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Introduction

A solitary pulmonary nodule (SPN) is defined as a rounded 
opacity measuring up to 3.0 cm and surrounded by lung 

parenchyma (1). With the increasing use of multidetector 

computed tomography (MDCT) to investigate respiratory 

symptoms, the detection of a solitary nodule is a frequent 

incidental finding on chest imaging. In the CT screening 

setting of high-risk populations, up to 75% of screened 

individuals have a nodule detected over a multiyear 

screening process (2). At least one nodule is detected in 

up to 51% of initial screening CT’s (3) and approximately 

20% of these nodules will require further investigation (4,5) 

even though over 95% of these will ultimately prove to be 

benign on the basis of further imaging, long-term follow-

up, or invasive procedures (4-6). 

Conventional visual methods fail to differentiate 

malignant from benign nodules in many cases. The 

radiologist generally relies on CT imaging features such as 

the size, shape, contour and attenuation of the nodule to 
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classify the majority into benign or malignant categories (7). 

Despite this, a significant proportion remains indeterminate 
requiring follow-up or triggering invasive diagnostic 

investigations (8). Invasive procedures have limitations 

including cost, training expertise and potential for serious 

complications (3,8). 

The introduction of nuclear [18F]-fluorodeoxyglucose 

positron emission tomography (FDG-PET) imaging has 
enabled the metabolic assessment of lung nodules and 

may facilitate differentiating malignant lesions. Although 

FDG-PET/CT has a very high sensitivity for the detection 
of malignant lung nodules measuring over 8 mm, it has 

important limitations. Specifically uptake of glucose-

analogue FDG in both malignant and benign inflammatory 
lesions increases the potential for false positive results (9). 

Granulomatous lesions especially necrotizing granulomas, 
endemic in many parts of North America, are often FDG-
avid on PET/CT and can be especially problematic for 

radiologists as they appear as spiculated or lobulated solid 

lesions without a sub-solid or ground-glass component on 

CT and therefore mimic invasive carcinomas of the lung (10). 

In the era of low-dose CT screening for lung cancer, 

the search for non-invasive tools to differentiate benign 

from malignant nodules has intensified. Computer tools 

for automated pattern recognition and image analysis can 

provide objective information to support clinical decision-

making. Texture analysis is one such tool that uses a wide 

range of techniques that enable quantification of the 

gray-level patterns, pixel interrelationships, and spectral 

properties of an image (11-13). The role of texture analysis 

in CT and magnetic resonance imaging (MRI) has been 

explored in the brain (11,12), lung (14,15), breast (16), 

prostate (17), skeletal muscles (18), liver (19,20) kidney 

(21,22) and bones (23). 

As lung nodules are complex in structure and contain 

microscopic textural features imperceptible to the human 

eye, we sought to assess the value of texture analysis in 

differentiating primary lung cancer and benign granulomatous 

lesions. We specifically focused on granulomatous lesions as 

these are solid and spiculated or lobulated on CT and prove 

the most challenging to differentiate from invasive lung cancer 

based on visual characteristics alone. 

Materials and methods 

This was a retrospective case-control study approved by our 

Research Ethics Board. The need for informed consent was 

waived. Patients were identified by searching the pathology 

database from a single academic tertiary care institution 

for pathologically proven granulomatous lesions and solid 

primary lung cancers measuring between 1–3 cm identified 
between March 2010 and April 2013. The histopathologic 

analyses were performed by pathologists within the same 

academic institution with subspecialty training in thoracic 

pathology. Included patients had a definitive diagnosis 

obtained by image-guided biopsy with cytological and/

or histological analysis and had a contrast-enhanced (CE) 

and/or non-contrast-enhanced (NCE) CT of the thorax 

performed within 3 months of the biopsy. The lung nodules 

were all solid and spiculated or lobulated, measured ≤ 3 cm 

and did not display calcification or fat. 
CT studies were obtained on one of three 64-detector 

scanners (Toshiba Aquillion-64, Toshiba Medical Systems, 

Otawara, Japan, LightSpeed VCT and Discovery 750 HD, 

General Electric, Milwaukee, Wisconsin, USA) with a 
breath-held helical acquisition of the entire thorax, 120 kV, 

100–200 mAs, pitch 0.75–1.0 and collimation of 0.5 or 

0.625 mm.

All imaging data were reconstructed with a medium-

sharp reconstruction algorithm and a slice thickness of 

0.63–5.0 mm, FOV 500 mm, matrix 512×512 mm. CE 

CTs were performed using 40 cc Omnipaque 300 (GE 
Healthcare, Milwaukee, WI, USA) at a rate of 2 cc/sec and 

a delay of 25–30 seconds. CT images were reviewed using 

a picture archiving and communication system (PACS) 

(Horizon Medical Imaging, McKesson Corporation, San 

Francisco, CA, USA) on lung window settings (W: 1,500, L: 

−550).
We divided the nodules into two categories based on 

whether the CT had been performed with or without 

intravenous (IV) contrast. 

FDG-PET studies were all performed on the same 
system (Philips Gemini Dual Exp PET/CT scanner), using 
the same protocol: z-axis image from the base of the skull 

to mid-thigh, 60 minutes after IV injection of 6 MBq/kg  

of FDG. All patients had blood glucose <8 mmoL/L and 
were fasting for over 8 hours. Low mA, 6.0 mm thick CT 

images were acquired for attenuation correction and a 

Hermes Hybrid Viewer® workstation was used for imaging 

interpretation. A standardized uptake value (SUV) >2.5 was 

considered a PET-positive result.

Image analysis 

An axial CT image at the level of the largest diameter of 

the nodule was selected for texture analysis by a thoracic 

radiologist (VS) with 8 years of cross-sectional imaging 
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experience. A contour was manually drawn along the outer 

margin of the nodule using a polygonal region of interest 

(ROI) tool and exported to an independent workstation 

and de-identified. Each nodule was manually segmented by 
the same radiologist using Image J® (National Institutes of 

Health, USA, http://rsbweb.nih.gov) (Figure 1). 

Prior to analysis, CT image intensities were normalized 

between μ ± 3σ where μ was the mean value of gray levels 

inside the ROI and μ the standard deviation. Gray levels 
between [μ − 3σ] and [μ + 3σ] were then decimated to  

64 gray levels. This normalization procedure has been 

shown to minimize inter-scanner effects in MRI texture 

analysis (24) and is presumed to also reduce inter-scanner 

effects in other modalities such as CT. Gray-level co-
occurrence matrix (GLCM) features were extracted using 
MaZda version 4.6 (25) by a physicist (RT) blinded to the 

final histopathologic diagnosis of each nodule. We selected 
textural features related to linear gray-level dependencies 

(“f3,” or correlation), the sum of squares (“f4”), the sum 

variance (“f7”), the extent of gray-level randomness (“f8,” 

sum entropy), as well as difference variance (“f10”) (11).  

These are  textural  features  that  have previously 

demonstrated potential for identifying malignant renal 

(21,22) and breast tumors (26). Definitions and formulas for 
all textural features are provided in Table 1. 

Statistical analysis 

Mann-Whitney U tests were used to compare the value of 

each textural feature to differentiate granulomatous nodules 

from primary lung cancers (MedCalc Software version 

12.1.4.0, Mariakerke/Belgium). We constructed receiver 

operating characteristic (ROC) curves and calculated the 

area under the curve (AUC) for each textural feature, with 

histopathologic diagnosis as outcome. The standard error 

(SE) of the area under the ROC curve (AUC) was evaluated 

according to the method of De Long (27). We subsequently 

entered combinations of textural features as predictors in 

logistic regression models and computed ROC curves. The 

same features were used to train multiple support vector 

machine (SVM) classifiers. A SVM with a non-linear radial 
basis function was implemented in The Unscrambler® 

X (v.10.1, CAMO Software), which uses the LIBSVM 

library (28). For SVM classification, the principle is to 

construct a hyperplane that best separates the data points 

into benign and malignant cases. The hyperplane is then 

applied to classify new cases. We evaluated classification 

generalizability and performance by means of 10-fold cross-

validation procedures (29). 

Results

A total of 55 patients met inclusion criteria (20 men,  

35 women). The mean age for the 24 patients with 

granulomatous lesions was 67.5±9.7 years (range, 46–86 years) 

and 67.8±13.1 years (range, 46–89 years) (P=0.934) for the 31 

patients with lung cancer. The granulomatous lesions had a 

mean diameter of 1.7±0.5 cm (range, 1.0–2.9 cm) compared 

A B C

Figure 1 Axial CT image (lung window) in a 76-year-old female with biopsy proven lung adenocarcinoma (A) depicting the largest 

dimension of the nodule selected for texture analysis. Using a region of interest (ROI) tool, the outer margin of the nodule is outlined and 

the contour is saved for texture analysis (B). The screenshot in (C) depicts the software program used to extract the textural features (MaZda®) 

of the segmented nodule. 
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to 2.0±0.6 cm (range, 1.0–2.9 cm) for the 31 lung cancers 

(P=0.041). There were 17 necrotizing granulomas and seven 

non-necrotizing granulomatous lesions. There were 31 

patients with lung cancer (25 adenocarcinomas, 4 squamous 

cell cancers and 1 NSCLC not specified) and 1 small cell 

lung cancer.

Six patients had both CE and NCE CT of the same 

nodule (3 granulomas and 3 lung cancers). This generated 

61 CT images with a nodule for analysis (27 granulomas 

and 34 lung cancers).

Thirty-seven nodules were evaluated with FDG-PET/
CT (13 granulomas and 24 lung cancers) within 3 months 

of the biopsy. 

Medians and interquartile ranges for GLCM correlation 
(f3), sum of squares (f4), sum variance (f7), sum entropy (f8), 

and difference variance (f10) are depicted for both CE and 

NCE CT in Figure 2. For CE CT, there were no significant 
differences between granulomatous lesions and lung cancers 

for any of the individual textural features examined (P>0.05 

for each). For NCE CT, the median f4, f7, and f8 were 

significantly greater in the lung cancer group compared to 
the granuloma group [median (IQR) f4 =17.6 (14.2–32.5) 

vs. f4 =10.4 (8.7–15.3), P=0.046; f7 =44.6 (33.4–80.6) vs. f7 

=25.6 (18.7–46.0), P=0.03; f8 =1.35 (1.31–1.43) vs. f8 =1.24 

(1.15–1.30), P=0.005]. Trends toward increased f3 and f10 

in the NCE lung cancer group were also revealed (f3 =0.28 

(0.15–0.45) vs. f3 =0.17 (0.01–0.30), P=0.10; f10 =10.07 

(8.30–21.89) vs. f10 =6.21 (4.58–9.10), P=0.07). 

The area under the ROC curve for each feature, as well 

as for combinations of features, is provided in Tables 1 and 2,  

respectively. For CE CT, the AUC was not significantly 

greater than 0.5 for any of the individual features. 

Conversely, the AUCs corresponding to the f4, f7, and f8 

extracted from NCE images were significantly greater than 
0.5 (P<0.05 for each). The ROC curves corresponding to 

each combination of features for both CE and NCE CT are 

provided in Figures 3 and 4. The logistic regression model 

produced from combining all five textural features yielded 
a sensitivity of 81% and specificity of 79% for identifying 
primary lung cancers (AUC =0.79±0.11, P=0.002) for CE 

CT. The model generated by the same five features using 
NCE images correctly identified primary lung cancers with 
75% sensitivity and 100% specificity (AUC =0.91±0.06, 

P<0.0001). However, when only three features were 

combined for CE CT (f4 + f7 + f8), the logistic regression 

model demonstrated 38% sensitivity and 86% specificity 

(AUC =0.60±0.11, P=0.34; Figure 3), whereas the model 

generated by this same combination of features for NCE 

CT yielded 88% sensitivity and 92% specificity (AUC 

=0.90±0.06, P<0.0001; Figure 4). It was not possible to assess 

the significance of differences in the AUC between CE 

and NCE CT, as the number of patients who had nodules 

assessed using both techniques was too small. 

The results of each 10-fold cross-validation procedure 

Table 1 Individual texture features for CE and unenhanced CT 

Feature
CE CT Unenhanced CT

AUC SE (AUC) P Criterion Se (%) Sp (%) AUC SE (AUC) P CriterionSe (%) Sp (%)

f3: Correlation
a
 =

=1 =1

( )
x y

x y

µ µ

σ σ

∑∑
g gN N

i j

ijP i, j

R

0.51 0.11 0.94 ≤0.33 56 21 0.68 0.11 0.09 >0.19 69 67

f4: Sum of squares =
2

=1 =1

∑∑
g gN N

i j

P(i, j)
(i - μ)

R

0.51 0.11 0.94 ≤27 88 36 0.72 0.11 0.048 >11.3 88 67

f7: Sum variance = 
 
=2

( - 2) ( )∑
g2N

8 x+y
i

i f P i
0.50 0.11 0.97 >33 69 50 0.74 0.11 0.03 >23.5 100 50

f8: Sum entropy =
=2

log[ ( )]( )−∑
g2N

x+y x+ y
i

P i P i
0.54 0.11 0.75 >1.42 38 79 0.81 0.11 0.003 >1.28 94 75

f10: Difference variance = variance of Px−y 0.52 0.11 0.84 >9.01 63 64 0.70 0.12 0.08 >7.64 81 75

a
, where P(i, j) indicates the joint probability of two pixels having particular co-occurring values i, j = 1, 2, …, Ng, R indicates the 

total number of neighboring pixel pairs, and Ng the number of distinct gray levels. μx, μy, σx, and σy indicate means and standard 

deviations of the row and column sums of the co-occurrence matrix (11). CE, contrast-enhanced; Se, sensitivity; Sp, specificity; 

SE, standard error.
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Figure 2 Box and whisker plots depicting medians, interquartile ranges and extrema for GLCM correlation (f3, A), sum of squares (f4, B), 
sum variance (f7, C), sum entropy (f8, D), and difference variance (f10, E) extracted from contrast- and non-contrast-enhanced CT images 

of benign (granulomatous) and malignant (lung cancer) nodules. Comparisons between group medians were assessed using two-tailed Mann-

Whitney U tests. GLCM, gray-level co-occurrence matrix.

are also summarized in Table 2 (SVM accuracy). Cross-

validation of the SVM classifier created by combining all 

five textural features extracted from CE CTs indicated an 

accuracy of 60%, whereas the classifier generated by the 

same features extracted from NCE CTs yielded an accuracy 

of 64%. When only three or four features were combined 

for CE CTs, the average SVM accuracy was 63% for f4, f7, 

and f8, and 60% for the combination of f3, f4, f7, f8, and 

f10. The average SVM accuracy yielded by either of these 

combinations for NCE CTs was 64%. 

Of the 13 granulomatous lesions evaluated with FDG-

PET/CT, 8 (61.5%) had a false positive result. Of the 24 lung 

cancers evaluated with FDG-PET/CT, 19 (79.1%) had a true 
positive result. Overall, in the subgroup of nodules evaluated 

with FDG-PET/CT, sensitivity for the detection of primary 
lung cancer was 79.2% (CI: 57.8–92.9%), specificity was 

38.5% (CI: 13.9–68.4%) and accuracy was 64.8%. 

Discussion 

In our study, we evaluated the role of texture analysis, an 

applied imaging technology, in differentiating granulomatous 
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lesions from invasive lung cancers. We also analyzed and 

compared the results of this technique on CE and NCE 

CT. The model generated by using five textural features on 
NCE CT identified primary lung cancers with a sensitivity 
of 75% and specificity of 100% (AUC =0.90, P<0.0001) 

and an accuracy of 79%. The three textural features found 

to be most relevant for lesion characterization were sum of 

squares, sum difference, and sum entropy. Using only these 

three features, sensitivity of texture analysis on NCE CT 

increased to 88% with a small decrease in specificity (92%). 
While both sum of squares and sum variance features reflect 
the degree of deviation from the mean gray level present in 

the nodule (12,30), sum entropy reflects the degree of gray 
level randomness in the texture. If there is no predictable 

gray level pattern, then the lesion has high entropy, whereas 

if there are repeating or predictable patterns the lesion has 

Table 2 Receiver operator characteristics and 10-fold cross-validation results for combinations of textural features

Model
CE CT Unenhanced CT

AUC SE (AUC) P Se (%) Sp (%) SVM accuracy AUC SE (AUC) P Se (%) Sp (%) SVM accuracy

f7, f8 0.60 0.11 0.36 38 86 70 0.74 0.10 0.03 81 67 61

f4, f7, f8 0.60 0.11 0.34 38 86 63 0.90 0.06 <0.0001 88 92 64

f4, f7, f8, f10 0.71 0.10 0.03 63 86 60 0.91 0.06 <0.0001 75 100 64

f3, f4, f7, f8, f10 0.79 0.09 0.002 81 79 60 0.91 0.06 <0.0001 75 100 64

CE, contrast-enhanced; AUC, area under the curve; Se, sensitivity; Sp, specificity; SVM, support vector machine; SE, standard error.

Figure 3 Receiver operating characteristic (ROC) curves (solid lines) and 95% confidence intervals (dotted lines) corresponding to non-
contrast enhanced CT texture features for the identification of malignant (lung cancer) nodules. The area under the ROC curve (AUC) for 
each of (A-D) is provided in Table 2. AUC, area under the curve.
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Figure 4 Receiver operating characteristic (ROC) curves (solid lines) and 95% confidence intervals (dotted lines) corresponding to contrast 
enhanced CT texture features for the identification of malignant (lung cancer) nodules. The area under the ROC curve (AUC) for each of 
(A-D) is provided in Table 2. AUC, area under the curve.

Model: f7 + f8 Model: f4 + f7 + f8 + f10

Model: f3 + f4 + f7 + f8 + f10Model: f4 + f7 + f8

100

80

60

40

20

0

100

80

60

40

20

0

100

80

60

40

20

0

100

80

60

40

20

0

0         20        40       60        80      100 0         20        40       60        80      100

0         20        40       60        80      1000         20        40       60        80      100

100-Specificity 100-Specificity

100-Specificity100-Specificity

S
e
n

s
it
iv

it
y

S
e
n

s
it
iv

it
y

S
e
n
s
it
iv

it
y

S
e
n
s
it
iv

it
y

CA

B D

low entropy.

The entropy-related textural feature was significantly 

higher in primary lung cancers, presumably reflecting the 

more complex and more inhomogeneous internal structure 

of malignant lesions when compared to granulomatous 

lesions. Lesion heterogeneity is a known feature of 

malignancy, likely related to abnormal tumor angiogenesis 

and cellular infiltration (31,32). 
The results obtained in our study are comparable 

to previously published texture analysis studies in lung 

neoplasms. Wang et al. studied texture analysis on NCE CT 

in 2,171 benign and malignant nodules in 185 patients and 

found entropy and sum entropy to be different in malignant 

and benign pulmonary nodules (P<0.05) (33). High entropy 

in malignant breast lesions has also been demonstrated in 

a recent study by Gibbs et al. using MRI texture analysis. 

In this study, diagnostic accuracy was 0.81±0.07 in the 

differentiation of malignant from benign breast lesions (16).  

Cavouras et al. looked at 51 histologically confirmed 

nodules on NCE CT using texture analysis combined with 

CT density matrix analysis. Overall classification accuracy 
was 90.2% in distinguishing between benign and malignant 

lung nodules (34). Finally, McNitt-Gray et al. looked at 32 

lung nodules (14 benign, 14 malignant) on NCE CT and 

four textural features yielded an area under the ROC curve 

(Az) of 0.992. Sum entropy was one of these features (15).

Using the same three textural features on CE CT as 

those used for NCE CT, lung cancers were identified with 
a much lower sensitivity (38% vs. 88%). The reason for 

better demonstration of texture on NCE CT is not clear. 

Because the majority of the CE and NCE CTs in our study 

were obtained in different patients, we cannot rule out the 

possibility that variations in textural features might reflect 
different tumor characteristics rather than a direct effect of 

IV contrast. However, an MR study of benign cystadenomas 

and borderline tumors by Dujardin et al. had similar results 
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and the authors postulated that the presence of contrast 

may obscure textural differences between benign and 

malignant lesions (35). Chae et al. specifically excluded CE 
CT in their study of texture analysis in the differentiation 

of pre-invasive from invasive lung adenocarcinomas but did 

not state the reason for this exclusion (36). Ganeshan et al. 

also only included NE CT in their study of texture in non-

small cell lung cancer and the relationship with glucose 

metabolism (37). In contrast, a recent publication by the 

same authors showed good correlation between histological 

markers and texture in non-small cell lung cancer on both 

CE and NCE CT performed in the same patients (31). 

Benign nodules were not included in their study.

In our cohort, texture analysis on NCE CT was more 

sensitive, specific and accurate than FDG-PET/CT in 
differentiating primary lung cancers from granulomatous 

lesions. In the subgroup of nodules evaluated with FDG-
PET/CT, the sensitivity for the detection of primary lung 

cancer was 79.2% with a specificity of 38.5% and accuracy 
of 64.8%. Therefore, texture analysis may be superior to 

PET particularly in the differentiation of primary lung 

cancer from a granulomatous lesion. 

Our study has several limitations. It was retrospective 

with a small number of patients, therefore with inherent 

selection bias. CT examinations were performed using 

different technical parameters and this may have resulted 

in variability in CT attenuation with a potential effect on 

the estimation of texture features. However, this limitation 

should have been mitigated by the normalization procedure 

undertaken prior to texture analysis outlined above. In 

addition, a minority of patients had nodules assessed with 

both CE and NCE CT precluding definite conclusions 

on whether IV contrast affects CT texture analysis. This 

requires further investigation. FDG-PET/CT was also 
performed in only 37 nodules. Lastly, texture features 

of each nodule were derived from manual segmentation 

performed by a single radiologist and this may have been 

influenced by subjective bias on the part of the observer. 

However, manual segmentation is the current reference 

and previous texture analysis studies have reported a high 

degree of intra- and inter-observer reproducibility (21,38). 

Conclusions

Our results suggest that quantitative CT texture analysis 

has the potential to differentiate primary lung cancer from 

granulomatous lesions. It performed better on NCE CT 

than CE CT and may also have an advantage over FDG-

PET/CT. Texture analysis is not expected to replace tissue 

diagnosis but may be added to the radiologist’s arsenal used 

to characterize spiculated or lobulated solid lung nodules 

especially in areas where granulomatous infections are 

endemic. It may also be particularly relevant in patients who 

are poor surgical candidates or at risk for invasive diagnostic 

procedures when textural features suggest a benign etiology. 

In these situations, clinicians may choose observation 

rather than proceeding to more invasive options. Although 

encouraging, the usefulness of textural analysis in the 

differentiation of granulomatous lesions and primary lung 

cancer needs to be validated in a larger population. In 

addition, a head to head comparison of textural features on 

CE and NCE CT’s in the same patients would be beneficial.
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