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Abstract. Lung cancer remains one of the leading causes of 
cancer-associated mortality in the world. Lung carcinogenesis 
is frequently associated with deletions or the loss of hetero-
zygosity at the critical chromosomal region 3p21.3, where 
RNA-binding protein 5 (RBM5) is localized. RBM5 regulates 
cell growth, cell cycle progression and apoptosis in cell homeo-
stasis. In the lungs, altered RBM5 protein expression leads to 
alterations in cell growth and apoptosis, with subsequent lung 
pathogenesis and varied responses to treatment in patients 
with lung cancer. Detection of RBM5 expression may be a 
tumor marker for diagnosis, prediction and treatment response 
in lung cancer, and may be developed as a potential therapeutic 
target for drug resistant lung cancer. This review discusses the 
most recent progress on the role of RBM5 in lung cancer.
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1. Introduction

Lung cancer is one of the most common cancer types and one 
of the leading causes of cancer-associated mortality worldwide. 

In 2012, lung cancer accounted for ~13% of all cancer cases 
and 26% of cancer-associated mortality, according to recent 
data (1). In China alone, there were 733,000 new lung cancer 
cases diagnosed in 2011 (17% of all new cancer cases), and 
600,200 lung cancer-associated mortalities (22% of all 
cancer-associated mortalities) (2). Histologically, lung cancer 
is classified as small cell lung cancer (SCLC) and non‑small 
cell lung cancer (NSCLC), the latter of which accounts for up 
to 85% of all lung cancer cases (3). NSCLC may be further 
sub-categorized as adenocarcinoma, squamous cell carcinoma, 
large cell carcinoma and numerous other less common types 
of cancer, including pleomorphic, carcinoid tumor or undiffer-
entiated carcinoma; however, lung adenocarcinoma makes up 
44% and lung squamous cell carcinoma makes up 29% of all 
NSCLC cases clinically. At present, ~79% of NSCLC patients 
are diagnosed at advanced stages of the disease, when surgery 
is not a viable option (4). Thus, early detection, optimal tumor 
resection and effective chemotherapy, radiotherapy, immu-
notherapy and tumor-targeting therapy are important for the 
effective control of NSCLC. Therefore, a better understanding 
of NSCLC carcinogenesis and the underlying molecular 
mechanisms is key to developing novel early diagnosis strate-
gies and improving treatment responses for NSCLC.

Lung carcinogenesis, like most human cancer types, is a 
complex molecular process involving aberrant cell prolifera-
tion (5) and apoptosis (6), which leads to the transformation of 
normal cells into malignant cells and subsequent cell invasion 
and metastasis. Cell transformation occurs through genetic 
mutations, loss of cell growth/critical genes, or epigenetic 
alterations in genomic DNA that silence tumor suppressor 
genes or activate oncogenes (7), resulting in abnormal 
cell-cell communication (8), DNA repair (9), chromosome 
stability (10) and cell motility (6,11). Recently, NSCLC was 
reported to exhibit abnormal expression of epidermal growth 
factor receptor (EGFR) (12-14), c-Met (15), thyroid transcrip-
tion factor 1 (TTF-1) (16), phosphoinositide 3-kinase/Rac-α 
serine/threonine-protein kinase/serine-threonine-protein 
kinase mTOR signaling (17), Ras-Raf-Mek-extracellular 
signal-regulated kinase signaling (18,19) and the echinoderm 
microtubule associated protein like 4-ALK receptor tyro-
sine kinase fusion gene (20,21). In addition, NSCLC may 
present with alterations in tumor suppressor genes, including 
RB transcriptional corepressor 1 (RB), p16-RB (16) and 
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p14-MDM2 proto-oncogene-cellular tumor antigen p53 (p53) 
signaling (22), and other regulatory molecules, including 
microRNAs (23) or angiogenesis factors such as vascular endo-
thelial growth factor (24). However, despite marked progress 
in understanding the molecular basis of human tumorigenesis, 
including lung cancer, a number of crucial genes and func-
tions remain undefined. For example, RNA‑binding protein 
5 (RBM5) is localized at chromosome 3p21.3, a critical region 
associated with lung carcinogenesis. RBM5 regulates cell 
growth, cell cycle progression and apoptosis. Aberrant RBM5 
protein expression leads to the transformation of normal 
bronchial cells, lung carcinogenesis, and alters the response of 
patients with lung cancer to treatment (24). In this review, the 
role of RBM5 in lung cancer is summarized.

2. Function of RBM5 in human cells

RBM5, also referred to as g15, LUCA-15 and H37, was initially 
cloned from a tumor suppressor gene (TSG) mapping area at 
chromosome 3p21.3 (25). RBM5 cDNA contains a full-length 
815-amino acid open reading frame, with a predicted protein 
weight of ~90 kDa (25). The RBM5 protein has two zinc 
finger motifs, two RNA binding motifs and a bipartite nuclear 
signal. RBM5 localizes to the cell nucleus where it processes 
transcribed RNA, due to its DNA/RNA binding function (26). 
Earlier studies reported that the N-terminal of human RBM5 
contains an RNA binding domain and RBM5 epitope 
marker (27), and that it had a priority function involving the 
poly(G) RNA polymer in vitro (28). At the C-terminal, RBM5 
contains multiple regions, including a rich glutamine domain 
and a specific site for RNA and DNA binding proteins (28). 
RBM5 is widely expressed in various human tissues, particu-
larly during embryonic development and in the adult thymus, 
although it is expressed at low levels in the fetal thymus (27) 
and normal lung (28). Another study reported a series of splice 
variants in RBM5 (29). In a normal lung, expression levels of 
the short transcript of RBM5 are higher compared with lung 
cancer cell lines, suggesting that the short RBM5 transcript may 
contribute to its tumor suppressor function in lung cancer (28).

Biologically, RBM5 facilitates DNA/RNA binding to 
process transcribed RNA, and regulates cell cycle progression 
and apoptosis during sperm maturation, bone and cardiac cell 
differentiation (30-32). Specifically, RBM5 may modulate 
the alternative splicing of apoptosis-associated pre-mRNAs, 
including caspase 2 (CASP2) and Fas cell surface death 
receptor (FAS/CD95), to regulate cellular apoptosis (33,34). 
RBM5 may also upregulate the pro-apoptotic apoptosis regu-
lator BAX protein, reduce mitochondrial cytochrome c release 
into the cytosol and activate caspase 9 and 3, whilst also 
downregulating the anti-apoptotic apoptosis regulator BCL-2 
(BCL-2) and BCL-2 like 1 proteins (30,35,36) [Fig. 1; modi-
fied from (37)]. These data suggest that RBM5 may be able to 
activate the mitochondrial apoptosis pathway. Indeed, RBM5 
is able to manipulate the pre-mRNA splicing of multiple target 
genes, including p53 (30,35,36,38-42). Kobayashi et al (43) 
reported that RBM5 expression enhanced p53 mRNA expres-
sion levels and protein expression, whereas knockdown 
of RBM5 using RBM5 short hairpin RNA inhibited p53 
transcription and protein expression, indicating that RBM5 
regulates p53-mediated cell apoptosis. Furthermore, RBM5 

is able to regulate apoptosis and cell cycle progression by 
increasing signal transducer and activator of transcription 5B 
and bone morphogenetic protein 5 expression levels, and 
reducing nuclear receptor coactivator 3, Pim-1 proto-oncogene 
serine/threonine kinase, baculoviral IAP repeat containing 3, 
BCL-2, EGFR and cyclin dependent kinase 2 expression 
levels (44-47). In addition, RBM5 was demonstrated to inhibit 
cyclin A expression and RB phosphorylation, and thereby regu-
late cell cycle progression and induce G1 arrest (30). Although 
initially cloned from a TSG-mapping area at chromosome 
3p21.3, RBM5 was previously dismissed as a TSG due to the 
lack of RBM5 mutations and its expression in the majority of 
lung cancers. Furthermore, there are multiple RBM5 protein 
isoforms, each of which differentially regulates apoptosis, 
leading to its inconsistent role as a tumor suppressor gene (48); 
however, a previous study did confirm its tumor suppressor 
function in lung cancer and other cancer types (49).

In eukaryotic cells, gene expression is almost completely 
regulated through mRNA splicing, and selective mRNA 
splicing ensures the diversity of functional proteins in cells (50). 
Thus, the accuracy and effectiveness of mRNA splicing are 
essential for maintaining homeostasis in eukaryotic cells. 
Defects in mRNA splicing are associated with various human 
diseases (2,51-53). In this regard, RBM5 is involved in the 
selective mRNA splicing of apoptosis and cell cycle-associated 
genes (see above). For example, Fushimi et al (34) demonstrated 
that RBM5 regulated CASP2 splicing and expression in order 
to promote tumor suppression, whereas alternative splicing 
of CASP2 led to a loss of tumor suppressor activity. Thus, 
modulation of mRNA splicing regulators, like RBM5, may 
provide a novel therapeutic strategy to control human cancer. 
Bonnal et al (33) demonstrated that RBM5 was involved in 
recognizing the mRNA 3'-splice site in order to regulate the 
alternative splicing of apoptosis-associated mRNAs and their 
isoforms (including Fas receptor) in angiogenesis and apop-
tosis. RBM5 is unable to influence the early events of mRNA 
splicing for FAS at exon 6; however, RBM5 is able to inhibit 
the transition from the pre-spliceosome around FAS exon 6 
into the mature spliceosome between the flanking FAS introns 
to induce DNA sequence‑specific pairing in the distal mRNA 
splicing site. Jin et al (54) reported that RBM5 overexpression 
significantly induced exon 4 skipping of activation‑induced 
cytidine deaminase by suppressing intron 3 splicing. This 
inhibitory effect required a weak mRNA 3'-splice site. As a 
result, RBM5 is able interfere with the binding of splicing 
factor U2AF 65 kDa subunit to polypyrimidines at the mRNA 
3'-splice site in vitro (50). Taken together, the selective func-
tions and alterations of RBM5 may alter the cell cycle and 
apoptosis, resulting in human tumorigenesis.

3. Tobacco use and deletion of the RBM5 locus

Tobacco use is the primary risk factor for developing human 
lung cancer (55). A number of previous studies have demon-
strated that tobacco use contributes to cancer development, 
including lung, esophageal, bladder, pancreatic and kidney 
cancer (55). Tobacco contains at least 2,550 known chemical 
compounds and >60 of these have been demonstrated to be 
carcinogenic in humans and experimental animals (56). 
Polycyclic aromatic hydrocarbons (PAHs), including benzo(a)
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pyrene diol epoxide (BPDE) and N-nitrosamines, are the most 
highly carcinogenic compounds in tobacco (56,57). PAHs 
induce DNA adducts, genetic mutations, methylation and chro-
mosome translocation in target organs (58,59). For example, 
BPDE reacts with cellular macromolecules to form DNA 
adducts, which are carcinogen metabolites covalently bound 
to DNA (58-60) that induce apoptosis (61). Alternatively, if 
permanent mutations occur in a critical region of a DNA coding 
gene, an oncogene may be activated or a tumor suppressor 
gene deactivated, leading to aberrant cell growth, migration, 
adhesion and, ultimately, cancer (60). Previous studies that 
have reported direct evidence of tobacco carcinogen-targeted 
genes, including hot spot mutations in the KRAS proto-onco-
gene GTPase (KRAS) and p53 genes (60,62).

Furthermore, previous studies demonstrated that allele 
loss in a 370 kb region at chromosome 3p21.3 was the earliest 
alteration detected in pre-malignant lesions of lung cancer, or 
even in the histologically normal lung epithelium of tobacco 
smokers (63). Thus, Timmer et al (25) performed a compara-
tive genomic structure and expression pattern analysis of 
this chromosomal region and identified RBM5. Specifically, 
RBM5 was involved in EGFR downregulation to prevent lung 
cancer cell proliferation, angiogenesis, invasion and metas-
tasis (64,65).

One potential EGFR binding partner, the proto-oncoprotein 
human epidermal growth factor receptor 2 (HER2)/ErbB2, was 
reported to be overactive in a small percentage of patients with 

SCLC and non-smoker-associated NSCLC cases (66,67). These 
activating mutations of EGFR, KRAS and HER2 are mutu-
ally exclusive events in lung cancer (68,69). Notably, HER2 
overexpression affects the alternative splicing of RBM5 (48). 
In light of these advances in lung cancer research, it may be 
speculated that future studies on RBM5 and its potential tumor 
suppressor activity should consider histological subtypes as well 
as tobacco smoking history and the mutation status of RBM5 
in lung cancer initiation and/or progression. A previous in vitro 
study reported that RBM5 downregulation and activation of the 
Wnt/β-catenin signaling pathway are involved in cigarette smoke 
extract-induced lung epithelial injury, and that RBM5 func-
tions as an upstream molecule to downregulate Wnt/β-catenin 
signaling (70). Interestingly, RBM5 knockout mice develop lung 
cancer at similar rates compared with those in wild type mice 
following exposure to nicotine-derived nitrosamine ketone. 
Loss of RBM5 expression leads to more aggressive lung cancer. 
Thus, reduced RBM5 expression and tobacco use increase the 
risk of an aggressive lung cancer phenotype (64).

4. Altered RBM5 expression in human cancer types

Lung cancer pathogenesis is multifactorial and results from 
the interaction between genetic and environmental factors. 
At the molecular level, genetic alterations are the most direct 
causes of lung cancer, and lung cancer development is associ-
ated with the deletion of tumor suppressor gene loci, including 

Figure 1. TGF and RBM5 signaling cascade. The left hand side of the image illustrates cell growth pathways. Mutations in EGFR, HER2, or KRAS result 
in enhanced tumor cell growth and reduced apoptosis. Mutant RAS (G12V) results in RBM5 expression and cell survival. Likewise, increased EGFR and 
HER2 activation lead to phosphorylation and subsequent inhibition of the apoptotic activity of BAD. The right hand side of the image illustrates the apoptosis 
pathway. RBM5 overexpression is associated with BCL-XL downregulation and BAX upregulation, which induces cytochrome c release from the mitochon-
dria and activates caspase-9 and caspase-3. Antisense RBM5 transfection leads to BCL-2 expression. TGF, transforming growth factor; RBM5, RNA-binding 
protein 5; EGFR, epidermal growth factor receptor; HER2, human epidermal growth factor receptor 2; BAD, BCL2 associated agonist of cell death; PI3K, 
phosphoinositide 3-kinase; BCL-2, apoptosis regulator BCL-2; ERK, extracellular signal-regulated kinase; MKP1, mitogen activated protein kinase phospha-
tase 1; SHC, SHC adaptor protein; STAT, signal transducer and activator of transcription; KRAS, KRAS proto-oncogene GTPase; AP1, activator protein 1; 
JNK, c-Jun N-terminal kinase; AKT, RAC-α serine/threonine-protein kinase; PTEN, phosphatase and tensin homolog; BAX, apoptosis regulator BAX; 
BCL-XL, BCL-2-like 1; Apaf-1, apoptotic protease activating factor-1.
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3p21.3 (52,26), which may be observed in >90% of SCLC and 
in 50-80% of NSCLC cases (71). RBM5 expression levels are 
low in Ras‑transformed rat embryonic fibroblasts (72), human 
vestibular schwannoma cells (73), human prostate cancer (74), 
ovarian cancer (74,75), human breast cancer tissue (48), 
human pancreatic cancer tissues (76) and lung cancer (77). 
Overexpression of RBM5 suppresses the growth of prostate 
cancer cells in vitro (74,75), and RBM5 expression is asso-
ciated with lung cancer histological subtypes and tobacco 
use (78).

Although RBM5 expression is frequently reduced in 
lung, renal and breast cancer (79), RBM5 is not deleted in 
the majority of lung cancer cases (80). The reduced levels of 
RBM5 mRNA and protein in NSCLC compared with levels in 
normal lung tissues are associated with increased EGFR and 
KRAS expression levels, which are associated with tobacco 
use, advanced tumor stage and lymph node metastasis (81). 
Another study reported that RBM5 expression levels were 
significantly reduced in lung squamous cell tissues and were 
further associated with deletions at chromosome 3p21.3 and 
tobacco use (71,78), whereas three out of nine patients with 
lung adenocarcinoma did not have significant decreases in 
RBM5 mRNA expression levels (lung adenocarcinoma devel-
opment may be associated with tobacco use, among which 
50% of cases are associated with chromosome 3p21.3 defi-
ciency) (78). Furthermore, Oh et al (82) reported that RBM5 
expression was generally lower in lung cancer compared with 
normal lung tissues. Thus, detection of RBM5 expression may 
be a useful tumor marker for lung cancer.

RBM5 expression is able to suppress the growth of mouse 
fibrosarcoma cells or lung adenocarcinoma cells in nude mouse 
models (30,82,83). Notably, a number of genes were mapped to 
the common deletion region of chromosome 3p21.3, including 
RBM5 (25), FUS RNA binding protein (84), Ras association 
domain family member 1 (85), semaphorin 3B (86), sema-
phorin 3F (49), hyaluronidase 1 (49) and calcium voltage-gated 
channel auxiliary subunit α2δ2 (87), and had the ability to 
modulate lung cancer cell apoptosis. Reduced expression 
levels of RBM5, as one of nine downregulated genes in this 
17-gene metastatic signature for solid tumors (including lung 
cancer) in humans and mice, was considered important for 
the development and/or progression of a wide range of human 
cancer types (88,89). Indeed, a recent study demonstrated 
that downregulation of RBM5 expression levels may be 
the key step in malignant lung cell transformation, and that 
RBM5 is responsible for inhibiting cell cycle progression 
and inducing apoptosis, in addition to suppressing tumor cell 
transformation-associated events, including angiogenesis, in 
SCLC cells (90). Furthermore, at the gene level, a constitu-
tively activated RAS mutant protein (G12V) was demonstrated 
to be responsible for RBM5 downregulation in rat embryonic 
fibroblasts (72). Therefore, RBM5 may be a tumor marker 
for SCLC, and targeting RBM5 may be a potential novel and 
effective therapeutic option for controlling SCLC.

Thus far, the published data indicate that RBM5 is a 
lung cancer regulatory protein; however, the detection of 
various RBM5 isoforms may also be used to the determine 
association between lung cancer histological subtype and 
tobacco use, or even RBM5 mutation status (40). Moreover, 
further research on RBM5 alterations associated with 

other genes in the transforming growth factor signaling 
pathway is warranted (37). For example, RBM5 was able to 
post-transcriptionally regulate RBM10 expression by directly 
interacting with specific RBM10 splice variants (91).

5. Targeting RBM5 as a therapeutic strategy for lung cancer

As discussed above, RBM5 mRNA and protein expression 
levels are significantly reduced in different human cancer 
types, including lung cancer; thus, targeting RBM5 may be 
a novel therapeutic strategy for treating lung cancer. Indeed, 
a previous study revealed that cisplatin-resistant lung adeno-
carcinoma A549/DDP cells expressed decreased levels of 
RBM5 compared with parental A549 cells (41). Furthermore, 
knockdown of RBM5 expression with small interfering RNA 
in parental A549 cells reduced cisplatin-induced apoptosis. 
By contrast, exogenous RBM5 expression using a plasmid 
carrying RBM5 cDNA enhanced the sensitivity of A549/DDP 
cells to cisplatin treatment (41). In addition, RBM5-enhanced 
chemosensitivity to cisplatin was associated with cytochrome c 
release into the cytosol and subsequent activation of CASP9 
and CASP3 (38). RBM5 expression inhibits the growth of 
human lung cancer cells by inducing cell cycle arrest and 
apoptosis (30). A previous study demonstrated the importance 
of RBM5 protein expression in normal lung cells and the 
consequences of RBM5 deletion in SCLC development and 
progression (90). RBM5 expression slowed the growth of 
SCLC cells in vitro and increased the sensitivity of tumor cells 
to cisplatin. Moreover, RBM5 expression inhibited SCLC cell 
cycle progression and reduced tumor cell membrane integrity 
(increase in apoptosis) following treatment with cisplatin. In 
this regard, reduced RBM5 expression was observed in 95% 
of SCLC cases, indicating the importance of altered RBM5 
expression levels in SCLC development (76). Thus, a thera-
peutic strategy involving RBM5 and/or its direct target genes 
or pathways may be a very effective approach. In addition, 
detection of RBM5 expression might be useful for predicting 
response to chemotherapy in patients with lung cancer. The 
mechanism by which RBM5 affects gefitinib resistance in 
lung adenocarcinoma is currently being investigated (Xu et al, 
unpublished data).

6. Conclusions

Environmental factors, including tobacco use, may interact 
with human genes to cause cancer development and progres-
sion. As indicated in 2000 by Hanahan and Weinberg (6), there 
are six essential hallmarks of cancer cells: i) Self‑sufficiency 
in growth signals; ii) insensitivity to growth-inhibitory 
signals; iii) evasion of apoptosis; iv) limitless replicative 
potential; v) sustained angiogenesis; and vi) tissue invasion 
and metastasis. RBM5 possesses at least two of these hall-
marks. Thus, further investigations into RBM5 alterations, 
including chromosomal deletion, loss of heterozygosity, DNA 
methylation and/or gene-gene interactions, may lead to a better 
understanding of how RBM5 functions in lung cancer, leading 
to the development of a novel therapeutic strategy for the treat-
ment of lung cancer. Further research on RBM5 may provide 
a novel mechanism to induce RBM5 expression or activate its 
downstream gene pathways. Moreover, detection of RBM5 



ONCOLOGY LETTERS  17:  2013-2019,  2019 2017

expression, or its isoforms, may lead to early diagnosis of lung 
cancer and improve prognosis of patients with lung cancer.
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