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Several studies of natural-image statistics have concluded that the majority of structural image information is
represented in the Fourier domain not by the power spectrum, which can be modeled with a power function of
spatial frequency, but by the phase spectrum. Psychophysical experiments are described in which human
observers were required to discriminate between visual stimuli differing only in their global second-order sta-
tistics. The patterns of sensitivity recorded were found to depend on whether these stimuli were natural im-
ages or images with random-phase spectra. These results suggest that discrimination performance is related
to changes in higher-order image structure; a bandpass model observer based on third-moment statistics was
applied to all stimulus images and was found to provide a good fit to the psychophysical data. © 1997 Optical
Society of America [S0740-3232(97)01309-4]

1. INTRODUCTION

The discovery of widespread structural redundancy in
natural images has motivated the incorporation of statis-
tical image models into computational theories of visual
processing. This approach has produced a variety of can-
didate encoding strategies,1–3 many of which effectively
filter out predictable correlational structure so as to re-
duce the dimensionality of the visual input. If measures
on the second-order structure of natural-image ensembles
can be used to determine the basis vectors of a linear
transform, image data can be encoded into a new coordi-
nate system whose axes lie closer to the natural axes of
the visual input. Ideally, the encoded representation will
show only sparse neural activity in response to an ex-
pected stimulus; a reduction in image dimensionality can
then be achieved at the next processing stage by thresh-
olding. Field1 assessed the feasibility of such an ap-
proach by investigating the two-dimensional (2-D) ampli-
tude spectra (averaged across all orientations) of an
ensemble of natural images; he found that the amplitude
falls off typically as the inverse of radial spatial frequency

v, that is, the corresponding power spectra Ĥ(v) fall off
as v22 (see Fig. 1). The contrast energy of visual signals
with these statistics is independent of the scale of view-
ing, and if such signals are encoded by a bank of spatial-
frequency-selective mechanisms, or channels, whose
spatial-frequency bandwidths are constant in octaves,
equal energy will be passed through every channel.4

Some neurophysiological studies have suggested that the
spatial-frequency bandwidths of cortical simple cells are
constant when measured in octaves5; when a typical
natural scene is processed in this way, the outputs of the
different channels should have similar variances, irre-
spective of their preferred spatial frequencies. The
sparseness of active cells within this neural representa-
tion could make further processing very efficient.

Although such a low-dimensional power-spectral model
can greatly reduce the redundancy associated with the
power spectra of natural images, it may be too simple a
description of natural-image structure: Several
studies6–8 have shown that the power-law model for
natural-image power spectra is robust only if the expo-
nent is allowed to vary from image to image, that is, if the

spectra are fitted by the more general equation Ĥ(v)
} v2b. In addition, the model has met with limited suc-
cess when used to predict human performance in image-
discrimination tasks; although second-order measures
can explain observers’ ability to distinguish natural im-
ages from a field of random dots,1 several authors6,9,10

have reported that the organization of image phase infor-
mation appears far more critical to visual perception than
those image properties measured by the power spectrum.
Wavelet analyses have been used to show that natural
images contain structure that is aligned locally in phase
space,11 and there may exist phase-selective mechanisms
sensitive to certain phase relationships between harmoni-
cally related frequencies.10,12 It is difficult to envisage a
simple model for the encoding of global image phase in-
formation, but it has been argued that image discrim-
inability should depend quantitatively on higher-order
image correlations as well as those represented by the
Fourier power spectrum. These observations, together
with the success of stochastic models of global second-
order image structure,1,13 motivate an extension of this
work to higher-order statistical domains.14,15

The extension considered in the present study is re-
stricted to simple third-order statistical measures.
Yellott16 has demonstrated that the third-order statistical
histogram of a band-limited image of restricted support
determines the image uniquely and completely up to a
translation term. Thus, where the term statistics refers
to the stochastic properties of an individual image, third-
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order statistics must bound (but do not yet solve) the
problem of finding a statistical correlate for psychophysi-
cal performance in image-discrimination tasks, even
though these measures might occupy a lower-dimensional
space in the fourth- and higher-order statistical domains.
(Notice, however, that where the term statistics is used to
describe the generator statistics of an image ensemble,
correlations of order 4 and above may also be important;
Julesz et al.17 have demonstrated texture discriminability
by human observers at the level of fourth-order statis-
tics.)

It is important to emphasize that the global statistical
measures used in this study are quite distinct from those
used by Julesz and co-workers (e.g., Julesz et al.17).
Klein and Tyler18 have pointed out that the nth-order sta-
tistics definitions of Julesz et al. differ from the defini-
tions usually given in textbooks of linear and nonlinear
systems theory.19 Conventionally, the second-order cor-
relation function (SCF) of a zero-mean one-dimensional
(1-D) signal is computed by calculating, as a function of a
shift t, the sum of the luminance products of all possible
pairs of data points separated by the distance t ; the third-
order correlation function (TCF) of a 1-D process is com-
puted similarly but as a function of pairs of shifts
(t1 , t2). Accordingly, global third-order image statistics
are defined here by the 2-D TCF, global second-order im-
age statistics by the 2-D SCF, and global first-order image
statistics by the image mean.

This paper reports a psychophysical experiment de-
signed to reveal the effect of natural phase structure on
human observers’ ability to detect differences in the
second-order statistical structure of natural images.
Second-order image statistics were parameterized in

terms of the power-law model Ĥ(v) } v2b of image power
spectra; the paradigm required observers to discriminate
between natural images differing only in their power-
spectral falloffs b. The effect of phase structure on per-
formance was determined by conducting the experiment
twice, once for images with natural-phase spectra and

once for images whose phase spectra had been fully ran-
domized. Four different model observers were then con-
structed and compared with the psychophysical data in
an attempt to determine the statistical parameterizations
of the stimulus images that adequately described human
performance.

2. IMAGE STATISTICS

Three libraries of images were acquired for use in this
study: a midrange library of 27 images photographed
with a SLR camera having a 50-mm lens; a close-up li-
brary of 25 images photographed with a SLR camera hav-
ing a 135-mm lens; and 30 images scanned from the Bro-
datz collection20 of natural-image textures. The
midrange, close-up, and Brodatz libraries were calibrated
for the modulation-transfer function of the image-
acquisition system, and the midrange and close-up im-
ages were also calibrated for the gamma function of the
image-acquisition system. The midrange and close-up li-
braries covered a wide range of subjects and viewpoints,
and image content was not restricted to pastoral scenes.

The power-spectral properties of each image were ana-
lyzed by the following method. Each image was sub-
jected to a 2-D fast Fourier transform that used a
minimum-bias spectrum-estimation window.21 The
power spectrum was computed, interpolated into polar
Fourier coordinates (v, u), and averaged across orienta-
tion to yield a 1-D function of radial spatial frequency.

The power-law model Ĥ(v) } v2b was applied to these
data by transforming both power and spatial-frequency
axes to logarithmic coordinates and performing a linear
regression (by the method of least squares). Two alter-
native models were also investigated in the log–log
power-spectral domain: a second-order polynomial
model and a piecewise-linear model. F tests of the re-
sidual sum of squares showed that significant (P, 0.01)
curvature (also reported elsewhere22) and two-stage
piecewise linearity were common across this image en-
semble, but the correlation coefficient associated with the
simple linear regressions never fell below 0.95: The
power-law model appeared robust in that it accounted for
the vast majority of the variance in the power-spectral
data. The range of b values spanned by these three im-
age libraries was 1.57–3.10 with a mean of 2.38.

3. METHODS

A. Selection of Original Images
The wide range of natural spectral falloffs reported both
here and elsewhere might be considered1,8 at odds with
the single-exponent power-law model that underlies the
sparse-distributed encoding strategy discussed in Section
1. This problem was addressed within the framework of
a psychophysical paradigm in the following manner. The
images were drawn from all image libraries so that the
experimental image ensemble could be divided into three
classes on the basis of their natural spectral falloffs b;
that is, all three images within a given class had identical
values of b (see Fig. 2). By recording discrimination
thresholds not as a function of natural spectral falloff but
rather as changes (denoted as Db) in b relative to the
natural spectral falloff of each class, it was possible to de-

Fig. 1. Power spectra for six digitized images, averaged across
all orientations. The spectra have been progressively shifted
upward for clarity. The spectra fall off by a factor of roughly
1/v2; on these double-logarithmic coordinates, this corresponds
to a slope of 22.
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termine whether observers’ ability to perform the dis-
crimination task depended on the natural correlational
structure (as quantified by the natural spectral falloff b)
of each individual scene7 or whether discriminations were
performed relative to some fixed value8 of b.

To investigate the effects of the removal of natural-
phase structure on observer performance, a random-
phase ensemble was generated by subjecting each of the
nine images shown in Fig. 2 to a 2-D fast Fourier trans-
form, replacing the natural-phase spectrum with a
random-phase spectrum (in which the phase coefficients
were drawn from a uniform distribution over the interval
@2p,p#), and performing the inverse Fourier transform.
The resulting images are shown, in their corresponding
positions, in Fig. 3.

B. Image-Generation Protocol
A set of filtered images was generated by computer (Sun
Microsystems, Santa Clara, Calif., IPX SPARCstation)
from each of the nine root images shown in either Fig. 2
(experiment 1) or Fig. 3 (experiment 2). This was done
by subjecting each root image to a process of incremental
filtering to generate a set of reference images whose val-
ues of b were offset by a factor Db from that measured for
the root image. The values23 of Db used were
20.9,20.6, ..., 0.9, and details of this incremental filter-
ing procedure are given in Appendix A.

Each of the seven reference images was then further
filtered by a series of increments in b to create a set of
eight test images suitable for determining a psychometric
function at each value of Db; a total of 56 images were
thus derived from each root image. These images were
normalized against that root image for the distribution of
power across orientation and for total variance, scaled to
a 9-bit luminance range, and then spatially vignetted;

further details of these procedures are given in Appendix
A.

C. Apparatus
Stimuli were presented on a high-resolution color monitor
(Sony Japan Ltd., Multisync Trinitron model) driven by a
color raster system (Ramtek UK Ltd., modified 4660 se-
ries); local timing was controlled by a dedicated computer
(Sun Microsystems, Santa Clara, Calif., model 3/160).
The images were 512 3 512 pixels in size; with the view-
ing distance set at 1.3 m, the available spatial-frequency
bandwidth was 0.2– 38 cycles deg21. The midgray of the
monitor (gray level 256) had a luminance of 30 cd m22.

D. Procedure
A temporal-sequential image-presentation paradigm was
used, since in spatial-sequential paradigms (such as a
spatial two-alternative forced-choice paradigm) observers
frequently report difficulties in maintaining fixation,
tending instead to scan from one image to the other in
search of discrimination cues. On each trial the observer
was presented, in sequence, with an image, an inter-
stimulus field, a second image, and a poststimulus field;
he or she then had to decide whether the two images were
identical. Each pair of images was presented in the cen-
tral visual field. The interstimulus and poststimulus
fields consisted of uniform gray backgrounds. The pre-
sentation time for all images and masks was set at 800
(650) ms, an acceptable compromise between the need to
maintain consistent levels of observer performance and
the need to make the trials reasonably fast. Observers
used a two-pushbutton switchbox to signal their re-
sponses to the stimuli.

Trials were performed in runs: in each single experi-
mental run, the method of constant stimuli was used to
determine a psychometric function for each of the nine

Fig. 2. Experimental image set, divided into three classes on
the basis of natural power-spectral falloff b. Top row: b
5 2.6; middle row: b 5 2.0; bottom row: b 5 1.4.

Fig. 3. Experimental image set after full phase randomization;
the relative positions of the images are the same as those in
Fig. 2.
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images around just one value of the reference falloff. An
entire experiment thus required seven runs; the reference
falloff (Db) was constant within a single run, but the order
of the seven possible values was randomized across runs.
On 25% of trials, the first image was the reference image,
and the second image was a test image that differed from
it by one of the eight increments (db) in b; on a further
25% of trials, the order of reference and test images was
reversed; and in the remaining 50% of trials, the two im-
ages were identical reference images. These three condi-
tions, the nine images, and the eight increments were all
randomized in each experimental run; each test image
was seen a total of 16 times by each observer. A single
run consisted of a block of 1280 trials and lasted approxi-
mately 2 h; each run was divided into two separate ses-
sions of 1 h each.

E. Subjects
There were two observers, JCH and MGAT (a coauthor),
both of whom had normal or corrected-to-normal visual
acuity (6/6 Snellen acuity) and less than 0.25 diopters of
astigmatism. Observer JCH was unaware of the purpose
of the experiment.

4. DATA ANALYSIS

Observers’ ability to discriminate between the members
of each image pair was measured by an application of the
theory of signal detection24 to the special case of a Yes–No
matching paradigm. The theory asserts25 that the ob-
server decides between two alternative hypotheses (that
the two signals presented were the same or that they
were different) by comparing the input from each interval
and forming different likelihood estimates under the
‘‘same’’ and ‘‘different’’ hypotheses. Under the assump-
tion that these two hypotheses are represented in the rel-
evant decision space by multivariate Gaussian probability
density functions of equal variance, the raw hit rates and
the false-alarm rates can be linearized by application of
the inverse cumulative Gaussian transform; their differ-
ence after linearization is the discrimination index d8 of
signal-detection theory.

If the variances of the d8 at each value of db are small,
then, provided that the hit rate and the false–alarm rate
are binomially distributed across the trials, it is possible
to estimate the variances of the linearized scores and
hence of d8 itself.26 In this way a plot of discrimination
index d8 against db was obtained at each reference falloff
Db. These discrimination plots were fitted (by the
method of least squares) with quadratic functions, since
some showed significant curvature (P , 0.01). Thresh-
olds were computed for various criterion levels of d8, and
a bootstrap procedure26 was used to estimate the vari-
ances of those thresholds. The final choice of criterion
level was judged a posteriori on the basis of the variance
of the threshold estimate and the stability of the thresh-
old distribution around that criterion value; the optimum
level was found to be d8 5 1.5, which, by virtue of the re-
lationship between Yes–No and two-alternative forced-
choice paradigms in psychophysical matching tasks,25

corresponds to 77% correct in a Yes–No task performed
by an unbiased observer.

5. RESULTS

A. Natural-Phase Spectra
Figure 4 shows, for both observers, threshold db plotted
against filtering step Db, together with the standard de-
viations, for the three image classes shown in Fig. 2. The
discrimination task seemed most difficult (thresholds
were highest) when the correlational structure of each im-
age had been subjected to little or no change, that is,
when Db was close to zero. Note that the absolute spec-
tral falloffs (b 1 Db) were different for each of the three
image classes at the Db 5 0 point, but this does not seem
to have influenced the trends shown in the figure, in that
the same pattern of sensitivity holds for all three image
classes.

B. Random-Phase Spectra
Figure 5 shows a corresponding plot of threshold db
against Db for the random-phase images shown in Fig. 3.
Although there are some differences between the two ob-
servers in respect of overall performance levels, the trend
in each case is the same: the plots show a steady rise in
thresholds as the power-spectral falloff becomes increas-
ingly negative. Notice that the ordinate scale of this fig-
ure differs from that in Fig. 4; this reflects the fact that
thresholds are generally higher for stimuli with random-
phase spectra.

Fig. 4. Discrimination functions for natural-phase stimuli: ob-
servers MGAT (top) and JCH (bottom). These functions show
observer image-discrimination performance in terms of the dis-
crimination threshold value of db (ordinate) as a function of the
relative change Db in image spectral falloff (abscissa).
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6. MODEL OBSERVERS

A. Theory
If observer performance is to be modeled in terms of
signal-detection theory, a model observer is required
whose specification is complete enough27 to enable d8 val-
ues to be computed directly from the stimuli presented in
the experiment. The type of model developed here as-
sumed that observers had access only to certain statisti-
cal parameterizations of the stimulus data. Similar
model observers have been elaborated elsewhere and
have been used to fit experimental data gathered from
psychophysical procedures such as image detection or dis-
crimination; many of the underlying models are based on
some measure of second-order statistical information.
For example, one model observer28 assumes a knowledge
of the variance of the stimulus images and uses this in-
formation to detect a signal in noise; another14 assumes a
power-law distribution for the power spectra of two
stimulus images and performs image discrimination by
comparing their spectral exponents.

Two considerations in particular motivate the exten-
sion of the model-observer concept to the third-order do-
main. First, third-order statistics have already been
used successfully to model psychophysical data. Klein
and Tyler18 recast the Julesz conjecture in terms of the
conventional nth-order correlation functions and chose to

measure only zero-shift correlations of order n (i.e., corre-

lations at t1 , t2 , ..., tn 5 0); they found that the third
moment (t1 5 t2 5 0) could account satisfactorily for the
results of a variety of psychophysical phase-
discrimination experiments in many situations in which
the second moment failed to do so. The third moment
constitutes a highly reduced approach to third-order
statistics—it is the first member of a 2-D array of third-
order correlations measured at different shifts (t1 , t2)
and that together constitute the TCF—but its parsimony
is attractive, since it is the simplest global stochastic mea-
sure (according to the definitions given in Section 1) that
could account for the effects of phase randomization on
psychophysical performance. Second, any second-order
model observer based on the global SCF must be insensi-
tive to image phase structure and therefore could not ac-
count for the effect of phase randomization on the psycho-
physical results presented here. The effects of phase
randomization on image structure are, however, reflected
in the differences between the TCF’s of a natural image
and its phase-randomized counterpart: the phase-
randomized images can be considered as finite 2-D
samples of a colored Gaussian 2-D random process,29

whereas stochastic models of natural-phase images can
be markedly non-Gaussian in nature.30 One of the main
applications of third-order statistics is in detecting depar-
tures from the Gaussian case,31 and the third moment is
often used to compute measures of asymmetry.32

Indeed, these arguments lead one toward a comparison
of the performance of two model observers: a second-
moment model and a third-moment model. It is impor-
tant to emphasize, however, that local operations on first-
or second-order image measures could also account for the
psychophysical results: phase randomization and power-
spectral filtering can affect local first-order statistics and
local second-order statistics to which the SCF is blind.
Two additional model observers based on local image
measures are therefore also considered. All four models
are elaborated in Appendix B, but the principles of each
are summarized here:

Second-moment model. This model observer is as-
sumed to process the input data through independent
spatial-frequency-selective channels33; such a strategy ac-
cords with accepted theories of human visual perception.
Notice that the output of a bandpass filter generally in-
cludes second-order terms on the input; this means that
the filter outputs will be sensitive to second-order cross
terms in the image and so can be used to quantify rela-
tionships between neighboring pixels. The second mo-
ments of these filter outputs are then combined as a vec-
tor sum.

Third-moment model. Again, the input data are pro-
cessed through independent channels, but this time it is
the third moments of the outputs of the channels that are
combined. Thus the model computes a third-order statis-
tic on filter outputs that are themselves sensitive to
second-order cross terms in the image; the model is, how-
ever, insensitive to third-order cross terms in the image.

First-order model. In this case the pixel values of the
two images to be discriminated are compared in the man-
ner of a bit metric.34 This model can therefore distin-
guish between two images with different first-order pixel
histograms.

Fig. 5. Discrimination functions for random-phase stimuli: ob-
servers MGAT (top) and JCH (bottom). The axes are the same
as those in Fig. 4.
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Second-order model. As in the first-order model, the
pixel values of the two images are first compared, but this
operation produces a ratio image, which is then filtered
through the same bandpass channels used in the second-
and third-moment models. It is therefore best described
as a second-order model, since, like the second- and third-
moment model observers, it is sensitive to second-order
cross terms in the image.

B. Applying the Model Observer to the Image Data
Simulations of the psychophysical experiments were con-
ducted in which each image pair presented to the human
observers was supplied as input to the model observers.
For the bandpass model observers, signal-to-noise ratios
(SNR’s) were computed in eight octave-band channels
(the images were 512 3 512 pixels in size) as described by
Eqs. (B3), (B6), and (B7) (Appendix B) and were then
combined by using Eq. (B5) (Appendix B) to yield a single
value of the discrimination index d8 for each (unique)
stimulus pair. In this way it was possible to construct a
model-observer d8 plot (analogous to the human observ-
ers’ linearized psychometric functions) as a function of the
stimulus parameter db. Model-observer thresholds were
determined at a criterion level of d85 1.5, exactly as in
Section 4.

7. MODEL-OBSERVER PREDICTIONS

It is difficult to compare trends across Db in model-
observer thresholds with the corresponding trends com-
puted from the psychophysical data, since model-observer
discrimination was much more efficient than human-
observer discrimination and the model-observer thresh-
olds were consequently much lower (no internal noise was
incorporated explicitly into the models). This problem
was addressed by normalizing the threshold measured at
each value of Db to the lowest threshold measured for
that observer (human or model). This procedure can be
considered equivalent to incorporating additive, Gaussian
internal noise into the model observers, such that the de-
cision process was assumed to be noisy after combination
of the channels’ SNR’s.

A. Natural-Phase Images
Figure 6 shows plots of the two human observers’ dis-
crimination performance, along with similar plots calcu-
lated for the four model observers; all six plots have been
normalized against the minimum threshold. The first-
and second-order model observers both produce very poor
predictions of human-observer performance. Notice how
the third-moment model outperforms the second-moment
model in accounting for the experimental data.

B. Random-Phase Images
Figure 7 shows the corresponding data for images with
random-phase spectra. Second- and third-moment mod-
els produce similar results, each providing a good fit for
the human observers’ data, whereas the first- and second-
order models fail again to account adequately for the
trends in human performance. The results for the
second-moment models in Figs. 6 and 7 are, as expected,

identical: phase randomization cannot affect global
second-order structure (as defined by the SCF or the
power spectrum).

8. DISCUSSION

The results shown in Fig. 4 are in partial agreement with
those of Tadmor and Tolhurst;8 they found evidence for a
peak in threshold at some intermediate spectral falloff
but reported that the position of this peak depended on
absolute spectral falloff rather than on the increment
relative to each image’s natural spectral falloff. (There
were, however, procedural differences between their ex-
perimental paradigm and that described here: they
used a spatial three-alternative forced-choice paradigm
with central fixation, and the images used had their
power spectra flattened before spectral filtering.) These

Fig. 6. Discrimination functions for natural-phase stimuli:
data obtained from the human observers compared with the re-
sults predicted by the four model observers. All discrimination
functions have been normalized to minimum threshold; other-
wise, the axes are the same as those in Fig. 4.

Fig. 7. Same as Fig. 6, but for random-phase stimuli.
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authors also found8 that this marked trend in perfor-
mance was largely eliminated by phase-randomizing the
stimulus images; Fig. 5 seems to indicate that the trend is
not only eliminated but replaced by an upward drift in
threshold as the stimulus images’ power spectra are made
steeper. The results shown in Fig. 5 can also be com-
pared with those reported by Knill et al.14 for a similar
psychophysical experiment using Brownian fractal im-
ages. (However, their paradigm again differed slightly
from the present one: the images that they used were
64 3 64 pixels in size; subjects were asked to indicate
specifically which image had the lower spectral falloff;
and discrimination was recorded as a function of absolute
spectral falloff.) Knill et al. reported that subjects’ abil-
ity to discriminate between images having two different
power-spectral exponents was approximately constant in
the region 2.8 , b , 3.6.

Thus, although some controversy must remain over
whether the tuning of the human visual system to second-
order image properties is relative to an ensemble average
statistic or to the natural statistical structure of each im-
age, the destruction of natural-phase structure by means
of phase randomization appears to have the effect of ei-
ther lessening8 or completely removing (see Fig. 5) this
tuning.

Since the filtering applied to the stimulus images pro-
duced changes in power-spectral shape only, it is perhaps
not surprising that the second-moment model accounts
well for human-observer performance with random-phase
images, predicting the rise in discrimination thresholds
as the spectra steepen; Knill et al.14 described a simpler
version of this model (the low-pass contrast detector) that
made similar predictions. When natural-phase images
were subjected to exactly the same power-spectral
changes, however, a third-moment model was necessary
to account adequately for observer performance. The
success of the third-moment model (and the failure of the
second-moment model) in this respect suggests that dis-
crimination may be mediated by perceptual mechanisms
capable of characterizing higher-order image structure.
This conclusion is supported by the failure of both first-
and second-order models to predict the psychophysical
data and can be related to the now-established refutation
of the Julesz conjecture—that only first- and second-order
statistics are used in human texture-discrimination
tasks.17

Discrimination performance thus appears particularly
poor when each image is in either its natural correlational
state (results shown here) or the state that is representa-
tive of an ensemble average.8 What advantages accrue
from a visual coding system that behaves in this manner?
The image-discrimination tasks reported here were de-
signed to measure a type of increment-threshold function;
that is, the test and reference parameters were varied
along the same dimension (that of image spectral falloff
b). If the analyzing mechanisms of the human visual
system are tuned to some distribution of b, then poor dis-
crimination performance at intermediate b values may
simply reflect the robustness of the internal visual repre-
sentation in the face of changes to a statistical image pa-
rameter for which visual processing is optimized. More-
over, if the visual code is robust, discrimination between

two different natural images (i.e., images that differ in
some respect other than spectral falloff) can be made very
efficient, since this discrimination can be accomplished by
the further processing of an already sparse representa-
tion. Tadmor and Tolhurst35 hypothesized that such a
strategy would be of significant biological value to the or-
ganism, producing maximum tolerance of image blur yet
optimum image discriminability when images are in their
natural correlational states. The effects of phase ran-
domization observed here suggest that the sparse repre-
sentation is processed by some second-stage analyzers ca-
pable of characterizing higher-order image structure, but
confirmation of this hypothesis will require the design of
further experiments in which the stimulus parameter is
some measure of higher-order image statistics.

APPENDIX A: INCREMENTAL FILTERING
PROCEDURE

So that differences in second-order statistical structure
would be the only cue available to the observers in the ex-
periments, the incremental filtering procedure was de-
signed to effect a change db in the spectral falloff b of a
given natural image while ensuring that other aspects of
the stimuli were not affected by the spectral-filtering pro-
cess. Spectral filtering could affect deviations from the
power-law model of power-spectral behavior, as well as
the distribution of power across orientation, the lumi-
nance range, and the spatial properties of the stimulus in
the neighborhood of the image borders. The following
subsections illustrate how these problems were ad-
dressed.

1. Higher-Order Power-Spectral Behavior
As was noted in Section 2, some natural images have
power spectra that depart from linearity when plotted on
double-logarithmic axes, and these deviations should be
preserved by the spectral-filtering procedure. An incre-
mental filtering technique was developed that computed
the radial spatial frequency v at each (Cartesian) locus in

the power spectrum ĤR(v, u) of the original root image;
the following transformation was then applied to gener-

ate the filtered spectrum ĤF(v, u):

ĤF~v, u ! 5 ĤR~v, u !v2db. (A1)

In double-logarithmic coordinates this transformation is
equivalent to adding 2db log v to each log-transformed
power-spectral value, so the filtering process should alter
the slope of the double-log-transformed spectrum while
leaving any higher-order behavior unaffected. The fol-
lowing procedure was used to verify that given the root
spectral exponent bR and the filtering increment db, Eq.
(A1) could be used to predict the new spectral exponent
bF of each filtered image. The polar-interpolated power
spectra of the root and filtered images were parameter-
ized after double-logarithmic transformation by linear re-
gression; the two spectral falloffs bR and bF were then re-
corded along with their associated residual sums of
squares. The variance of the bF value computed from
the least-squares regression was estimated and compared
with the 95% confidence interval for a regression line of
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slope bR 1 db. None of the values of bF computed in
this way fell outside the 95% confidence interval of the ex-
pected distribution. F tests were also conducted to com-
pare the residual sum of squares following linear regres-
sion of each filtered image’s spectrum with that of its
corresponding root image; none of these tests reached sig-
nificance (P . 0.1).

2. Distribution of Image Power across Orientation
Since incremental filtering by a factor db adds 2db log v
to each log-transformed power-spectral value, this proce-
dure alters the overall image power and hence, by Parse-
val’s theorem, the contrast of the scene. It is therefore
necessary to normalize the total power of the filtered im-
age against that of the root image, but, given the orienta-
tional anisotropy typically found in natural images,36 this
normalization must be applied separately to each orienta-
tion, as changes in the distribution of image power with
respect to orientation are potential cues in image-
discrimination tasks.37

For both the root and filtered spectra, the distribution
of image power across orientation was computed by inter-
polating the spectra into polar coordinates and summing
each radial vector across radial spatial frequency v.
Power-normalization factors were estimated by comput-
ing the ratio of root-image power to filtered-image power
at each orientation. The appropriate normalization
could then be applied to the filtered-image spectrum by
calculating the orientation at each (Cartesian) spectral lo-
cus and interpolating onto the 1-D distribution of power-
normalization factors.

After inverse Fourier transformation, each filtered im-
age was normalized for total variance against the corre-
sponding root image; all images had the same mean lumi-
nance, so all images in a given set had the same root-
mean-square contrast. The requirement for variance
normalization restricts the range of possible filtering in-
crements db, since it is impossible to compute the vari-
ance of an image with infinite power.

The effectiveness of this power-normalization proce-
dure was assessed as follows. Root and filtered images
were Fourier transformed, and their power spectra were
interpolated into polar coordinates. For every pair of
root and filtered spectra, the corresponding distributions
of power across orientation were compared by a
Kolmogorov–Smirnov test. None of the filtered images
had a distribution of power across orientation that dif-
fered significantly from that of the corresponding root im-
age (P . 0.1).

3. Distribution of Image Luminance Values
Although the images were acquired at a luminance reso-
lution of 8 bits, the processes of gamma and modulation-
transfer correction produced calibrated images whose
floating-point luminance values were not restricted to the
range 0–255. These luminance values, which were then
further transformed by the spectral-filtering procedure,
had to be truncated to the bit resolution of the digital-to-
analog converter in the graphics engine before the images
could be displayed on an analog monitor. The graphics
engine could support an effective luminance range of 9
bits after gamma and spectroradiometric calibration.

The image luminance values therefore had to be scaled
and truncated into the range 0–511. To preserve the
constancy of root-mean-square contrast across each image
set, it was necessary to determine the scaling factors from
the single image in that set with the largest luminance
range and apply the same linear scaling to every other
image in the same family; a similar procedure has been
followed elsewhere.8 The image in question was always
that with the flattest power spectrum (most negative db),
since flattening the power spectrum of an image stretches
its gray-level histogram. Student’s t test was then used
to compare the means of the root and filtered images, and
F tests were used to compare the variances of the root
and filtered images; none of these tests reached signifi-
cance (P . 0.1).

4. Stimulus Properties near Image Borders
Some psychophysical models of the visibility of aperiodic
image features38 allow for the possibility that subthresh-
old changes in the relative spatial-frequency content of an
image could be accompanied by suprathreshold changes
in stimulus structure in the neighborhood of the image
borders. To prevent the creation of such artifactual dis-
crimination cues in these experiments, a circular exten-
sion of one of the variable-parameter spectrum-
estimation windows21 was introduced as a vignette; a
similar procedure has been described elsewhere.39

APPENDIX B: DERIVATION OF MODEL
OBSERVERS

The psychophysical paradigm described in Section 3 falls
into the category of fixed-base25 procedures, which can be
related to the simpler Yes–No signal-detection paradigm
by assuming that the observer is required in each trial to
make a binary decision about whether a difference image
s(x, y) [the difference in the luminance patterns of mem-
bers of a stimulus pair as a function of position (x, y), 0
< x, y < N 2 1.] is present as well as a background im-
age t(x, y) (the root image). When both difference and
background images are defined only statistically, the dif-
ference image can be identified with the stimulus signal
and the background image can be identified with the
stimulus noise. It then remains to define an appropriate
metric for comparing the difference and background im-
ages. A simple way of assessing first-order luminance
differences, used here in the first-order model, is to com-
pute SNR’s by means of a bit metric similar to that de-
scribed by Hubner et al.34:

SNR 5 (
x50

N21

(
y50

N21
us~x, y !u

t~x, y !
. (B1)

The model can be channelized33 to make a bandpass
model observer by feeding its output into a number of
bandpass filters, computing the associated SNR’s on a
channel-by-channel basis, and pooling these bandpass
SNR’s to yield a single estimate of d8. This procedure re-
quires an appropriate metric, a bank of suitable filters,
and some pooling rules; these are defined for the second-
order model as follows:
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Metric. The first-order ratios of the difference and
background images were first computed to produce a ratio
image c(x, y):

c~x, y ! 5

us~x, y !u

t~x, y !
. (B2)

It was this 2-D function c(x, y) that was then subjected to
bandpass filtering.

Filtering. It is well known that convolution with an
ideal bandpass filter introduces aliasing into the output
signal, and it is instead necessary to use a filter function
whose Fourier-asymptotic behavior produces good local-
ization on both the space and spatial-frequency axes.
Mallat40 has described a family of filters that have these
properties and that can be used to decompose a signal
into a family of orthogonal octave-wide subbands by
means of the discrete dyadic wavelet transform (DDWT).
Mallat’s algorithmic implementation40 of the DDWT,
which uses cubic-spline wavelets, was followed here with
one modification: to avoid introducing orientation depen-
dency into the transform, it was necessary to use a circu-
lar 2-D extension of these wavelets rather than take ad-
vantage of the row–column separability of the 2-D
convolution integral.41 For the second-order model ob-
server, a series of bandpass SNR’s was computed by de-
composing the ratio image c(x, y) into a number of inde-
pendent spatial-frequency bands and summing spatially
over the resulting subband images c i(x, y) as follows:

SNRi 5 (
x50

N21

(
y50

N21

u~c i~x, y ! 2 c̄ i!u. (B3)

Pooling rules. Although several pooling rules have
been discussed in the literature,42 the assumption that
observers base their decisions on the computation of like-
lihood ratios leads one to consider an integration model,24

which predicts that the discrimination index d8 resulting
from the combination of n independent observations in
channels with individual discrimination indices d18 ,
d28 , ..., dn8 is given by

d8 5 F(
i51

n

~d i8!2G 1/2

. (B4)

Denote the bandpass SNR corresponding to the ith octave
band by SNRi ; then d8 can be computed as

d8 5 F(
i51

n

~SNRi!
2G 1/2

. (B5)

The second-moment observer behaves rather differ-
ently, since the comparison between difference and back-
ground images is performed within every channel. First,
the images s and t are decomposed separately (with the
filters described above) to produce families of subband im-
ages s i and t i ; second, the ratio of the second moments of
these subband images is computed:

~SNRi!
2

5

(
x50

N21

(
y50

N21

@s i~x, y ! 2 s̄ i#
2

(
x50

N21

(
y50

N21

@t i~x, y ! 2 t̄ i#
2

; (B6)

third, the SNR’s are pooled as described above.
The third-moment observer differs from the second-

moment observer only at the second stage, where the fol-
lowing measure is computed in each spatial-frequency
band from the subband images s i and t i :

~SNRi!
2

5

U(
x50

N21

(
y50

N21

@s i~x, y ! 2 s̄ i#
3U

U(
x50

N21

(
y50

N21

@t i~x, y ! 2 t̄ i#
3U

. (B7)

This SNR is therefore computed as a ratio of signal third-
order moment to noise third-order moment, where signal
and noise are the bandpass-filtered difference and back-
ground images, respectively. These third-moment mea-
sures are therefore (highly restricted) samples43 of the
TCF’s of difference and background images, respectively;
notice that they are not simply equivalent to raising the
SNR of the second-moment model to the power of 1.5,
since the summations operate after the nonlinearities.

ACKNOWLEDGMENTS

M. G. A. Thomson was supported initially by the Medical
Research Council (UK) and latterly by an award to D. H.
Foster from Aston University. Additional support was
provided by the Science and Engineering Research Coun-
cil (UK) and by the Wellcome Trust (project 039958).

REFERENCES AND NOTES
1. D. J. Field, ‘‘Relations between the statistics of natural im-

ages and the response properties of cortical cells,’’ J. Opt.
Soc. Am. A 4, 2379–2394 (1987).

2. L. Sirovich and M. Kirby, ‘‘Low-dimensional procedure for
the characterization of human faces,’’ J. Opt. Soc. Am. A 4,
519–524 (1987).

3. R. J. Baddeley and P. J. B. Hancock, ‘‘A statistical analysis
of natural images matches psychophysically derived orien-
tation tuning curves,’’ Proc. R. Soc. London Ser. B 246,
219–223 (1991).

4. Consider an array of idealized (rectangular) channels, each
with low-frequency cutoff v l , high-frequency cutoff vh ,
and center frequency vc ; if vh 5 2v l , the area (in polar co-
ordinates of spatial frequency and orientation) covered by
an isotropic band of frequencies between v l and vh is a con-
stant proportion of vc

2.
5. R. L. DeValois, D. G. Albrecht, and L. G. Thorell, ‘‘Spatial

frequency selectivity of cells in macaque visual cortex,’’
Vision Res. 22, 545–559 (1982).

6. Y. Tadmor and D. J. Tolhurst, ‘‘Both the phase and ampli-
tude spectrum may determine the appearance of natural
images,’’ Vision Res. 33, 141–145 (1993).

7. M. G. A. Thomson and D. H. Foster, ‘‘Effect of phase refil-
tering on visual tuning to second-order image structure,’’
Perception 22 (Suppl.), 121–122 (1993).

8. Y. Tadmor and D. J. Tolhurst, ‘‘Discrimination of changes
in the second-order statistics of natural and synthetic im-
ages,’’ Vision Res. 34, 541–554 (1994).

M. G. A. Thomson and D. H. Foster Vol. 14, No. 9 /September 1997 /J. Opt. Soc. Am. A 2089



9. A. V. Oppenheim and J. S. Lim, ‘‘The importance of phase
in signals,’’ Proc. IEEE 69, 529–541 (1981).

10. L. N. Piotrowski and F. W. Campbell, ‘‘A demonstration of
the visual importance and flexibility of spatial-frequency
amplitude and phase,’’ Perception 11, 337–346 (1982).

11. D. J. Field, ‘‘Scale-invariance and self-similar ‘wavelet’
transforms: an analysis of natural scenes and mammalian
visual systems,’’ in Wavelets, Fractals and Fourier Trans-
forms, M. Farge, J. C. R. Hunt, and J. C. Vassilicos, eds.
(Clarendon, Oxford, 1993).

12. M. C. Morrone and D. C. Burr, ‘‘Feature detection in human
vision: a phase-dependent energy model,’’ Proc. R. Soc.
London Ser. B 235, 221–245 (1988).

13. J. H. Van Hateren, ‘‘Theoretical predictions of spatiotempo-
ral receptive fields of fly LMCs, and experimental valida-
tion,’’ J. Comp. Physiol. A 171, 157–170 (1992).

14. D. C. Knill, D. Field, and D. Kersten, ‘‘Human discrimina-
tion of natural images,’’ J. Opt. Soc. Am. A 7, 1113–1123
(1990).

15. D. J. Field, ‘‘What the statistics of natural images tell us
about visual coding,’’ in Human Vision, Visual Processing,
and Digital Display, B. E. Rogowitz, ed., Proc. SPIE 1077,
269–276 (1989).

16. J. I. Yellott, Jr., ‘‘Implications of triple correlation unique-
ness for texture statistics and the Julesz conjecture,’’ J.
Opt. Soc. Am. A 10, 777–793 (1993).

17. G. Julesz, E. N. Gilbert, L. A. Shepp, and H. L. Frisch, ‘‘In-
ability of humans to discriminate between visual textures
that agree in second-order statistics—revisited,’’ Perception
2, 391–405 (1973).

18. S. A. Klein and C. W. Tyler, ‘‘Phase discrimination of com-
pound gratings: generalized autocorrelation analysis,’’ J.
Opt. Soc. Am. A 3, 868–879 (1986).

19. M. B. Priestley, Nonlinear and Nonstationary Time-Series
Analysis (Academic, London, 1988).

20. P. Brodatz, Textures: A Photographic Album for Artists
and Designers (Dover, New York, 1956).

21. K. M. M. Prabhu and K. B. Bagan, ‘‘Variable parameter
window families for digital spectral analysis,’’ IEEE Trans.
Acoust. Speech Signal Process. 37, 946–949 (1989).

22. D. J. Tolhurst, Y. Tadmor, and Tang Chao, ‘‘Amplitude
spectra of natural images,’’ Ophthalmic. Physiol. Opt. 12,
229–232 (1992).

23. Since b is defined as the magnitude of the falloff of the
power spectrum, positive increments in b will produce
steeper power spectra.

24. D. M. Green and J. A. Swets, Signal Detection Theory
(Wiley, New York, 1966).

25. R. D. Sorkin, ‘‘Matching procedures in psychoacoustics,’’ J.
Acoust. Soc. Am. 34, 108–113 (1962).

26. D. H. Foster and W. F. Bischof, ‘‘Thresholds from psycho-
metric functions: superiority of bootstrap to incremental
and probit variance estimators,’’ Psychol. Bull. 109, 152–

159 (1991).
27. W. S. Geisler, ‘‘Sequential ideal-observer analysis of visual

discriminations,’’ Psychol. Rev. 96, 267–314 (1989).
28. H. H. Barrett, J. Yao, J. P. Rolland, and K. J. Myers, ‘‘Model

observers for the assessment of image quality,’’ Proc. Natl.
Acad. Sci. USA 90, 9758–9765 (1993).

29. J. G. Proakis, C. M. Rader, F. Ling, and C. C. Nikias, Ad-
vanced Digital Signal Processing (Macmillan, New York,
1992).

30. M. G. A. Thomson and D. H. Foster, ‘‘Phase perception and

the bispectra of natural images,’’ Opt. Photon. News 5 (No.
8, Suppl.), 110 (1994).

31. A. K. Nandi, ‘‘Robust estimation of third-order cumulants
in applications of higher-order statistics,’’ IEE Proc. F 140,
380–389 (1993).

32. S. Elgar, ‘‘Relationships involving third moments and
bispectra of a harmonic process,’’ IEEE Trans. Acoust.
Speech Signal Process. ASSP-35, 1725–1726 (1987).

33. K. J. Myers and H. H. Barrett, ‘‘Addition of a channel
mechanism to the ideal-observer model,’’ J. Opt. Soc. Am. A
4, 2447–2457 (1987).

34. M. Hubner, M. Caelli, and I. Rentschler, ‘‘Visual phase
resolution for grayscale textures,’’ Percept. Psychophys. 43,
319–325 (1988).

35. Y. Tadmor and D. J. Tolhurst, ‘‘Is the human visual system
optimized for processing natural images?’’ Perception 19

(Suppl.), A76 (1990).
36. E. Switkes, M. J. Mayer, and J. A. Sloan, ‘‘Spatial-

frequency analysis of the visual environment: anistropy
and the carpentered environment hypothesis,’’ Vision Res.
18, 1393–1399 (1978).

37. I. R. Paterson, ‘‘The information available in natural tex-
tures for classification tasks: a computation and psycho-
physical investigation,’’ Perception 22 (Suppl.), A68 (1993).

38. F. W. Campbell, R. H. S. Carpenter, and J. Z. Levinson,
‘‘Visibility of aperiodic patterns compared with that of sinu-
soidal gratings,’’ J. Physiol. (London) 204, 283–298 (1969).

39. D. J. Field and B. Olshausen, ‘‘Insights into visual coding
gained from an understanding of the statistics of natural
scenes,’’ Invest. Ophthalmol. Visual Sci. 37, 3088 (1996).

40. S. G. Mallat, ‘‘A theory for multiresolution signal decompo-
sition: the wavelet representation,’’ IEEE Trans. Pattern.
Anal. Mach. Intell. 11, 674–693 (1989).

41. One disadvantage of any nth-order bandpass observer
model computed in this way is that the DDWT samples the
nth-order correlation function of a signal in a manner that
is dictated by the Fourier-asymptotic behavior of the wave-
lets; the requirement for smooth behavior in both spatial
and spectral domains means that some contribution to the
total nth-order moment must be lost between the channels.
Thus computing the outputs of the filters defined by the
DDWT decomposition of an image will not be exactly
equivalent to summing within annular sectors of the 2-D
polar power spectra of an image. The significance of this
discrepancy was tested by computing the second-moment
model observer in both spatial and spectral domains; the
two methods produced almost identical results, and only re-
sults obtained by using the spatial method are shown here.

42. R. F. Quick, ‘‘A vector-magnitude model of contrast detec-
tion,’’ Kybernetik 16, 65–67 (1974).

43. The nth-order correlation function of a 2-D process is a
2(n 2 1)-dimensional process, whereas the output signals
produced by the wavelet transform of a 2-D process are nec-
essarily two dimensional. Bandpass model observers of or-
der 3 and higher therefore operate on progressively smaller
samples of the nth-order correlation functions, the remain-
ing nth-order information appearing as spatial correlations
between (rather than within) channels. It is possible to
elaborate a complete nth-order bandpass observer model in
the spectral domain, but for a 2-D process this is prohibi-
tively computationally intensive.44

44. V. Chandran and S. Elgar, ‘‘Bispectral analysis of 2-D ran-
dom processes,’’ IEEE Trans. Acoust. Speech Signal Pro-
cess. 35, 2181–2190 (1990).

2090 J. Opt. Soc. Am. A/Vol. 14, No. 9 /September 1997 M. G. A. Thomson and D. H. Foster


