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Neurobiology

Role of septal vasopressin innervation in paternal behavior in
prairie voles (Microtus ochrogaster)

(parental care/maternal behavior/bed nucleus of the stria terminalis/medial amygdala/oxytocin)

ZUOXIN WANG*, CRAIG F. FERRISt, AND GEERT J. DE VRIES*§

*Department of Psychology, Neuroscience and Behavior Program, University of Massachusetts, Amherst, MA 01003; and tDepartment of Physiology,
University of Massachusetts Medical Center, Worcester, MA 01655

Communicated by Susan E. Leeman, October 15, 1993

ABSTRACT After being paired with females, male prairie
voles show major changes in their social behaviors among
which is an increase in paternal responsiveness. These changes
are accompanied by fluctuations in the density of the
[Argelvasopressin-immunoreactive (AVP-ir) fibers in the lat-
eral septum, suggesting that septal AVP might be involved in
these changes. To explore a possible involvement of septal AVP
in paternal responsiveness, we tested whether injections of
saline, AVP, or the Vla receptor antagonist [1-(,&mercapto-
gB,3-cyclopentamethylenepropionic acid),2-(O-methyltyro-
sine]AVP [d(CH2)sTyr(Me)AVP] into the lateral septum influ-
enced the four most prominent paternal activities displayed by
male prairie voles; grooming, crouching over, contacting, and
retrieving pups. In a first experiment, sexually inexperienced
males received a single injection of AVP, saline, or
d(CH2)5Tyr(Me)AVP in the lateral septum, after which their
paternal responsiveness was recorded during a 10-min period.
AVP-injected animals spent more time contacting and crouch-
ing over pups, while d(CH2)sTyr(Me)AVP-injected animals
spent less time grooming pups than saline-injected animals. In
a follow-up study, one group of animals received an injection
ofAVP preceded by an injection of saline or d(CH2)5Tyr(Me)-
AVP into the lateral septum. A second group of animals
received an inijection of saline preceded by an injection of saline
or d(CH2)sTyr(Me)AVP into the lateral septum. In both
groups, animals spent less time grooming, crouching over, and
contacting pups if they had first been injected with
d(CH2)sTyr(Me)AVP. Control experiments suggested that the
effects of AVP on paternal responsiveness were dose- and
site-specific. These data suggest that septal AVP enhances
paternal responsiveness by a Via receptor-mediated mecha-
nism.

In monogamous rodent species, such as prairie voles (Mi-
crotus ochrogaster), males as well as females provide paren-
tal care (1). Although there is virtually no knowledge on the
neural basis of parental behavior in prairie voles, there is
much knowledge on the neural mechanisms underlying ma-
ternal behavior in other rodents, particularly in rats (2, 3).
However, the neural mechanisms underlying paternal behav-
ior are unknown.
One study compared, but did not find differences in,

central oxytocin binding sites between sexually naive and
maternal prairie voles (4), although it did find an induction of
oxytocin binding sites in maternal montane voles (Microtus
montanus), a promiscuous species in which males do not
provide paternal behavior (5). A recent comparison of prairie
and meadow voles (Microtus pennsylvanicus) suggested that
the [Arge]vasopressin-immunoreactive (AVP-ir) innervation
of the lateral septum may be involved in paternal behavior.
In meadow voles, another promiscuous species in which

The publication costs of this article were defrayed in part by page charge
payment. This article must therefore be hereby marked "advertisement"
in accordance with 18 U.S.C. §1734 solely to indicate this fact.

males do not provide paternal care (1, 6), the plexus ofAVP-ir
fibers in the lateral septum did not differ between fathers and
sexually inexperienced males, while in prairie voles, a mo-
nogamous species in which males do provide paternal care,
this plexus was less dense in fathers than in sexually inex-
perienced males (7). A follow-up study showed that, com-
pared with sexually inexperienced voles, the density of this
plexus is dramatically lower in males that have been paired
with females for 3 days (8), in which time they typically mate
(9). After that, the density of the plexus returns to the levels
of sexually inexperienced males, to drop again once the pups
are born (8). Preliminary evidence suggests that this reduc-
tion in AVP-ir fiber density after mating is accompanied by
an increase in AVP mRNA in the bed nucleus of the stria
terminalis (10), the most likely source of these fibers, and
therefore may reflect an increase in septal AVP release that
is not immediately followed by a restoration of the AVP-ir
content of the fibers (8).
These fluctuations in AVP-ir fiber density might be related

to changes in social behaviors. After mating, prairie voles
develop a strong partner preference and increase their ag-
gressiveness towards other conspecifics (11). A recent study
showed that intraventricular injections of AVP enhanced
these behaviors in males, whereas intraventricular injections
of an AVP antagonist blocked mating-induced increases in
these behaviors, suggesting that endogenous AVP release
contributes to mating-induced behavioral changes (12). After
mating, male prairie voles also show an increase in paternal
responsiveness (8). Although there are no data on the effects
of septal AVP injections on parental behavior, intracerebro-
ventricular injections of AVP increase maternal responsive-
ness in rats (13). Therefore, the changes in the density of the
AVP-ir fiber plexus after mating may also be related to the
changes in paternal responsiveness. Here we test the hy-
pothesis that septal AVP influences paternal responsiveness
in male prairie voles.

MATERIALS AND METHODS

The subjects were sexually inexperienced male prairie voles
from the F3/F4 generation of a breeding colony started with
field-trapped animals. Twelve males were housed in pairs in
plastic cages (44 x 24 x 20 cm) filled with peat, wood chips,
and a 10-cm hay covering under a 14 hr/10 hr light/dark cycle
at 21°C. When the animals were between 70 and 90 days old,
26-gauge stainless steel guide cannulas were implanted ste-
reotaxically aimed at the lateral septum (nosebar at 0; 1.4mm
rostral, 0.4mm unilateral, and 4 mm ventral to bregma) under
ketamine anesthesia. Three days later, each subject received

Abbreviations: AVP, [Arg8]vasopressin; AVP-ir, AVP-immunore-
active; BST, bed nucleus ofthe stria terminalis; MA, medial amygda-
loid nucleus; d(CH2)5Tyr(Me)AVP, [1-(3-mercapto-pB,3-cyclopen-
tamethylenepropionic acid),2-(O-methyl)tyrosine]AVP.
§ To whom reprint requests should be addressed.
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100-nl injections of either saline (0.9% NaCi), AVP (Sigma;
0.1 ng/100 nl of saline), or the Vla receptor antagonist
[1-(P-mercapto-,B,f-cyclopentamethylenepropionic acid),2-
(O-methyl)tyrosine]AVP [Sigma; d(CH2)5Tyr(Me)AVP; see
ref. 14; 1 ng/100 nl of saline] with a 33-gauge needle that
extended 1 mm below the guide cannula into the lateral
septum. The needle was connected to a 1-!d Hamilton syringe
through PE20 tubing. The sequence of injections was coun-
terbalanced at 2-day intervals until each subject had received
each of the three injections once (Latin-square design). For
saline and AVP injections, paternal responsiveness was
tested according to the procedure used by Gubernick and
Nelson (15). Immediately after each injection, subjects were
placed into a clean aquarium (51 x 30 x 26 cm). After 5 min
of adaptation, a 3- to 5-day-old prairie vole pup was placed in
the center of the aquarium and the behavior was recorded for
10 min. For d(CH2)5Tyr(Me)AVP, paternal responsiveness
was tested 2 hr after injection, because previous pharmaco-
logical studies had indicated that after that period
d(CH2)5Tyr(Me)AVP optimally blocks behavioral actions of
AVP (16). The durations of the four most prominent paternal
activities-i.e., grooming, crouching over, contacting, and
retrieving the pup-were recorded with an event recorder
(S&K Computer Products, Buffalo, NY). In addition, the
durations of locomotion, self-grooming, and inactivity while
not in contact with the pup were also recorded as nonsocial
activities. Each pup was used only once. One saline-injected
and one d(CH2)sTyr(Me)AVP-injected animal attacked the
pup. In these cases, the test was terminated immediately, and
the time spent in paternal activities was scored as 0 sec. Data
on the nonsocial activities were not acquired for these
animals. The data were analyzed by orthogonal Latin-square
analysis, and significant treatment effects were further ex-
amined with the post-hoc Newman-Keuls test.

In a follow-up experiment, 10 animals were housed and
implanted with guide cannulas similarly as in the first exper-
iment and injected with either d(CH2)5Tyr(Me)AVP or with
saline. Two hours later, all animals received an injection of
AVP, after which their paternal responsiveness was tested.
Two days later, this experiment was repeated in a counter-
balanced manner. In a second similarly treated group, eight
animals were injected with either d(CH2)5Tyr(Me)AVP or
saline. Two hours later all animals received an injection of
saline and their paternal responsiveness was tested. Two
days later, this experiment was repeated in a counterbalanced
manner. Differences in paternal and nonsocial activities
within these two groups were tested with a paired t test.
To characterize the dose-response relationship between

AVP and paternal responsiveness, 10 animals that were
housed and implanted with guide cannulas similarly as in the
first experiment were injected in the lateral septum with 100
nl of saline containing 0, 0.01, 0.1, 1.0, or 3.0 ng ofAVP, after
which paternal responsiveness was tested. Each subject
received a total of three injections at 2-day intervals with a
different concentration each time counterbalancing the in-
jections in the other subjects. The data were analyzed by a
one-way ANOVA and significant treatment effects were
further examined with the post-hoc Newman-Keuls test.
To test the site specificity ofthe effects ofAVP on paternal

responsiveness, five animals were implanted with guide
cannulas aimed at the lateral septum (coordinates as in the
first experiment) and seven animals with guide cannulas
aimed at the lateral ventricle (nosebar at 0; 1.8mm caudal, 1.1
mm unilateral, and 2.2 mm ventral to bregma). Each subject
was injected with saline or with 0.1 ng of AVP in 100 nl of
saline, after which paternal responsiveness was tested. Two
days later this experiment was repeated in a counterbalanced
manner. Differences in paternal responsiveness were tested
with a two-way ANOVA with site and type of injection as

FIG. 1. Photomicrograph of a dark-field-illuminated section
stained immunocytochemically for AVP. Black arrows indicate the
site of the injection. The white rimmed arrows indicated the plexus
of AVP-ir fibers in the lateral septum as). ac, Anterior commissure.
(Bar = 200 pm.)

between-subject variables. Significant interactions were fur-
ther examined with the post-hoc Newman-Keuls test.

After the behavior was recorded, all subjects were sacri-
ficed by perfusion fixation to verify injection sites histolog-
ically. Some of the sections were processed for AVP immu-
nocytochemistry (7).

RESULTS

Histological analysis showed that the needle tracks typically
ran through the medial margin of the AVP fiber plexus in the
lateral septum (Fig. 1). Therefore, none of the subjects was
excluded from the data analysis.

In the first experiment, the total time that voles spent
displaying paternal activities (the time spent on grooming,
crouching over, contacting, and retrieving combined) dif-
fered significantly per group (F = 23.83; df = 2, 14; P <
0.0001; Fig. 2). The post-hoc test indicated that voles injected
with AVP spent more time displaying paternal activities than
the other two groups. Significant differences were also found
for specific paternal activities (Table 1). Voles injected with
AVP spent more time crouching over and contacting pups
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FIG. 2. Differences in paternal responsiveness among animals
injected with AVP, saline, or the Vla antagonist. Animals injected
with vasopressin ((3) showed more paternal responsiveness than the
other two groups (a; ANOVA, P < 0.0001). Bars indicate means +
SEM.
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Table 1. Effects of AVP, saline, or the Vla antagonist on the time spent on specific paternal activities

Time, sec/10 min (mean ± SEM)

Activity AVP Saline Vla antagonist ANOVA Newman-Keuls test

Grooming 104.1 ± 18.5 86.6 ± 18.8 39.1 ± 17.1 P < 0.001 AVP, saline > Vla
Contacting 83.1 ± 34.3 6.9 ± 3.7 11.8 ± 11.6 P < 0.001 AVP > saline, Vla
Crouching 50.2 ± 19.3 8.5 ± 3.9 3.9 ± 3.1 P < 0.05 AVP > saline, Vla
Retrieving 2.1 ± 1.5 3.4 ± 1.3 4.7 ± 3.2 NS

NS, not significant.

than voles injected with saline or d(CH2)5Tyr(Me)AVP. In
addition, voles injected with d(CH2)5Tyr(Me)AVP spent less
time grooming pups than voles injected with saline or AVP.
No differences were found in pup retrieval. Injection order
had no significant effect on any of the paternal activities. In
general, time spent on nonsocial activities did not differ
among the groups except for the time spent in locomotion,
which was significantly less in AVP-injected animals than in
saline, or d(CH2)5Tyr(Me)AVP-injected animals (257.7 ±
46.4 versus 346.5 ± 30.1 and 381.1 ± 41.6 sec, respectively;
F = 12.17; df = 2, 12; P < 0.001).

In the follow-up experiment, AVP-injected voles that were
pretreated with d(CH2)5Tyr(Me)AVP spent less time display-
ing paternal activities than AVP-injected voles pretreated
with saline (t = 2.94; n = 10; P < 0.05; Fig. 3A). The same
difference was found for each specific paternal activity
except for pup retrieval (Table 2). In the second group,
saline-injected voles that were pretreated with d(CH2)5Tyr-
(Me)AVP spent less time displaying paternal activities than
saline-injected voles pretreated with saline (t = 6.85; n = 8;
P < 0.001; Fig. 3B). The same difference was found for each
specific paternal activity except for pup retrieval (Table 2). In
both experiments, no significant differences were found in
nonsocial activities.
AVP influenced paternal responsiveness in a dose-specific

manner. Voles injected with 0.1 ng ofAVP spent more time
displaying paternal activities than voles injected with saline
or with 0.01 or 3.0 ng ofAVP (F = 4.57; df = 4, 25; P < 0.01;
Fig. 4A). Similar differences were found for the time that the
voles spent grooming (F = 4.84; df = 4, 25; P < 0.01) and
contacting (F = 2.67; df = 4, 25; P < 0.05; Fig. 4B) the pups.
Although a similar trend was found in crouching over pups,
the differences were not significant. There were no differ-
ences in pup retrieval.
No interaction between site and type ofinjection was found

for the total time that voles spent displaying paternal activ-
ities. However, when the data were analyzed with a one-way
ANOVA, significant differences were found between groups
(F = 3.74; df = 3, 18; P < 0.05; Fig. 5). With voles injected

A
I

T

Saline/ Antagonist/
AVP AVP

B

Saline/ Antagonist/
saline saline

FIG. 3. (A) Differences in paternal responsiveness between an-

imals that had received an injection ofAVP preceded by an injection
of saline (Saline/AVP) or the Vla antagonist (Antagonist/AVP) (t
test, P < 0.05). (B) Differences in patemal responsiveness between
animals that had received an injection of saline preceded by an

injection of saline (Saline/saline) or the Vla antagonist (Antagonist/
saline) (t test, P < 0.001). Bars indicate means + SEM.

into the lateral septum, AVP-injected animals spent more
time displaying paternal activities than saline-injected voles,
whereas no differences were found in voles injected into the
lateral ventricles. As for the specific paternal activities, there
was a significant interaction between site and type of injec-
tion for the time spent on grooming behavior, which was
increased in voles injected with AVP into the lateral septum,
but not in voles injected with AVP into the lateral ventricle
(F = 12.96; df = 1, 18; P < 0.01; Fig. 5). No such interaction
was found in the other paternal activities. However, there
were significant treatment differences in the time spent
crouching and in pup retrieval, which was longer in AVP-
injected animals than in saline-injected animals (F = 4.28; df
= 1, 18; P < 0.05; and F = 5.42; df = 1, 18; P < 0.05,
respectively).

DISCUSSION

The results of this study show that AVP injections into the
lateral septum enhance paternal activities of sexually inex-
perienced male prairie voles in a dose-specific manner,
whereas injections of the Vla antagonist d(CH2)5Tyr-
(Me)AVP inhibit paternal activities. The effects appear to be
specific for paternal activities, since neither AVP nor
d(CH2)5Tyr(Me)AVP affected nonsocial activities in a dra-
matic way. Only in the first experiment, the time spent in
locomotion was significantly shorter in AVP-injected than in
saline- or d(CH2)5Tyr(Me)AVP-injected voles, but this may
be explained by the corresponding increase in the time spent
crouching over and contacting pups in AVP-injected animals.
Although the septal injections of AVP and its antagonists
affected grooming, crouching over, and contacting pups, they
did not affect pup retrieval. This may be due to the less
prominent role that pup retrieval plays in parental behavior
in prairie voles. As had been observed previously (1, 6), the
prairie voles did not consistently show pup retrieval even
when they showed high levels ofthe other paternal activities.
The volume and site of the septal injections suggest that

AVP and d(CH2)5Tyr(Me)AVP mainly interacted with the
AVP innervation of the lateral septum. In pilot experiments,
similar injections of 100 nl ofthionin typically showed the dye
to be confined to an area with a diameter not larger than 0.5
mm and extending about 1 mm along the cannula track. Such
injections would cover a substantial portion of the AVP fiber
plexus in the lateral septum. In rats, this area receives its
innervation mainly from the bed nucleus of the stria termi-
nalis (BST) and medial amygdaloid nucleus (MA) (17, 18).
Similarities in sex differences in this innervation suggest that
in voles these fibers also come from the BST and MA: in voles
as well as rats, these fibers are denser in males than in females
(7, 19). Given that the needle track was at the medial margin
of the AVP fiber plexus, the AVP injections probably also
spread to the medial septum. AVP and d(CH2)5Tyr(Me)AVP
could therefore have interfered with other structures-e.g.,
with the thick dispersed AVP fibers in the medial septum
which appear to be derived from a source other than the BST
(20). The differences in the effects ofAVP and saline between
animals injected into the lateral septum and lateral ventricle
further support the site specificity of the effects of AVP on
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Table 2. Interaction of AVP and the Vla antagonist (Vla) on the time spent on specific paternal activities

Time, sec/10 min Time, sec/10 min

Activity Saline/AVP V1aI/AVP t test Saline/saline Vla/saline t test

Grooming 142.7 ± 26.9 62.5 ± 20.7 P < 0.05 87.9 ± 4.1 42.1 ± 9.7 P < 0.01
Contacting 93.4 ± 29.8 22.2 ± 11.4 P < 0.05 31.5 ± 4.4 10.2 ± 3.7 P < 0.01
Crouching 42.7 ± 11.8 17.6 ± 11.8 P < 0.01 28.6 ± 9.5 1.8 ± 1.2 P < 0.05
Retrieving 0.8 ± 0.7 8.9 ± 8.8 NS 13.4 ± 8.3 0.3 ± 0.3 NS

NS, not significant.

paternal behavior. There were some effects ofAVP injections
into the lateral ventricle, however. Although such injections
did not increase the time spent grooming and contacting
pups, they appeared to increase the time spent crouching
over and retrieving pups, suggesting that AVP can influence
specific paternal activities in sites other than the lateral
septum.
The inhibiting effects of d(CH2)5Tyr(Me)AVP on sponta-

neous paternal activities and on the stimulating effects of
AVP on paternal responsiveness suggest that endogenous as
well as exogenous AVP enhances paternal responsiveness by
acting on Vla receptors. This is similar to the effects of AVP
on social recognition and thermoregulation in rats, which are
also functions in which the sexually dimorphic AVP projec-
tions of the BST and MA have been implicated (21, 22).
However, some central effects of AVP-e.g., those on cer-
tain memory functions-can be blocked with Vla as well as
V2 and/or oxytocin antagonists (23). In addition, since the
antagonist inhibited paternal activities, it is not simple to
distinguish between the intrinsic effects of the antagonist and
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a specific blockade of the effects of injected AVP. Therefore,
the pharmacological characteristics of the effects of AVP on
paternal activities have to be studied in more detail, as was
done for the effects ofAVP on flank marking in hamsters (24,
25).
The effects of the injections of AVP and its antagonist

suggest that endogenous as well as exogenous AVP can
influence all of the prominent paternal activities except for
pup retrieval. The first experiment, however, did not show
differences between d(CH2)5Tyr(Me)AVP-injected animals
and saline-injected animals in the total time that they spent
displaying paternal activities, whereas the third experiment
did show such differences. This may be related to differences
in the injection procedure. In the first experiment, the
behavior of d(CH2)5Tyr(Me)AVP-injected animals was re-
corded 2 hr after injection, while the behavior of saline-
injected animals was recorded 5 min after injection. In the
third experiment, voles in either group were injected at 2 hr
as well as at 5 min before the behavior was recorded. Since
the spontaneous paternal behavior displayed by saline-
injected animals was higher in the third than in the first
experiment, inhibiting effects of d(CH2)sTyr(Me)AVP might
have been easier to detect in the third experiment.
AVP-injected animals may have spent more time display-

ing paternal behavior than saline-injected animals in the first
experiment because injected AVP might have reached sites
involved in paternal responsiveness that would normally not
be exposed to endogenous AVP. Alternatively, the saline-
injected animals may have spent less time displaying paternal
behavior because in sexually inexperienced animals endog-
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FIG. 4. Dose-response relationship for the effects ofAVP on the
total time that voles spent displaying paternal behavior (A) and on the
time spent on specific paternal activities (B). Data points represent
means and SEM. The Greek letters over the data points represent the
post-hoc test results. Data points with the same letters did not differ
significantly.

FIG. 5. Differences in the time spent on all paternal activities
combined (Total) and on specific paternal activities-i.e., grooming,
contacting, crouching over, and retrieving pups-between animals
injected with AVP in the lateral septum (LS) (filled bars) and in the
lateral ventricle (LV) (open bar) or with saline in the lateral septum
(bars with hatching rising to the right) and in the lateral ventricle (bars
with hatching rising to the left). *, Significant interaction between site
and type of injection was only found in the time spent grooming
(ANOVA, P < 0.01). One-way ANOVA suggested differences in the
total time spent in paternal activities (P < 0.05). Greek letters over
bars represent the post-hoc test results. Bars with the same letters did
not differ significantly.
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enous AVP might not be released in quantities that would
optimally stimulate the circuits involved in paternal respon-
siveness. This would imply that if endogenous AVP release
is increased, paternal responsiveness may be increased as
well. One way in which AVP release may be increased is by
changes in gonadal hormone levels. In other male rodents,
such as rats, gerbils and mice, the density of AVP-ir inner-
vation of the lateral septum and the AVP mRNA levels in the
BST and MA-the sources of the AVP-ir innervation of the
lateral septum-correlate positively with testosterone levels
(18, 26-28). In prairie vole males, AVP-ir projections of the
BST and MA are also testosterone-dependent (29). In addi-
tion, after mating there is an increase in testosterone levels
(30) as well as in AVP mRNA labeling in the BST (10). These
data suggest that mating increases the release of AVP in the
septum of male prairie voles, which in turn may contribute to
the increase in paternal responsiveness seen three days after
mating (8). Supporting this argument is the observation that
castration of male prairie voles not only inhibits AVP syn-
thesis but also male responsiveness whereas testosterone
treatment reverses these changes (29).
AVP release in the septum may also be increased by

physiological challenges that may occur once the pups are
born. At that time prairie vole fathers will spend a consid-
erable amount of time licking their pups (6). In rats and other
rodent species, this behavior involves ingestion of salty urine
(31, 32). Since injections with hyperosmotic saline increase
the release ofAVP from the lateral septum in rats (33, 34), the
osmotic challenge caused by ingestion of salty urine may
enhance AVP release in voles as well. Another physiological
challenge associated with paternal behavior may be a puta-
tive rise in body temperature, which voles may experience
since they spend a considerable time huddled over pups (6).
In rats, such behavior raises body temperature (35). Since a
rise in body temperature also increases the release of AVP
from the lateral septum of rats (36), a putative rise in body
temperature in prairie vole fathers may increase AVP release
as well. In either case, the data of the present study suggest
that a putative increase in AVP release after pups are born
would further enhance paternal responsiveness. Although
data to substantiate these speculations are still lacking, the
clarity of the effects of AVP on paternal behavior seen in the
present study and the clear changes in the AVP projections
of male and female voles in different stages of reproduction
(7, 8) make prairie voles excellent subjects for the study of
possible links between physiology and behavior.

In summary, the involvement of AVP-ir fibers of the lateral
septum in paternal behavior in voles suggested by the results
of the current study fits earlier findings of the importance of
the septum and the sources of these fibers-i.e., the BST and
MA-in maternal behavior in rats and mice (4, 37, 38).
However, given the much denser AVP-ir projections from the
BST andMA in male than in female prairie voles, and the lack
of clear differences between maternal and sexually inexpe-
rienced females (7), AVP-ir projections of the BST and MA
may play a lesser role in parental behavior in females than in
males. The current data also fit the results of a preliminary
study which showed that lesions of the MA disrupt paternal
responsiveness in male prairie voles (39). These data have
begun to unravel the neural mechanisms underlying paternal
behavior and complement previous studies on the hormonal
correlates of this behavior in rodents (15).
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