolic aberration, we examined the effects of farnesyltransferase (FTase) inhibitor, FTI-

277, on burn-induced insulin resistance and metabolic alterations in mouse skeletal muscle.

Methods

A full thickness burn (30% total body surface area) was produced under anesthesia in male

C57BL/6 mice at 8 weeks of age. After the mice were treated with FTI-277 (5 mg/kg/day, IP)

or vehicle for 3 days, muscle insulin signaling, metabolic alterations and inflammatory gene

expression were evaluated.

Results

Burn increased FTase expression and farnesylated proteins in mouse muscle compared

with sham-burn at 3 days after burn. Simultaneously, insulin-stimulated phosphorylation of

insulin receptor (IR), insulin receptor substrate (IRS)-1, Akt and GSK-3β was decreased.

Protein expression of PTP-1B (a negative regulator of IR-IRS-1 signaling), PTEN (a nega-

tive regulator of Akt-mediated signaling), protein degradation and lactate release by muscle,

and plasma lactate levels were increased by burn. Burn-induced impaired insulin signaling
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and metabolic dysfunction were associated with increased inflammatory gene expression.

These burn-induced alterations were reversed or ameliorated by FTI-277.

Conclusions

Our data demonstrate that burn increased FTase expression and protein farnesylation

along with insulin resistance, metabolic alterations and inflammatory response in mouse

skeletal muscle, all of which were prevented by FTI-277 treatment. These results indicate

that increased protein farnesylation plays a pivotal role in burn-induced metabolic dysfunction

and inflammatory response. Our study identifies FTase as a novel potential molecular target

to reverse or ameliorate metabolic derangements in burn patients.

Introduction

Stress-associated metabolic derangements in skeletal muscle are a major complication of

major trauma, including severe burn injury, and affect the long-term outcome of burn patients

[1,2]. These metabolic aberrations include hypermetabolism, catabolism, insulin resistance,

hyperlactatemia, and muscle wasting [3–5]. Hyperlactatemia is an early predictor of the

mortality of burn patients [6–8]. Insulin resistance has been considered as a major common

denominator of these metabolic alterations under stress condition, including burn injury.

Strict glycemic control by intensive insulin therapy has been implemented in some intensive

care units since the beneficial effects on the mortality and prognosis were reported [9]. Recent-

ly, however, risk of hypoglycemia during the intensive insulin therapy has emerged as a prob-

lem in critical care [10,11]. Moreover, insulin sensitizers in critically ill patients pose several

drawbacks and limitations. The adverse cardiovascular side effects of thiazolidinediones

[12,13] and metformin-related lactic acidosis [14] may limit use of these insulin sensitizers in

critically ill patients, such as burn patients. These clinical scenarios have urged us to further in-

vestigate the molecular mechanisms underlying burn-induced insulin resistance and metabolic

derangements with the goal of identifying (a) molecular target(s) to reverse metabolic dysfunction

of patients with major trauma (e.g., burn injury) [15].

The insulin receptor (IR)-insulin receptor substrates (IRSs)-Akt pathway plays a central

role in metabolic actions of insulin. IRS-1 plays a pivotal role in metabolic actions of insulin in

skeletal muscle, while IRS-2 has a more prominent role than IRS-1 in liver metabolism [16].

Akt is activated by phosphorylation of threonine 308 and serine 473. Akt phosphorylates

GSK-3β at serine 9, leading to inhibition of GSK-3β activity. GSK-3β inhibits glycogen synthesis.

Attenuated Akt activity, therefore, results in increased GSK-3β activity, which, in turn, leads to

decreased glycogen synthesis. Muscle-specific insulin receptor knockout mice do not exhibit

hyperglycemia or hyperinsulinemia although Akt-mediated insulin signaling is abolished in

skeletal muscle [17]. Defective insulin signaling in skeletal muscle causes hyperlactatemia, and

decreased glycogen content and increased protein degradation in muscle [18,19]. These find-

ings suggest that impaired insulin signaling in skeletal muscle can cause metabolic alterations

of lactate, glycogen and proteolysis independent of hyperglycemia or hyperinsulinemia.

Protein-tyrosine phosphatase (PTP)-1B downregulates insulin signaling by dephoshorylating

tyrosine residues in IR and IRS-1 [20]. Phosphatase and Tensin Homolog Deleted from

Chromosome 10 (PTEN) inhibits insulin-stimulated phosphorylation (activation) of Akt at

threonine 308 and serine 473 by dephosphorylating phosphatidylinositol 3, 4, 5- triphosphate,

a product of phosphatidylinositol 3-kinase [21].

Burn-Induced Farnesylation and Muscle Insulin Resistance
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Protein farnesylation is a lipid modification of the cysteine residues in the CAAX motif lo-

cated in the carboxyl terminus of proteins (“C” is cysteine, “A” is aliphatic amino acid, and “X”

is any amino acid at the carboxyl terminus, but usually serine, methionine, glutamine, or ala-

nine). Farnesyltransferase (FTase) catalyzes the covalent attachment of farnesyl pyrophosphate

via a thioester linkage to cysteines in the CAAX box. It has been established that farnesylation

plays important roles in maturation, activity, and membrane localization of some proteins, in-

cluding the Ras family small G-proteins, under basal (physiological) condition. On the other

hand, limited knowledge is available about the role of protein farnesylation in the pathological

conditions, including major trauma. We have previously shown that farnesylated proteins and

FTase activity increase in spleen of septic mice compared with sham mice [22], and that a com-

petitive inhibitor for FTase, FTI-277, improves survival after induction of sepsis or lipopolysac-

charide (LPS) challenge in mice [22,23]. FTI-277 prevents systemic inflammatory response, as

indicated by reversal of increased circulating high-mobility group box 1 (HMGB1) and histone

H3 levels. It is noteworthy that amelioration of inflammatory response parallels the reversal of

increased FTase activity as well as increased farnesylated proteins content in septic mice [22].

These results raise the possibility that increased farnesylation may act as an upstream enhancer

of inflammatory response as well as a downstream mediator, functioning as an integral compo-

nent of inflammatory response, which, in turn, plays a pivotal role in the development of insu-

lin resistance and metabolic alterations. This possibility, however, remains an open question.

The potential anti-inflammatory action of farnesylation inhibition has been postulated by

the accumulated evidence of the cholesterol-lowering-independent beneficial effects of statins,

inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase. Statins reduce

the biosynthesis of farnesyl pyrophosphate, which is a precursor of cholesterol and geranylgeranyl

pyrophosphate, as well as a substrate of farnesylation. It has been proposed, therefore, that inhibi-

tion of protein isoprenylation, namely farnesylation and geranylgeranylation, may mediate the

lipid-lowering-independent pleiotropic effects of statins, including anti-inflammatory action, al-

though direct evidence is lacking.

In a previous study in elderly burn patients, preinjury statin use was associated with 83%

reduction in the odds of death after burn injury [24]. Similarly, we have previously shown in

mice that simvastatin ameliorates burn-induced glucose intolerance [25] and improves survival

after post-burn sepsis [26]. In line with this, a previous study has shown that atorvastatin im-

proves survival and insulin signaling in tissues, including skeletal muscle, of septic rats [27].

Nonetheless, the molecular mechanisms underlying the insulin-sensitizing effect of statins re-

main largely unknown.

Inflammatory response plays a crucial role in obesity- and stress-induced insulin resistance

[28–30]. Collectively, one can speculate that statin may reverse or ameliorate stress-induced in-

sulin resistance by attenuating inflammatory response via inhibition of protein isoprenylation.

However, the effects of FTase inhibition on insulin signaling or metabolic alterations, which

are associated with local and systemic inflammatory response, have not yet been studied. These

findings motivated us to test the hypothesis that inhibition of increased protein farnesylation

may reverse or ameliorate burn-induced muscle insulin resistance and metabolic alterations

along with mitigation of inflammatory response. We studied, therefore, the effects of a specific

inhibitor of FTase, FTI-277, in burned mice.

Methods

Ethics Statement

All experiments were carried out in accordance with the institutional guidelines and the study

protocol was approved by the Institutional Animal Care and Use Committee (IACUC) at the

Burn-Induced Farnesylation and Muscle Insulin Resistance
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Massachusetts General Hospital (the protocol title: Stress-Associated Insulin Resistance; the

protocol#: 2007N000020). The animal care facility is accredited by the Association for Assess-

ment and Accreditation of Laboratory Animal Care.

Animals

We used male C57BL/6 mice (Jackson Laboratory, Bar Harbor, ME) at 8 weeks of age. The

mice were housed in a pathogen-free animal facility with 12 h light/dark cycles at 25°C. A

full-thickness burn injury comprising 30% of total body surface area was produced under

anesthesia with pentobarbital sodium (50 mg/kg BW/day, IP) in mice by immersing the

abdomen for 6 sec and both sides of the flank for 4 sec in 80°C water. We confirmed this proce-

dure produced full-thickness burn injury in mice by hematoxylin and eosin staining. Sham-

burned mice were immersed in lukewarm water. Buprenorphine (0.1 mg/kg BW, SC) was

administered every 8 h up to 48 h after burn or sham-burn. For resuscitation, prewarmed

normal saline (0.04 ml/g BW, IP) was injected just after burn or sham-burn regardless of

the treatment. Starting at 2 h after burn or sham-burn, the mice were treated with FTI-277

(N-[4-[2(R)-amino-3-mercaptopropyl]amino-2-phenylbenzoyl]methionine methyl ester

trifluoroacetate salt) (5 mg/kg BW/day, IP, Sigma, St. Louis, MO) or vehicle (phosphate-buffered

saline [PBS]) for 3 days.

Tissue Homogenization and Immunoblotting

At 3 days after burn or sham-burn, following an overnight fasting, the mice received insulin

(0.3 U/kg BW, Humulin R, Eli Lilly) or saline via the portal vein under anesthesia with pento-

barbital sodium (50 mg/kg BW, IP), and rectus abdominis was collected at 5 min thereafter

[31,32]. The muscle samples were snap-frozen and kept at −80°C until biochemical analyses

were performed. The samples were homogenized as described previously [33]. Briefly, tissues

were pulverized under liquid nitrogen and homogenized in homogenization buffer (50 mM

HEPES, pH 8.0, 150 mMNaCl, 2 mM EDTA, 7.5% lithium dodecylsulfate, 2% CHAPS, 10%

glycerol, 10 mM sodium fluoride, 2 mM sodium vanadate, 1 mM PMSF, 10 mM sodium

pyrophosphate, 1 mM DTT, protease inhibitor cocktail [Sigma]). After incubation for 30 min,

the homogenized samples were centrifuged at 14,000 rpm for 10 min. Equal amounts of

protein were subjected to a standard SDS–polyacrylamide gel electrophoresis and were

electrophoretically transferred to a nitrocellulose membrane (Bio-Rad, Hercules, CA). The

equal protein loading was confirmed by Ponceau S staining. The membranes were soaked in

blocking buffer (GE Healthcare, Pittsburgh, PA) for 1 h and then incubated overnight at 4°C

with anti-glyceraldehyde 3-phosphate dehydrogenase (GAPDH) (Trevigen, Gaithersburg, MD,

#2275-PC-1), anti-Akt (#4691), anti-phospho-Akt at threonine 308 (#2965), anti-phospho-

Akt at serine 473 (#4058), PTEN (#9552), anti-phospho-PTEN at serine 380 (#9551), anti-

phospho-GSK-3β at serine 9 (#9336) (Cell Signaling Technology, Danvers, MA), anti-phos-

pho-IR at tyrosine 972 (44–800G), anti-phospho IRS-1 at tyrosine 612 (IRS-1) (44–816G)

(Life Technologies, Grand Island, NY), anti-IR (07–724), IRS-1 (06–248), PTP-1B (07–088)

(Millipore, Billerica, MA), anti-GSK-3β (BD Bioscience, San Jose, CA, #610202), or anti-

farnesyltansferase (Santa Cruz Biotechnology, Santa Cruz, CA, #sc-137), followed by incubation

with HRP-conjugated anti-rabbit IgG or anti-mouse IgG antibody (GE Healthcare) for 1 h at

room temperature. Immunoreactive bands were detected with ECL Advance Western Blotting

Detection Kit (GE Healthcare) and scanned using the HP Scanjet 4850 (Hewlett-Packard, Palo

Alto, CA). Densitometric analysis of the results was carried out using NIH Image software

(ver. 1.62). Protein expression was normalized to GAPDH unless otherwise indicated.

Burn-Induced Farnesylation and Muscle Insulin Resistance
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Measurement of Glycogen Content

Muscle glycogen content was determined using anthrone reagent as previously described [33].

Muscle was solubilized in 0.3 ml of 30% (w/v) KOH solution at 95°C for 30 min with vortexing

every 10 min. Then, 0.1 ml of 1 m Na2SO4 and 0.8 ml of 100% ethanol were added to the sam-

ple. The mixture was centrifuged at 14,000 rpm for 5 min. After washing twice with 1 ml of

70% ethanol, the precipitate was dissolve in 0.4 ml of water. One milliliter of anthrone reagent

(66% H2SO4, 0.05% anthrone, 1% thiourea) was added to 0.2 ml of the sample, and the mixture

was boiled for 15 min. The concentrations of glycogen were determined by measuring absor-

bance at 620 nm and normalized to the tissue weight.

Measurement of Triglyceride Content

At 3 days after burn or sham-burn, muscle samples were collected under anesthesia after 4h

fasting. Muscles were hydrolyzed in 5% (w/v) Triton X-100 solution, and boiled for 5 min.

Muscle triglyceride content were determined using a commercial kit (Sigma) according to the

manufacture’s instructions and normalized to the tissue weight [33].

Measurement of Amino Acids and Lactate Release during Ex vivo

Muscle Incubation

Harvested muscle was incubated for 2 h in Krebs-Henseleit bicarbonate (KHB) buffer (pH 7.4)

(120 mMNaCl, 4.8 mM KCl, 25 mM NaHCO3, 2.5 mM CaCl2, 1.2 mM KH2PO4, and 1.2 mM

MgSO4) supplemented with 5 mMHEPES and 0.1% fatty acid-free bovine serum albumin con-

taining 5 mM glucose and 0.5 mM cycloheximide, the latter of which inhibits protein synthesis

and therefore blocks re-incorporation of released amino acids into proteins, as previously de-

scribed [34]. After 2-h incubation, L-lactate and L-amino acids in the incubation buffer were

measured using commercial kits (BioVision, Mountain view, CA) according to the manufac-

turer’s instructions and normalized to the tissue weight.

Measurement of Insulin-stimulated Glucose Uptake During Ex vivo

Muscle Incubation

Glucose uptake was measured as previously described [32]. Briefly, at 3 days after burn or

sham-burn, mice were anesthetized following an overnight fasting, and rectus abdominis were

dissected and rapidly split by mid-incision into two muscle strips. After the muscle strips

were rinsed briefly in KHB buffer (pH 7.4) supplemented with 32 mMmannitol, they were

incubated in 5 mL of KHB buffer supplemented with 8 mM glucose and 32 mMmannnitol in

the presence or absence of insulin (2 mU/mL, Humulin R, Eli Lily, Indianapolis, IN) in a shak-

ing water bath at 37°C for 20 min. Next, the muscles were incubated for 20 min at 37°C in 2

mL of KHB buffer containing 2-deoxy-[3H] glucose (2.5 mCi/mL, PerkinElmer, Wltham, MA)

and [14C] mannitol (0.3 mCi/mL,PerkinElmer) with or without insulin in a shaking incubator.

Buffers were gassed continuously with 95% O2: 5% CO2 throughout the experiment. The

muscles were then rinsed with KHB buffer, rapidly blotted, weighed, and solubilized by in-

cubation at 60°C for 1 h in 0.5 mL of 1N NaOH. Radioactivity in the sample was counted using

a scintillation counter. 2-Deoxy-[3H] glucose uptake rates were corrected for extracellular

trapping using [14C] mannitol counts and normalized to the tissue weight. Insulin-stimulated

glucose uptake was calculated based on differences in glucose uptake in the presence and ab-

sence of insulin.

Burn-Induced Farnesylation and Muscle Insulin Resistance
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Evaluation of mRNA Expression Levels

Total RNA was purified using TRIzol reagent (Life Technologies, Grand Island, NY). The

first-strand cDNA was synthesized from 1 mg of total RNA using a high capacity cDNA reverse

transcription kit (Life Technologies). Real-time PCR reactions were performed using 10 ng of

cDNA and TaqMan probes (Life Technologies) for inducible nitric oxide synthase (iNOS)

(Mm00440502_m1), interleukin-1β (IL-1β) (Mm99999061_mH), tumor necrosis factor-α

(TNF-α) (Mm00443258_m1), toll-like receptor-4 (TLR-4) (Mm00445274_m1), cycloxygenase- 2

(COX-2) (Mm00478374_m1), PTP-1B (Mm00448427_m1), PTEN (Mm00477208_m1),

18S ribosomal RNA (Hs99999901_s1) and GAPDH (Mm99999915_g1) using Mastercycler

(Eppendorf, Westbury, NY). 36B4 mRNA levels were measured using SYBR Green Dye (Life

Technologies) and specific primers (Forward: 5’-GAAGACAGGGCGACCTGGAA-3’; Re-

verse: 5’-TTGTCTGCTCCCACAATGAAGC-3’) [35]. mRNA levels were normalized to the

geometric mean of three internal control genes, 18S ribosomal RNA, GAPDH and 36B4, as

previously described [36]. The geometrical average of the three internal controls did not differ

between the groups.

Measurement of Farnesylated Proteins

The amounts of farnesylated proteins in the samples were measured as previously described

[22] with minor modifications. Briefly, the muscle was lysed in lysis buffer (50 mMHEPES,

pH 8.0, 150 mMNaCl, 10 mM sodium pyrophosphate, 10 mM NaF, 1 mM PMSF, 10%

glycerol, 2 mM EDTA, 2 mM sodium vanadate, 1 mM DTT, 1% Nonidet P-40, 0.1% SDS,

protease inhibitor cocktail). The protein concentration was measured by BCA kit (Thermo

Fisher Scientific, Waltham, MA). After 96-well plates were coated with the lysates (150 mg/well)

at 4°C overnight, the samples were incubated with anti-farnesylated cysteine antibody

(0.25 mg/well) (abcam, Cambridge, MA, #ab12432) at room temperature for 2 h, washed with

PBS containing 0.05% Tween 20, and incubated with biotin-conjugated anti-rabbit IgG anti-

body (Sigma, #B8895) at room temperature for 2 h. After washing with PBS containing 0.05%

Tween 20, they were incubated with extravidin-alkaline phosphatase (Sigma, #E2636) at room

temperature for 1 h, followed by washing with PBS containing 0.05% Tween 20 and the addi-

tion of the substrate of alkaline phosphatase, PNPP (p-nitrophenyl phosphate disodium salt,

Sigma) diluted in diethanolamine. After 1-h incubation with PNPP, the absorbance at 415 nm

was measured by a microplate reader.

Measurement of plasma lactate, HMGB1 and histone H3 concentrations

L-lactate concentrations in heparinized plasma were measured using a commercial kit (BioVision).

HMGB1 and histone H3 concentrations were measure at 3 days after burn or sham-burn using

ELISA kits from Shino-Test Corporation (Tokyo, Japan) and Cell Signaling Technology, respec-

tively, according to the manufactures’ instructions.

Statistical Analysis

To analyze the effects of burn injury at different time points, the data were compared with one-

way ANOVA followed by Tukey multiple comparison test. To analyze the effects of FTI-277 in

burned and sham-burned mice, two-way ANOVA followed by Tukey multiple comparison test

was used. A value of p<0.05 was considered statistically significant. All values are expressed as

means� SEM.

Burn-Induced Farnesylation and Muscle Insulin Resistance
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Results

Increases in FTase, PTP-1B and PTEN expression in muscle were
associated with hyperlactatemia after burn injury in mice

Burn injury increased FTase protein expression in skeletal muscle at 3 days after burn (Fig. 1A,

1B), where FTase expression in burned mice was increased to 169% of that in naïve mice

(p<0.01). On the other hand, GAPDH expression was not altered by burn (S1A Fig.).

Similar to the pattern of FTase expression, protein expression of PTP-1B and PTEN, nega-

tive regulators of insulin signaling, increased in skeletal muscle after burn in a time-dependent

manner and the maximum levels were observed at 3 days after burn (Fig. 1A, 1C, 1D). Like-

wise, plasma lactate levels were increased after burn in a time-dependent manner and the maxi-

mum plasma lactate level was observed at 3 days after burn (Fig. 1E). At 3 days after burn,

plasma lactate level was increased to 285% of that in naïve mice (p<0.05).

FTI-277 treatment reversed burn-induced impaired insulin signaling in
mouse skeletal muscle

The maximum effects of burn on FTase, PTP-1B and PTEN expression and plasma lactate lev-

els were observed at 3 days after burn (Fig. 1). Similarly, our previous study in mice has shown

that burn-induced impairment in muscle insulin signaling is most prominent at 3 days after

Figure 1. Increases in farnesyltransferase (FTase), PTP-1B and PTEN expression were associated with hyperlactatemia following burn injury in
mice.Muscle and blood samples were collected from naïve mice (Control), and at 6 h, 1 (D1), 3 (D3) and 7 days (D7) after burn injury. Immunoblot analysis
revealed that FTase protein expression was significantly increased at 3 days after burn compared with naïve mice (B). PTP-1B and PTEN protein expression
were significantly increased at 3 days after burn compared with naïve mice (C, D). FTase, PTP-1B and PTEN expression were normalized to that of GAPDH.
Plasma lactate concentration was significantly increased at 3 days after burn compared with naïve mice (E). *p<0.05, **p<0.01, ***p<0.001 vs. Control.
n = 4 mice at each time point.

doi:10.1371/journal.pone.0116633.g001

Burn-Induced Farnesylation and Muscle Insulin Resistance
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burn [32]. We examined, therefore, the effects of FTI-277 on insulin signaling at 3 days after

burn. When treated with vehicle alone, burn impaired insulin-stimulated phosphorylation (ac-

tivation) of IR and IRS-1, in skeletal muscle compared with vehicle-treated sham-burned mice

(Fig. 2). In vehicle-treated burned mice, insulin failed to significantly increase phosphorylation

of IR and IRS-1 compared with saline, although there was a trend of insulin-stimulated in-

crease in phosphorylation of IR. Impaired insulin-stimulated phosphorylation of IR and IRS-1

in burned mice was reversed by FTI-277. Protein expression of IR and GAPDH was not altered

by burn, FTI-277 or insulin (Fig. 2A, 2B, S1B). In contrast, IRS-1 protein expression was

Figure 2. FTI-277 treatment reversed burn-induced impaired insulin receptor (IR)-insulin receptor substrate-1 (IRS-1) signaling in skeletal muscle.
IR protein expression was not altered by burn, FTI-277 or insulin (B). Insulin-stimulated IR phosphorylation was attenuated at 3 days after burn compared
with sham-burned mice, which was almost completely restored by FTI-277 treatment (C, D). Burn decreased IRS-1 protein expression (E) and insulin-
stimulated IRS-1 phosphorylation (F, G), both of which were reversed by FTI-277. Insulin significantly increased p-IRS-1/GAPDH ratio and p-IRS-1/IRS-1
ratio in sham-burned mice and FTI-277-treated burned mice, whereas insulin failed to significantly increase p-IRS-1/GAPDH ratio or p-IRS-1/IRS-1 ratio in
vehicle-treated burned mice (F, G). There was a trend of increase in insulin-stimulated p-IRS-1/IRS-1 ratio in vehicle-treated burned mice, but there was no
statistical difference (G). n = 5 mice per group for saline-injected mice, n = 6 mice per group for insulin-injected sham-burned mice, n = 8 mice per group for
insulin-injected burned mice. *p<0.05, **p<0.01, ***p<0.001, NS: not significant.

doi:10.1371/journal.pone.0116633.g002
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significantly decreased by burn, in agreement with previous studies [32,37]. Burn-induced sup-

pressed IRS-1 protein expression was restored by FTI-277 (Fig. 2E). When phosphorylated

IRS-1 was normalized to total IRS-1 protein expression, p-IRS-1/IRS-1 ratio did not signifi-

cantly differ between sham-burned and burned mice. It is important to note that insulin

failed to significantly increase p-IRS-1/IRS-1 ratio in vehicle-treated burned mice, whereas

p-IRS-1/IRS-1 ratio was markedly increased by insulin in sham-burned mice and FTI-277-treated

burned mice (Fig. 2G).

Next, we examined the effects of FTI-277 on insulin-stimulated phosphorylation of Akt and

GSK-3β in skeletal muscle of burned mice. Protein expression of Akt and GSK-3β was not al-

tered by burn, FTI-277 or insulin (Fig. 3A, 3B, 3G). Insulin-stimulated phosphorylation of Akt

at threonine 308 and serine 473 and GSK-3β at serine 9 was blunted in vehicle-treated burned

mice, as compared with sham-burned mice (Fig. 3C, 3D, 3E, 3F, 3H, 3I). There was a trend of

increased phosphorylation of Akt and GSK-3β by insulin in vehicle-treated burned mice com-

pared with saline, but statistically significant differences were not found between insulin and

saline injections in these animals. This contrasts to robust phosphorylation of Akt and GSK-

3β in sham-burned mice. Decreased insulin-stimulated Akt and GSK-3β phosphorylation in

burned mice was almost completely restored by FTI-277. In sham-burned mice, insulin-

stimulated phosphorylation of GSK-3β appears to be increased by FTI-277 compared with ve-

hicle, but there was no statistically significant difference.

Insulin-stimulated Akt phosphorylation plays a central role in insulin-stimulated glucose

uptake [38]. We evaluated, therefore, insulin-stimulated glucose uptake in muscle ex vivo.

Insulin-stimulated glucose uptake was significantly decreased by burn injury compared with

sham-burn, which was restored by FTI-277 (Fig. 3J).

FTI-277 treatment prevented burn-induced increased PTP-1B and
PTEN expression in mouse skeletal muscle

We examined the effects of burn and FTI-277 on expression of PTP-1B and PTEN, negative

regulators of insulin signaling. Burn increased protein expression of PTP-1B and PTEN to

353% and 275% of those in sham-burned mice when treated with vehicle alone, respectively

(p<0.001). FTI-277 treatment prevented increased PTP-1B and PTEN protein expression in

burned mice as compared with vehicle alone (Fig. 4). In contrast, FTI-277 did not significantly

alter protein expression of PTP-1B and PTEN in sham-burned mice. Burn significantly increased

PTP-1B and PTENmRNA expression in skeletal muscle, which was reversed by FTI-277 (Fig. 4C,

4E). On the other hand, GAPDH expression was not altered by burn and FTI-277 (S1C Fig.).

Phosphorylation of PTEN at serine 380 increases protein stability and thereby increases

PTEN protein expression independent of transcription and translation [39,40]. Phosphoryla-

tion of PTEN at serine 380 was increased by burn injury when normalized to GAPDH expres-

sion, which was inhibited by FTI-277 (S2 Fig.). When phosphorylated PTEN was normalized

to total PTEN expression, there was a trend of increased p-PTEN/PTEN ratio in burned mice,

which appears to be partially inhibited by FTI-277. However, there was no statistically signifi-

cant difference in p-PTEN/PTEN ratio. Together, one can speculate that the increases in

mRNA level and phosphorylation at serine 380 may contribute in concert to the burn-induced

increased PTEN expression.

FTI-277 treatment reversed burn-induced metabolic alterations in mouse
skeletal muscle

Next, we examined the effects of FTI-277 on burn-induced metabolic alterations. Consistent

with previous studies [41], glycogen content in skeletal muscle of vehicle-treated burned mice
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Figure 3. FTI-277 treatment reversed burn-induced attenuated insulin-stimulated phosphorylation of Akt and GSK-3β, and glucose uptake in
skeletal muscle. Protein expression of Akt and GSK-3β was not altered by burn, FTI-277 or insulin (B, G). Insulin-stimulated phosphorylation of Akt at
threonine 308 and serine 473 was blunted at 3 days after burn compared with sham-burn, which was reversed by FTI-277 treatment (C-F). Likewise, insulin-
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was markedly decreased to 22% of that of vehicle-treated sham-burned mice (p<0.05). FTI-

277 treatment restored glycogen content in burned mice to the level comparable to those in

sham-burned mice (Fig. 5A).

To assess protein breakdown, we measured ex vivo release of amino acids by skeletal muscle

during 2-h incubation. The amount of amino acids released by skeletal muscle of vehicle-

stimulated phosphorylation of GSK-3β at serine 9 was decreased in burned mice, which was reversed by FTI-277 treatment (H, I). n = 5 mice per group for
saline-injected mice, n = 6 mice per group for insulin-injected sham-burned mice, n = 8 mice per group for insulin-injected burned mice. (J) Insulin-stimulated
glucose uptake was attenuated by burn injury, and FTI-277 restored it in burned mice. n = 4 mice per group for sham-burned mice, n = 6 mice per group for
burned mice. *p<0.05, **p<0.01, ***p<0.001, NS: not significant.

doi:10.1371/journal.pone.0116633.g003

Figure 4. FTI-277 treatment inhibited burn-induced increased PTP-1B and PTEN expression in skeletal muscle. At 3 days after burn or sham-burn,
PTP-1B protein expression (B) and mRNA expression (C) were increased in vehicle-treated burned mice compared with sham-burned mice. FTI-277
treatment significantly decreased PTP-1B protein and mRNA expression in burned, but not sham-burned, mice. Likewise, PTEN protein (D) and mRNA
expression (E) were significantly increased in vehicle-treated burned mice, both of which were reversed by FTI-277. However, phosphorylated PTEN-to-total
PTEN expression (p-PTEN/PTEN) ratio was not significantly altered by burn or FTI-277, although it appears to increase after burn injury (F). n = 6 mice per
group. *p<0.05, **p<0.01, ***p<0.001, NS: not significant.

doi:10.1371/journal.pone.0116633.g004
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treated burned mice was significantly increased to 392% of that of vehicle-treated sham-burned

mice (p<0.001). FTI-277 treatment prevented burn-induced increased amino acids release

compared with vehicle alone (p<0.001) (Fig. 5B).

Ex vivo lactate release by skeletal muscle of vehicle-treated burned mice was also markedly

increased to 1,119% of that of vehicle-treated sham-burned mice (p<0.001). FTI-277 treatment

significantly ameliorated burn-induced increased lactate release compared with vehicle alone

(p<0.05) (Fig. 5C). Similarly, plasma lactate level of vehicle-treated burned mice was signifi-

cantly increased to 280% of that of vehicle-treated sham-burned mice (p<0.01). Plasma lactate

level of burned mice was attenuated by FTI-277 treatment to the level comparable to those of

sham-burned mice (p<0.05) (Fig. 5D). Unlike increased triglycerides content in obesity-

induced muscle insulin resistance [42], triglycerides content in skeletal muscle was not altered

by burn or FTI-277 (Fig. 5E).

In contrast to the effects of FTI-277 in burned mice, FTI-277 did not significantly alter

glycogen content, release of amino acids and lactate, and plasma lactate levels in sham-burned

mice.

Effects of FTI-277 on protein farnesylation in skeletal muscle of burned
mice

When treated with vehicle alone, burn significantly increased farnesylated proteins and FTase

protein expression in muscle at 3 days after burn compared with sham-burn (Fig. 6). FTI-277

treatment reversed burn-induced increased farnesylated proteins compared with vehicle alone

Figure 5. FTI-277 treatment ameliorated burn-inducedmetabolic alterations.Glycogen content was decreased in skeletal muscle at 3 days after burn
compared with sham-burn. FTI-277 treatment prevented burn-induced reduction in glycogen content (A). Ex vivo release of amino acids (B) and lactate (C)
from skeletal muscle was markedly increased by burn, both of which were mitigated by FTI-277 treatment. Plasma lactate level was increased by burn
compared with sham-burn. FTI-277 treatment significantly inhibited burn-induced increase in plasma lactate level (D). Triglycerides content did not differ
between the groups (E). n = 8 mice per group. *p<0.05, **p<0.01, ***p<0.001.

doi:10.1371/journal.pone.0116633.g005
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(p<0.01) (Fig. 6A). In sham-burned mice, there seems a trend of decreased farnesylated pro-

teins by FTI-277, but there was no statistically significant difference between vehicle- and FTI-

277-treated sham-burned mice. Of note, FTI-277 treatment reversed burn-induced increase in

FTase expression (p<0.001) (Fig. 6B), although it did not alter FTase expression in sham-

burned mice.

Effects of FTI-277 on inflammatory gene expression in skeletal muscle
of burned mice

Inflammatory response plays a crucial role in obesity- and stress (e.g., burn)-induced insulin

resistance [28]. As expected, mRNA levels of iNOS, IL-1β, TNF-α, TLR-4 and COX-2 were

markedly increased after burn in vehicle-treated mice, all of which were reversed or significant-

ly attenuated by FTI-277 treatment (Fig. 7). In sham-burned mice, FTI-277 did not alter

mRNA expression of these genes.

Effects of FTI-277 on circulating alarmins in burned mice

Circulating alarmins (also known as endogenous damage-associated molecular patterns,

DAMPs) such as HMGB1 [43] and histone H3 [44], have emerged as a major mediator of sys-

temic inflammatory response. Consistent with elevated circulating HMGB1 concentration in

burned rats [45] and burn patients [46] in previous studies, burn increased plasma HMGB1

and histone H3 levels, which were reversed by FTI-277 (Fig. 8).

Discussion

Here, we show that burn-induced impaired muscle insulin signaling, attenuated insulin-

stimulated glucose uptake in muscle and metabolic alterations were associated with increases

in FTase expression and farnesylated proteins in mouse skeletal muscle, and that these burn-

induced alterations were reversed or ameliorated by treatment with FTase inhibitor, FTI-277.

These findings indicate that increased protein farnesylation plays a pivotal role in burn-

induced insulin resistance and metabolic derangements in mouse skeletal muscle.

Figure 6. FTI-277 treatment prevented burn-induced increased protein farnesylation and FTase expression in skeletal muscle. (A) The amount of
farnesylated proteins was increased in skeletal muscle at 3 days after burn compared with sham-burn. FTI-277 treatment prevented burn-induced increase in
farnesylated proteins. n = 10 mice per group. (B) Burn increased farnesyltransferase (FTase) protein expression compared with sham-burn. FTI-277
treatment significantly inhibited burn-induced increased FTase expression. n = 6 mice per group. **p<0.01, ***p<0.001.

doi:10.1371/journal.pone.0116633.g006
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Consistent with our previous studies in rodents [31,32,41,47], burn injury resulted in: (1)

attenuated insulin-stimulated phosphorylation of IR, IRS-1, Akt and GSK-3β (Figs. 2, 3); (2)

decreased IRS-1 protein expression (Fig. 2E); and (3) increased PTEN protein expression

(Figs. 1E, 4D). In addition, we found that burn increased PTP-1B expression in skeletal muscle

(Figs. 1D, 4B). It is conceivable that decreased IRS-1 expression, and increased expression of

PTP-1B and PTENmay contribute in concert to impair the IR-IRS-1-Akt-mediated insulin

Figure 7. FTI-277 treatment reversed burn-induced induction of inflammatory genes expression in skeletal muscle. At 3 days after burn or sham-
burn, mRNA expression of inflammatory genes was examined in skeletal muscle. mRNA levels of iNOS, IL-1β, TNF-α, TLR-4 and COX-2 were increased by
burn. FTI-277 treatment prevented burn-induced induction of these genes. n = 8 mice per group. **p<0.01, ***p<0.001.

doi:10.1371/journal.pone.0116633.g007

Figure 8. FTI-277 treatment prevented burn-induced increased circulating levels of HMGB1 and
histone H3. (A) Plasma HMGB1 concentration was increased at 3 days after burn, which was prevented by
FTI-277. **p<0.01, ***p<0.001, n = 8 mice per group. (B) Plasma histone H3 concentration was increased
at 3 days after burn. FTI-277 attenuated burn-induced increase in histone H3 concentration. n = 4 mice per
group for sham-burned mice, n = 9–11 mice per group for burned mice. *p<0.05.

doi:10.1371/journal.pone.0116633.g008
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signaling in skeletal muscle of burned mice. Importantly, FTI-277 reversed attenuated insulin

signaling along with reversal of altered expression of IRS-1, PTP-1B and PTEN in burned mice

(Figs. 2–4).

Burn-induced impaired insulin signaling and its reversal by FTI-277 correlated with burn-

induced metabolic aberrations and the reversal of them (Figs. 2–5). The metabolic alterations

in burned mice include increased release of amino acids and lactate from muscle ex vivo,

increased plasma lactate levels, and decreased glycogen content in muscle (Fig. 5). Skeletal

muscle is a major source of circulating lactate [18,48]. Increased lactate and decreased glycogen

content are major features of insulin resistance in skeletal muscle [49,50].

Of interest, the maximum effects of burn injury on PTP-1B and PTEN expression, and plas-

ma lactate levels were observed at 3 days post-burn, when FTase expression was significantly

increased (Fig. 1). The time-dependent increases in PTP-1B and PTEN expression are in ac-

cord with our previous findings that the maximum effect on insulin resistance is observed at

3 days post-burn [32]. These findings are also consistent with the notion that insulin resistance

is a major component of metabolic derangements in burns.

Unexpectedly, we found that plasma lactate was not significantly increased within 24 h

post-burn (Fig. 1E). Hyperlactatemia can result from the metabolic shift, which is referred to as

cytopathic hypoxia or pseudohypoxia, where glycolytic ATP synthesis predominates over mi-

tochondrial oxidative phosphorylation even under normoxic condition. In line with this, the ex

vivo lactate release by muscle was markedly increased after burn although the muscle was incu-

bated in the fully oxygenated buffer (Fig. 5C). These findings suggest that hyperlactatemia at

3 days post-burn may be attributable, at least in a significant part, to the metabolic shift rather

than impaired microcirculation (hypoxia). Importantly, this is consistent with a previous study

that altered glucose metabolism is a contributor to elevated plasma lactate concentration over

and above deficit in oxygen availability in severely burned patients [51].

Of note, the protective effects of FTI-277 on insulin signaling and metabolic derangements

were accompanied by reversal or mitigation of burn-induced induction of inflammatory genes

in skeletal muscle and increased circulating alarmins (i.e., HMGB1 and histone H3) (Figs. 7, 8).

These results are in line with previous studies that FTase inhibitors elicit anti-inflammatory ac-

tion in non-immune cells under pathophysiological conditions [52–54]. Inflammation can be

both adaptive and detrimental, but excessive inflammatory response is associated with the

worse clinical outcome in many cases of major trauma, including burn injury [55]. Important-

ly, inflammatory response plays a critical role in insulin resistance [28–30]. We have previously

shown that gene disruption of inducible nitric oxide synthase (iNOS), a major mediator of in-

flammation, inhibits burn and obesity-induced insulin resistance in mice [32,56]. FTI-277 pre-

vented burn-induced iNOS expression (Fig. 7A). These data suggest that FTI-277-mediated

reversal of induction of inflammatory genes, including iNOS, may play a role in prevention of

burn-induced insulin resistance and metabolic alterations. It should be noted, however, that

FTI-277 seems more efficacious in preventing burn-induced muscle insulin resistance com-

pared with gene disruption of iNOS [32]. FTI-277 almost completely reversed impaired insulin

signaling in skeletal muscle of burned mice to the level observed in sham-mice (Figs. 2–4). In

contrast, iNOS deficiency significantly ameliorated insulin resistance, but not fully reversed it

in our previous study in mice [32]. It is suggested that both iNOS-dependent and -independent

mechanisms may be involved in the beneficial effects of FTI-277.

Burn injury increased FTase expression and farnesylated proteins in muscle (Figs. 1, 6).

These findings are in accord with previous studies that LPS, interferon-γ, and sepsis increase

farnesylated proteins [22,57,58]. It is suggested that increased protein farnesylation may be as-

sociated with inflammatory response, although little is known about the underlying mecha-

nisms. It is noteworthy that treatment with FTI-277 reversed not only increased farnesylated
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proteins but also elevated expression of FTase in burned mice (Fig. 6), which paralleled attenu-

ated inflammatory response (Figs. 7, 8). FTI-277 is an analogue of farnesyl pyrophosphate, the

substrate of FTase, and thereby functions as a competitive inhibitor of FTase. FTI-277 is, how-

ever, not capable of directly modulating FTase expression. Hence, the reversal of the increased

FTase expression by FTI-277 in burned mice cannot be accounted for by the direct effect of

FTI-277. Collectively, it is conceivable that inflammation may increase expression and/or activ-

ity of FTase and that FTI-277 might reverse burn-induced increased FTase expression by atten-

uating inflammatory response. One can speculate, therefore, that increased farnesylation may

function as a nodal point of inflammatory spiral by acting as an upstream enhancer of inflam-

mation as well as a downstream mediator, thereby forming a vicious cycle, which, in turn,

causes muscle insulin resistance and metabolic derangements in burns. Overall, our data sug-

gest that FTI-277 may reverse insulin resistance and metabolic aberration by inhibiting burn-

induced inflammatory spiral where increased protein farnesylation plays a role (Fig. 9). It

should be noted, however, that FTI-277 is not a simple anti-inflammatory agent. Our previous

study has shown that FTI-277 improves immune cell function in septic mice, whereas FTI-277

ameliorates systemic inflammatory response as indicated by the decrease in circulating

HMGB1 concentration in septic mice [22]. It is possible, therefore, that the effects of FTI-277

on inflammatory response may differ dependent on cell types and the cellular context. Further

studies are required to clarify this point.

Our date raise the possibility that farnesylation of some CAAX motif-containing proteins

may be increased after burn, which, in turn, contributes to the burn-induced insulin resistance.

However, targets proteins of burn- or inflammation-induced farnesylation are not known. We

are currently in the process of identifying such FTase substrates that play a role in the burn-

induced insulin resistance.

Figure 9. A possible role of protein farnesylation as a component of inflammatory response in burn-inducedmuscle insulin resistance and
metabolic derangements.Our findings suggest that increased protein farnesylation may function as an upstream enhancer of burn-induced inflammatory
response as well as a downstreammediator, forming a vicious cycle. This, in turn, may cause and/or exacerbate muscle insulin resistance and metabolic
derangements. It is conceivable that FTI-277 may reverse burn-induced insulin resistance and metabolic dysfunction by controlling inflammatory response.

doi:10.1371/journal.pone.0116633.g009
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In conclusion, our data indicate that increased protein farnesylation plays an important role

in burn-induced development of insulin resistance and related metabolic derangements (i.e.,

altered lactate and glycogen metabolism, increased protein breakdown) in mouse skeletal mus-

cle as well as in inflammatory response post-burn injury. It is possible that inhibition of protein

farnesylation may play a role in the pleiotropic beneficial effects of statins in burns. These find-

ings identify FTase as a novel potential molecular target to reverse skeletal muscle insulin resis-

tance and metabolic disturbance, and to control inflammatory response in burn patients.

Supporting Information

S1 Fig. Protein expression of GAPDH was not altered by burn, FTI-277 or insulin. (A)

Burn injury did not alter GAPDH protein expression in skeletal muscle from 6 h through

7 days post-burn, as compared with naïve mice (Control). n = 4 per group. (B) Protein expres-

sion of GAPDH was not altered by burn, FTI-277 or insulin following on overnight fasting at

3 days post-burn or sham-burn. n = 5 per group for saline-injected mice, n = 6 per group for

insulin-injected sham-burned mice, n = 8 per group for insulin-injected burned mice. (C) Pro-

tein expression of GAPDH was not altered by burn or FTI-277 following 4-h fasting at 3 days

post-burn or sham-burn. n = 6 per group. NS: not significant.

(TIF)

S2 Fig. FTI-277 treatment inhibited burn-induced increased phosphorylation of PTEN in

skeletal muscle. At 3 days after burn or sham-burn, phosphorylation of PTEN at serine 380

was increased in vehicle-treated burned mice compared with sham-burned mice. FTI-277

treatment significantly decreased phosphorylated PTEN expression in burned, but not sham-

burned, mice. n = 6 mice per group. ���p<0.001.

(TIF)
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