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Calcium oxalate nephrolithiasis is a common and highly recurrent disease in urology;
however, its precise pathogenesis is still unknown. Recent research has shown that renal
inflammatory injury as a result of the cell-crystal reaction plays a crucial role in the
development of calcium oxalate kidney stones. An increasing amount of research have
confirmed that inflammation mediated by the cell-crystal reaction can lead to inflammatory
injury of renal cells, promote the intracellular expression of NADPH oxidase, induce
extensive production of reactive oxygen species, activate NLRP3 inflammasome,
discharge a great number of inflammatory factors, trigger inflammatory cascading
reactions, promote the aggregation, nucleation and growth process of calcium salt
crystals, and ultimately lead to the development of intrarenal crystals and even stones.
The renal tubular epithelial cells (RTECs)-crystal reaction, macrophage-crystal reaction,
calcifying nanoparticles, endoplasmic reticulum stress, autophagy activation, and other
regulatory factors and mechanisms are involved in this process.

Keywords: reactive oxygen species, inflammasome, macrophage, nanoparticles, endoplasmic reticulum
stress, autophagy
INTRODUCTION

One of the most frequently encountered diseases in urology is kidney stones, which are closely
related to multiple factors such as environment, genetics, and metabolic abnormalities; however, its
exact pathogenesis is still unclear (1). Over the past few years, the incidence of kidney stones has
been increasing year by year, with the incidence rate reaching 8.8% in the United States and 3.5
−7.4% in Asia (2, 3). In addition, the recurrence rate of kidney stones is as high as 50% within 5−10
years following drug therapy or surgical treatment, and the recurrence rate within 20 years is even
org January 2022 | Volume 13 | Article 8186251
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higher at 75% (4). Because of the high incidence and recurrence
rate, kidney stone disease does not only greatly affects human life
and health, but also significantly increases the financial burden of
the healthcare system (5). Therefore, exploring the exact
pathogenesis of kidney stones and finding new therapeutic
targets has important theoretical significance and application
value in the treatment and prevention of stones.

It is known that kidney stone formation involves a series of
complicated processes, including urine supersaturation, calcium
salt crystal adhesion, accumulation, nucleation, growth, and
retention in the kidney (6). Common crystals in the kidney
mainly include oxalate (Ox), calcium oxalate (CaOx), calcium
phosphate, and urate, among which CaOx crystals are the most
common (7). The retention and subsequent growth of crystals
within the kidney are inseparable from kidney stone formation.
A large amount of research has shown that the cell-crystal-
induced inflammatory response plays a crucial role in the
formation of CaOx kidney stones (8–10). In this process,
the massive generation of reactive oxygen species (ROS) and
the activation of NLRP3 inflammasomes promote the
maturation and discharge of inflammatory factors, leading to
inflammation in the kidneys and renal tubular epithelial cells
(RTECs) (11, 12). In this review, we will describe in detail the role
of inflammation arising from ROS-induced NLRP3
inflammasome stimulation in the formation of CaOx
kidney stones.
ROS-INDUCED ACTIVATION OF NLRP3 IN
RTECS-CRYSTAL REACTION

ROS refers to a series of active oxygen clusters and their
metabolites produced by organisms in the process of aerobic
metabolism, and includes superoxide anion (O2-), hydrogen
peroxide (H2O2), hydroxyl radical (OH-), etc., which are
mainly produced on the electron respiration chain of
mitochondria under the catalysis of nicotinamide adenine
dinucleotide phosphate (NADPH) oxidase (13, 14). Due to its
high biological activity, ROS have a crucial role in the
pathophysiological process of many diseases (15–17). Many
studies have shown that the origination of CaOx kidney stones
is intricately associated with the excessive production of ROS
mediated by oxidative stress in RTECs (18–20). Clinical
studies have confirmed that the levels of malondialdehyde
(MDA), thiobarbituric acid reactive substances (TBARS),
Abbreviations: RTECs, The renal tubular epithelial cells; Ox, oxalate; CaOx, calcium
oxalate; ROS, reactive oxygen species; NADPH, nicotinamide adenine dinucleotide
phosphate; MDA, malondialdehyde; TBARS, thiobarbituric acid reactive substances;
a-GST, a-glutathione-s-transferase; GAL, b-galactosidase; NAG, N-acetyl-b-D-
glucosaminidase; NAC, N-acetylcysteine; SOD, superoxide dismutase; DAMPs,
dangerous-associated molecular patterns; PAMPs, pathogen-associated molecular
patterns; NLRs, NOD-like receptors;ASC, apoptosis-associated spot-like protein;
HA, hyaluronic acid; OPN, osteopontin; TNF-a, tumor necrosis factor-a; CNPs,
nanoparticles; HMGB1, High mobility group box-1; ER, endoplasmic reticulum;
UPR, unfolded protein response; NOX, NADPH oxidase; ERO1, ER oxidase 1;
MAPK, mitogen-activated protein kinase; PKR, protein kinase R; CHOP, C/EPB
homologous protein; As2O3, arsenic trioxide.
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a-glutathione-s-transferase (a-GST), b-galactosidase (GAL),
and N-acetyl-b-D-glucosaminidase (NAG) in the urine of
CaOx nephrolithiasis patients are significantly higher than
those of healthy patients, suggesting that the development of
renal calculi is related to RTEC injury induced by ROS (20). In
our previous study, we found that when taurine, N-acetylcysteine
(NAC), catalase, or superoxide dismutase (SOD) were added to
the rat CaOx kidney stone model, the activity of NADPH oxidase
and the production of ROS and LDH decreased, the renal tissue
and cell damage and inflammatory reaction triggered by Ox and/
or CaOx crystals were alleviated, the deposition of crystal in the
kidney was significantly decreased, and the formation rate of
CaOx kidney stones was reduced (21). In further experimental
studies, we found that oxalic acid or CaOx crystals could prompt
oxidative stress in RTECs. The production of a large number of
ROS initiates the NF-kB signal pathway, promotes the secretion
of a series of cytokines, and induces inflammation, resulting in
RTEC degeneration, injury, exfoliation, and basement
membrane exposure, which creates conditions favorable for the
conservation of crystals in the lumen of renal tubules, and is
ultimately conducive to the development of CaOx kidney stones
(22, 23).

Inflammasome is a multiprotein complex that is triggered and
activated after cells recognize dangerous-associated molecular
patterns (DAMPs) for instance, monosodium urate and silica,
and pathogen-associated molecular patterns (PAMPs) such as
viruses and bacteria (24). The main members of the
inflammasome family are NOD-like receptors (NLRs), AIM2-
like receptors, and pyrin inflammasome. Of these, NLRP3
inflammasome is the most studied multiprotein complex, and
mainly consists of NLRP3, caspase-1, and apoptosis-associated
spot-like protein (ASC) (25, 26). After endogenous or exogenous
stimulation, activated NLRP3 can recruit ASC protein and
activate caspase-1, subsequently induce the maturation
and release of inflammatory factors such as interleukin (IL)-1b
and IL-18, and participate in a variety of inflammatory responses
in the body, which has become a hot topic in the study of
inflammatory mechanisms (27). Previous research has indicated
that CaOx crystals can directly stimulate the secretion of IL-1b
by renal dendritic cells via the NLRP3/ASC/caspase-1 axis, in
addition to damaging RTECs to release ATP, indirectly
activating the NLRP3 inflammasome, and then stimulating the
secretion of IL-1b by dendritic cells, resulting in renal
inflammatory response and inflammatory injury of RTECs
(28). Studies have also shown that after knockout of NLRP3,
the rate of renal stone formation in mice, who were fed a high
oxalic acid diet, as well as caspase-1 expression and IL-1b
secretion in RTECs all decreased significantly (8, 10, 29).
Furthermore, the induction of NLRP3 inflammasome can
participate in the formation of renal stones by changing the
adhesion of cells to crystals. Khan and other researchers have
found that ROS can up-regulate the expression of hyaluronic
acid (HA), osteopontin (OPN), and CD44 via the p38MAPK
pathway, and change the adhesion of RTECs to CaOx crystals as
well as stimulate the formation of CaOx stones (30). Qi et al. (31)
found that the induction of the NLRP3 inflammasome plays a
January 2022 | Volume 13 | Article 818625
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connective role in the process of ROS changing the cell adhesion
to crystals and promoting stone formation through the
p38MAPK signaling pathway, and related proteins such as
phosphorylated p38 and c-Jun play an important regulatory
role. Research by Joshi et al. (10) has indicated that in NLRP3
gene-deficient mice, who received a high oxalate diet, the
expression levels of OPN, HA, and CD44 on the surface of
RTECs were significantly decreased, and the formation speed
of CaOx stones was significantly lower compared to that of
normal mice.

It has been established that ROS are a crucial component in
the activation of NLRP3 inflammasomes (32, 33). The
application of ROS inhibitors can impede the activation of
NLRP3 inflammasomes, alleviate cell inflammatory damage,
and delay progression of the disease (34, 35). In vivo as well as
in vitro studies have shown that CaOx crystals are capable of
inducing the generation of ROS in the kidney, and then
activating NLRP3 inflammasome to cause inflammatory
damage to RTECs and renal tissue, thus promoting the
formation of CaOx stones (10). We found in our previous
research that atorvastatin treatment downregulated ROS
production, suppressed the induction of NLRP3 inflammasome
pathways, decreased the release of IL-1b, IL-6, IL-18, and tumor
necrosis factor-a (TNF-a), and ameliorated inflammatory injury
and crystal deposition induced by CaOx crystals in kidney tissues
of rats and HK-2 cells (36). Therefore, we believe that oxalic acid
or CaOx crystals induce ROS production in RTECs during the
formation of CaOx renal calculi and mediate the activation of
NLRP3 inflammatory corpuscles. This process leads to
inflammatory cell infiltration and RTEC degeneration and
necrosis, and causes a renal inflammatory cascade effect,
promotes the adhesion, accumulation, nucleation, and
secondary growth of CaOx crystals, ultimately resulting in the
formation of renal stones.
ROS-INDUCED ACTIVATION OF NLRP3 IN
MACROPHAGE-CRYSTAL REACTION

In the cell-crystal inflammatory response, macrophages, as an
important inflammatory cell with phagocytic function,
participate in CaOx crystals formation in the kidney (37). The
expression of macrophage-related genes in renal papillary
calcified plaque tissues was found to be significantly higher in
patients with kidney stones than in patients without (38). The
results that have been reported in in vitro studies show that
under the stimulation of CaOx crystals, kidney cells produce a
variety of inflammatory factors, which induce monocytes or
macrophages to migrate to the place where the stone crystals
are deposited and transported through pinocytosis. At the same
time, the crystals can promote the expression of NADPH oxidase
in the cell to generate a large amount of ROS, induce the nuclear
factor kB signal transduction pathway, and produce a great
amount of inflammatory factors including TNF-a, IL -6, and
IL-1b. This further causes inflammatory damage to kidney cells,
leading to cell degeneration, necrosis, exposure of basement
Frontiers in Immunology | www.frontiersin.org 3
membrane, etc., which is conducive to the formation of renal
calcification plaques (39, 40). In the hyperoxaluria rat model,
hyperoxaluria can activate the NF-kB signal transduction
pathway through ROS, induce the kidney to express a great
amount of inflammatory factors including MCP-1, IL-6, and IL-
1b. Following these processes, inflammatory cell infiltration
(such as macrophages) and renal interstitial damage occur,
creating conditions for CaOx crystal formation in the kidneys
(41). This indicates that the ROS-mediated macrophage-crystal
inflammatory response plays a key role in the formation and
development of CaOx kidney stones.

In the resting state, the expression level of NLRP3 in dendritic
cells, macrophages, and other innate immune cells is relatively
low, but after endogenous and exogenous stimulation, activated
NLRP3 can recruit the ASC protein, activate caspase-1, and then
induce the maturation and release of inflammatory factors
including IL-18 and IL-1b (27). It has been reported that
macrophages can cause intracellular lysosomes to rupture after
they internalize pathogens or crystals. After the lysosome
ruptures, the protease (such as cathepsin B) in the lysosome is
released into the cytoplasm (42), leading to the opening of
effector cell membrane ion channels, causing changes in
intracellular ion concentration, which promotes the activation
of NLRP3 inflammasomes. Hydroxyapatite crystals can activate
the NLRP3 receptor through ROS to stimulate human monocyte
macrophages and rat macrophages to produce the inflammatory
factor IL-1b (43). Macrophages activate the NADPH enzyme to
produce ROS after engulfing CaOx crystals and accumulate in
the kidneys, leading to aggravation of OS; after which ROS can
activate inflammatory pathways such as NLRP3 and TLR4 (44).
Blocking NLRP3 may protect macrophages from oxalate damage
(45). Therefore, we speculate that after macrophages engulf
CaOx crystals, up-regulation of ROS may mediate the
activation of NLRP3 inflammasomes, induce the secretion of
inflammatory factors, and cause aggravation of the inflammatory
damage in kidney tissues and RTECs, thereby promoting the
formation process of CaOx kidney stones.

High mobility group box 1 (HMGB1) is an important
inflammatory mediator and inflammatory cytokine and is
widely present in various cells. It can be actively or passively
released by activated mononuclear macrophages and damaged or
necrotic cells to trigger the biological effect of initiating,
maintaining, and enhancing the inflammatory response (46).
Studies have found that the application of anti-HMGB1
antibodies can significantly reduce the infiltration of renal
tubular interstitial neutrophils and monocytes, alleviate the
inflammatory damage of RTECs, and inhibit the release of
inflammatory factors in kidney tissues such as MCP-1, TNF-a,
and IL-6. By blocking the inflammatory cascade mediated by
HMGB1, the renal function can be improved and renal ischemia-
reperfusion injury reduced (47). Wang et al. (48) reported that in
patients with calcium-containing kidney stones, an increased
expression of HMGB1 and MCP-1 was found in their urine. The
results of in vitro studies show that high calcium ions stimulate
RTECs to activate the HMGB1-RAGE/TLR4-NF-kB signaling
pathway and stimulate the secretion of inflammatory factors
January 2022 | Volume 13 | Article 818625
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TNF-a, IL-1b, and IL-6 (49). Moreover, previous studies have
also indicated that there is a close relationship between the
secretion of HMGB1 and the activation of NLRP3 inflammasomes
(50, 51). Lamkanfi et al. (46) found that lipopolysaccharide-
induced secretion of HMGB1 by activated macrophages
requires the participation of the NLRP3, ASC, and caspase-1
inflammatory complex.

In summary, we speculate that after macrophages engulf
CaOx crystals, ROS generated by oxidative stress in the cells
stimulate macrophages by activating NLRP3 inflammasomes,
inducing increased secretion of HMGB1, and activating the NF-
kB signal transduction pathways to stimulate macrophages to
secrete inflammatory factors including TNF-a and IL-1b.
On the other hand, HMGB1 itself can in turn activate the
NLRP3 inflammasome, forming a positive feedback effect of
inflammation, and thereby maintaining or even amplifying the
inflammatory cascade, which causes severe inflammatory
damage to the kidney. This promotes the adhesion,
accumulation, nucleation, and subsequent growth of CaOx
crystals, and ultimately leads to crystals and even stones being
formed in the kidney.
ROS-INDUCED ACTIVATION OF NLRP3 IN
CALCIFYING NANOPARTICLES

Randall plaque is a kind of calcified tissue located under the
mucosa of the renal papilla (9). It originates from the basement
membrane of the tubular epithelial cells in the slender part of the
medullary loop, gradually extends to the interstitium of the renal
medulla, and finally deposits in the renal papilla’s interstitial
tissue (52). Matlaga et al. (53) used endoscopic techniques to
observe renal papillary plaques in 23 patients who had idiopathic
CaOx stones and found that there were Randall plaques in 24
kidneys (24/46) and 156 renal papillae (156/172) indicating that
most patients with CaOx stones have Randall plaques in their
kidneys. Near the tubule basement membrane, the main
constituent of Randall’s spots is calcium phosphate. As it
gradually migrates to the lumen of renal tubules, the
components of the plaque shows an obvious migration and
transformation phenomenon in the form of “calcium
phosphate!calcium phosphate and CaOx!CaOx” (1).
Scholars believe that the secretion of hydrogen in the distal
renal tubules can acidify the urine, which causes the ion activity
of calcium phosphate to decrease significantly, and promotes the
dissolution of calcium phosphate in the tubules to release
calcium and phosphorus ions (54). In the final urine at the end
of the collecting tubule, calcium ions integrate with oxalate ions
to form CaOx (55).

With the development of modern molecular biology and cell
biology technology, Kumar et al. (56) discovered that there are
many round or quasi-circular electronic high-density small
bodies that are very similar to calcifying nanoparticles (CNPs)
in the Randall plaque. Although it remains to be confirmed
whether these high-density bodies are CNPs, some scholars have
shown that the characteristics of the thin apatite shell on the
Frontiers in Immunology | www.frontiersin.org 4
surface of CNPs are highly consistent with the Randall patch
structure at the initial stage (57). CNPs can be cultured in the
tissues around Randall’s spots, stone specimens, and renal pelvic
urine of patients with kidney stones (58). Garcıá et al. (59) found
that the rat kidney stone model can be successfully constructed
by intravenous injection or direct intra-renal injection of CNPs.
Furthermore, Ciftcioglu et al. (60) verified the expression of
CNPs in renal calcification plaques in human kidney tissue
specimens through a variety of methods, and believed that
CNPs are one of the main causes of renal calcification plaques.
Therefore, we can infer that there is a close correlation between
Randall’s spot and CNPs.

CNPs-mediated inflammation is closely related to kidney
stone formation. Our previous research found that in the co-
culture system of CNPs and RTECs, RTECs can be observed to
adhere to and phagocytize CNPs, resulting in an increased
NADPH oxidase activity, stimulating cells to produce a large
amount of ROS, leading to RTEC inflammatory damage, which
in turn can cause cell death in severe cases (61). Wu et al. (58)
reported that CNPs can cause mitochondrial damage after
entering the cell, and then generate ROS, which mediates the
damage of RTECs and the formation of stones through the ROS-
JNk signaling pathway. After Shiekh et al. intravenously injected
CNPs into Wistar rats, calcium deposits were observed in the
pathological sections of kidneys, while inflammatory cell
infiltration and aggregation were seen in the renal medulla and
cortex of rats (62). After the aggregated CNPs are swallowed by
macrophages, they can induce mitochondrial damage and
generate ROS, which leads to the activation of caspase-1 to
mediate the secretion of IL-1b, resulting in an inflammatory
response (63). As the effector protein of NLRP3 inflammasome,
caspase-1 is responsible for cutting the inactive pro-
inflammatory cytokine pro-IL-1b into mature IL-1b (64). We
speculate that CNPs may activate NLRP3 inflammasomes
through the production of ROS, thereby mediating the cell-
crystal inflammatory response, leading to renal tissue
inflammatory damage, inducing calcium phosphate-CaOx
heterogeneous nucleation, and ultimately leading to the
formation of intra-renal crystals.
ROS-INDUCED ACTIVATION OF NLRP3 IN
ENDOPLASMIC RETICULUM STRESS

The endoplasmic reticulum (ER) is an important organelle
widely present in mammalian cells. It is the main intracellular
site for protein manufacture and processing, and the main
calcium storehouse for maintaining calcium homeostasis (65).
When the body is stimulated by glucose deficiency, oxidative
stress, and Ca2+ metabolic disorders, the imbalance of ER
protein dynamics leads to ER stress, and as a result, initiates
the unfolded protein response (UPR), and participates in the
pathophysiological process of many diseases (66). During
observations under the electron microscope, our team
accidentally discovered that a sequence of abnormal
morphological changes in the ER, for instance, enlargement
January 2022 | Volume 13 | Article 818625
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and malformation, appeared in the kidney cells of CaOx kidney
stone rats (67). Further research has shown that ER stress is
related to the development of CaOx kidney stones (67, 68), which
is consistent with the results as reported by Yang (69) and other
research teams. Much evidence shows that the regulation of
CaOx kidney stone formation by ER stress is inextricably
connected to the accumulation of intracellular ROS and the
activation of NLRP3 inflammasome (10, 70).

ROS are viewed as a sign of oxidative stress. Studies have
reported that ROS have twofold functions in signaling ER stress.
During ER stress, NADPH oxidase (NOX), present in the ER,
can stimulate the production of ROS, which in turn can regulate
the UPR and reinstate ER homeostasis (71). Nevertheless, if the
strong stimulus continues or is not removed timely, the ER
pressure cannot be relieved, and ER oxidase 1 (ERO1) will
partially trigger an elevation in ROS (72). Excessive ROS
production in the ER leads to the deposition of calcium in
mitochondria and increases the damage in mitochondria (73).
We found in previous studies that SOD can alleviate the stress of
ROS, and inhibiting SOD will increase the accumulation of ROS,
which in turn aggravates ER stress and promotes the formation
of kidney stones (74). It is currently known that the stimulation
of ROS in the presence of oxidative and ER stress is crucial for
the induction of NLRP3 inflammasomes in macrophages. Aside
from NOX4 activating NF-kB via ROS, which mediates the
activation of NLRP3, it can also activate mitogen-activated
protein kinase (MAPK) to stimulate the release of pro-
inflammatory factors (75). Furthermore, NOX2 can regulate
the expression of dsRNA-activated protein kinase R (PKR)
during ER stress (76). The autophosphorylation of PKR results
in the de novo binding of NLRP3, caspase-1, and ASC, which
increases the activation of inflammasomes. The lack of protein
kinase receptors significantly suppresses the release of HMGB1,
IL-1b, and IL-18 (50).

In addition, Ca2+ released by the ER may be a general
stimulus that results in activation of the NLRP3 inflammasome
(77). The ER is the primary organelle where Ca2+ is stored, and
Ca2+ mobilization plays a key role in the activation of NLRP3
inflammasomes. Excessive Ca2+ release results in an overload of
mitochondrial calcium and mitochondrial damage. The
accumulation of mitochondrial ROS increases, which leads to
additional activation of inflammasomes and IL-1b production.
Blocking Ca2+ mobilization can suppress the generation and
activation of the NLRP3 inflammasome complex (78, 79). The C/
EPB homologous protein (CHOP), a transcription factor
considered to be a regulator of ER Ca2+ release during ER
stress, can regulate the release of ER Ca2+ through the inositol
1,4,5-trisphosphate receptor. Under ER stress, loss of CHOP
leads to a weakened Ca2+ release from the ER, which reduces
ROS and improves cell survival (80–82). Therefore, CHOP and
ER stress are thought to be a potential mechanism for amplifying
the activity of NLRP3 inflammasomes to increase the
inflammatory response (83).

In summary, we believe that ER stress may be an upstream or
intermediate mediation mechanism of the ROS-NLRP3 signaling
pathway that induces CaOx nephrolithiasis. This mechanism is
Frontiers in Immunology | www.frontiersin.org 5
not directly impacted by the IRE1, PERK, and ATF6 pathways in
the classic UPR pathway (84). However, it may directly impact
the expression of the terminal signal in the UPR and play a role
by generating ROS or mediating Ca2+ mobilization.
ROS-INDUCED ACTIVATION OF NLRP3
IN AUTOPHAGY

Autophagy is a very well conserved intracellular degradation
pathway. In the process of starvation, hypoxia, or oxidative
stress, cells use lysosomes to degrade damaged macromolecular
proteins or organelles, which can maintain intracellular
environmental homeostasis and adapt to microenvironmental
changes (85, 86). Studies have shown that an intimate association
exists between autophagy and inflammatory responses (87).
Autophagy can mitigate the inflammatory response by clearing
inflammatory protein aggregates and down-regulating the
release of pro-inflammatory cytokines. Conversely, excessive
activation of autophagy can stimulate the inflammasomes to
release a great number of inflammatory factors and accelerate the
progression in inflammatory response. It has been reported that
in a renal ischemia-reperfusion injury rat model, autophagy
activation can downregulate the expression of pro-
inflammatory factors HMGB1, TNF-a, and IL-6, increase the
release of anti-inflammatory factor IL-10, and reduce renal
inflammatory injury (88). Kirkland et al. (89) revealed that
excessive accumulation of intracellular ROS can directly cause
a certain degree of inflammatory damage to cells. In addition, a
high concentration of ROS can induce excessive activation of
autophagy and directly cause cell death (90).

ROS and inflammatory responses can not only activate
autophagy, but also play an important regulatory role in the
formation of CaOx kidney stones. The results of our previous
studies have indicated that a significantly higher level of renal
autophagy can be observed in patients with CaOx kidney stones
than those with normal kidneys. CaOx crystals can induce the
production of ROS in tubular epithelial cells, which mediates
autophagy overactivation, whereas suppression of autophagy can
effectively ameliorate CaOx crystal-induced tubular epithelial cell
damage and decrease renal injury and CaOx crystal deposition
caused by ethylene glycol, thereby reducing the rate of kidney
stone formation (90, 91). Duan et al. (92) also found that
chloroquine, an autophagy inhibitor, may reduce oxidative
stress damage, mitochondrial damage, and lower excretion of
urinary oxalate and kidney crystal deposition in rats by
suppressing the activation of the p38 signaling pathways and
the expression of the renal oxalate transporter SLC26A6,
ultimately suppressing the formation of CaOx crystals in rat
kidneys. Sun et al. (93) performed in vitro and in vivo
experiments and revealed that application of the antioxidant
taurine can alleviate the oxidative stress injury of RTECs caused
by CaOx crystals. The responsible mechanism is inhibition of the
excessive activation of autophagy mediated by ROS through up-
regulation of the Akt/mTOR signal transduction pathway by
January 2022 | Volume 13 | Article 818625
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taurine. Therefore, ROS mediated autophagy also plays an
important role in the formation of CaOx kidney stones.

Autophagy plays a bidirectional regulatory role in diseases
associated with activation of the NLRP3 inflammasome. Saitoh
(94) et al. reported for the first time in 2008 that autophagy can
regulate inflammasome activation, and that LPS could induce
activation of inflammasome in macrophages after knockout of
the autophagy regulation gene Atg16L1, suggesting that
inhibition of autophagy can stimulate the maturation and
release of inflammatory factors IL-18 and IL-1b. Ko et al. (95)
reported that applying the autophagy activator rapamycin to
increase the level of autophagy can result in inhibition of NLRP3
inflammasome activation and its mediated inflammatory
response by eliminating ROS in mitochondria. However, other
studies have revealed that the excessive activation of ROS
mediated autophagy can promote NLRP3 inflammasome
activation and IL-1b production. Zhang (96) has shown that
mechanical ventilation can mediate excessive activation of
autophagy after stimulating the generation of mitochondrial
ROS in pulmonary macrophages, and the inflammatory injury
in the lung as a result of mechanical ventilation is caused by the
activation of NLRP3 inflammasomes, which is mediated by
autophagy signals and the secretion of pro-inflammatory
cytokines such as IL-18 and IL-1b in pulmonary macrophages.
Frontiers in Immunology | www.frontiersin.org 6
A study by Qiu et al. (97) has indicated that arsenic trioxide
(As2O3) can induce excessive autophagy in hepatocytes and
stimulate the activation of NLRP3 inflammasome, while the
antioxidant taurine can ameliorate the inflammatory response
of hepatocytes induced by As2O3 by inhibiting the autophagy-
inflammasome pathway. Moreover, inducing the NLRP3
inflammasome can also inhibit or promote autophagy. By
activating inflammasomes, especially NLRP3 inflammasomes,
the level of mitochondrial autophagy can be inhibited and the
self-clearance of mitochondria affected, thus promoting the
occurrence and development of diseases (98). Allaeys (99)
et al. reported that sodium urate crystals can positively manage
the formation of autophagosomes in cells by up-regulating
NLRP3 inflammasome activation.

Therefore, we speculate that the excessive activation of
autophagy mediated by mitochondria-derived ROS could
trigger the NLRP3 inflammasome pathway, up-regulate the
secretion of inflammatory factors IL-18 and IL-1b, which leads
to inflammatory cell invasion and renal interstitial inflammatory
injury in the course of CaOx kidney stone formation. The
activation of NLRP3 inflammasome may further increase the
level of autophagy, resulting in an inflammatory chain reaction
in the kidney, and accelerating the formation process
of nephrolithiasis.
FIGURE 1 | Possible mechanism and regulation of ROS-induced NLRP3 inflammasome activation in the formation of calcium oxalate nephrolithiasis. The secretion
of mature forms of IL-1b and IL-18 is the result of NLRP3 inflammasome activation. These mediators have the properties of pro-inflammatory activation, which in turn
promote the adhesion, aggregation and growth of crystals. The interaction of crystals or nanoparticles with cells can cause mitochondrial damage and increased
NADPH oxidase activity, and then generate ROS, which mediates NLRP3 inflammasome transcription and activation through the ROS-dependent of NF-kB and
autophagy signaling pathway. ER induces ROS production via NOX4 and ERO1 during stress. The release of Ca2+in the ER causes mitochondrial damage which
further aggravates the release of ROS. High concentration of ROS can induce excessive activation of autophagy, thereby stimulate the inflammasomes to release a
great number of inflammatory factors. The activation of NLRP3 inflammasome may further increase the level of autophagy, resulting in an inflammatory chain reaction.
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SUMMARY AND PERSPECTIVES

In recent years, with the development of modern biology
technology, the role of the cell-crystal inflammatory response
theory in the formation of CaOx kidney stones has been
increasingly valued. A growing body of literature suggests that
the RTECs-crystal reaction, macrophage-crystal reaction,
calcifying nanoparticles, ER stress, autophagy activation, and
other regulatory factors can induce ROS production during the
course of CaOx kidney stones formation. These processes can
also mediate the activation of the NLRP3 inflammasome,
promote the release of inflammatory factors such as IL-1b
andIL-18, cause inflammatory cell infiltration and renal
degeneration of tubular epithelial cells, necrosis, the kidney
inflammatory cascade effect, hence stimulating the adhesion,
aggregation, nucleation, and subsequent growth of CaOx
crystals, and ultimately the formation of CaOx nephrolithiasis
(Figure 1). In conclusion, effective intervention for ROS-induced
activation of NLRP3 inflammasome may be a potential
therapeutic target in the prevention of CaOx kidney stones
formation and recurrence, which has important theoretical
significance and practical value.
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