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ABSTRACT: Depression is a chronic and debilitating illness that
interferes severely with many human behaviors, and is the leading cause
of disability in the world. There is data suggesting that deficits in serotonin
neurotransmission can contribute to the development of depression.
Indeed, >90% of prescribed antidepressant drugs act by increasing
serotonergic transmission at the synapse. However, this increase is offset
by a negative feedback operating at the level of the cell body of the
serotonin neurons in the raphe nuclei. In the present work, we
demonstrate: f irst, the intracortical infusion of ketamine induced an
antidepressant-like effect in the forced swim test, comparable to that
produced by systemic ketamine; second, systemic and intracortical
ketamine increased serotonin and noradrenaline efflux in the prefrontal
cortex, but not in the dorsal raphe nucleus; third, systemic and intracortical
administration of ketamine increased the efflux of glutamate in the
prefrontal cortex and dorsal raphe nucleus; fourth, systemic ketamine did not alter the functionality of 5-HT1A receptors in the
dorsal raphe nucleus. Taken together, these findings suggest that the antidepressant-like effects of ketamine are caused by the
stimulation of the prefrontal projection to the dorsal raphe nucleus and locus coeruleus caused by an elevated glutamate in the
medial prefrontal cortex, which would stimulate release of serotonin and noradrenaline in the same area. The impact of both
monoamines in the antidepressant response to ketamine seems to have different time frames.
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■ INTRODUCTION

Major depression, the most common of the psychiatric illnesses,
is a severe and deteriorating condition that impacts several brain
areas, impairing their normal functioning, for instance, nucleus
accumbens (reward and motivation), amygdala (fear and
anxiety), limbic system (sad mood), prefrontal cortex (cognitive
impairment), and hypothalamus (vegetative symptoms). The
serotonergic system originated in the dorsal raphe nucleus
(DRN), through its vast innervation of all these brain regions, is
in a critical position to influence these different behaviors and,
therefore, has been implicated in the etiology of depression and
its treatment.1,2 Likewise, the noradrenergic neurons concen-
trated in the nucleus locus coeruleus3 are also relevant to the
pharmacotherapy of depression.4 Although much has been
discussed in favor of or against a role of serotonin and/or
noradrenaline in depression, it is indisputable that >90% of
prescribed antidepressant drugs, the selective serotonin
reuptake inhibitors (SSRIs) and the selective noradrenaline

and serotonin uptake inhibitors (SNRIs), act by increasing these
transmitters at the synapse. Interestingly, the sustained effect of
recent antidepressant therapies, deep brain stimulation (DBS)
and ketamine, seems to depend on an intact serotonin system in
the brain.5−7However, despite the widespread use of SSRIs and
SNRIs to treat depression, there is a lack of compelling evidence
linking depression to low serotonergic and/or noradrenergic
transmission.
Two of the principal limitations of current antidepressant

drugs are their insufficient efficacy and therapeutic delay.
Indeed, it is estimated that one-third of patients do not respond
adequately to such medications.8,9 Even when there is a positive
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response, all available antidepressant drugs need to be
administered for weeks or months to evoke a significant clinical
improvement (i.e., 50% reduction of severity). More than two
decades ago, our lab demonstrated for the first time that
available antidepressant drugs increased the release of serotonin
predominantly in the raphe region.10 This excess of extracellular
serotonin therein would stimulate raphe 5-HT1A autorecep-
tors,10,11 thus leading to a reduced firing activity of serotonergic
cells, with the consequent decrease of forebrain release of
serotonin, an effect contrary to that required for the therapeutic
response.12,13 Accordingly, it was proposed that a therapy that
combined an SSRI with a 5-HT1A receptor antagonist, would
reduce the latency of the antidepressant response.14 This was
later confirmed in part by several clinical studies15 (see ref 16 for
review). However, the add-on use of 5-HT1A receptor
antagonists failed to be advantageous to treat depression
because the activation of forebrain 5-HT1A receptors is necessary
for an antidepressant response17 and, in fact, prefrontal 5-HT1A

receptors have been reported to play a role in the antidepressant
response to ketamine.18 In line with these findings, recent
preclinical work has shown that mice that overexpress 5-HT1A

receptors in the raphe region exhibit no behavioral response to
antidepressant treatment.19 In contrast, the selective reduction
of the expression of presynaptic (raphe autoreceptor), but not
postsynaptic (forebrain heteroreceptor) 5-HT1A receptors by
the use of small-interfering RNA (siRNA) targeted to serotonin
neurons evoked strong antidepressant-like effects.20 However,
this strategy has not been tested so far in the clinical setting.
In the past decade, clinical investigations have shown that the

N-methyl-D-aspartate (NMDA) receptor antagonist, ketamine,
produced a rapid (in only 2 h after a single intravenous bolus
administration) and sustained (lasting up to 7 days)
antidepressant action.21−24 This finding has shaken up the
field of pharmacotherapy for depression, thus evidencing that a
faster antidepressant response is eventually possible. Although
the mechanism of action of ketamine remains poorly under-
stood, the involvement of several cellular processes has been
uncovered. For instance, the rapid antidepressant-like action of
ketamine requires the activation of a class of ionotropic
glutamate receptors, the α-amino-3-hydroxy-5-methyl-4-isoxa-
zolepropionic acid (AMPA) receptors,25−27 and the stimulation
of mammalian target of rapamycin (mTOR), an intracellular
pathway associated with synaptic plasticity.28 Ketamine micro-
infusion into the infralimbic cortex reproduced the antidepres-
sant-like actions of systemic ketamine29,30 and the muscimol-
induced neuronal inactivation of the infralimbic prefrontal
cortex fully blocked these behavioral effects of systemic
ketamine.29 Further, the direct stimulation of AMPA receptors
in the medial prefrontal cortex (mPFC) by the full agonist (S)-
AMPA also exerted an antidepressant response and increased
the prefrontal efflux of 5-HT and glutamate.31,32 We have also
shown that both systemic and bilateral (but not unilateral),
intra-mPFC administration of ketamine increased serotonin
efflux in the mPFC.33,34 However, infusion of ketamine into the
DRN did not alter 5-HT efflux in the mPFC.35Overall this set of
results seems to support the idea that prefrontal (infralimbic) 5-
HT might contribute to the antidepressant-like effects of
ketamine. Interestingly, we recently described that DBS of the
infralimbic mPFC was able to release glutamate in the DRN,
which in turn stimulated serotonin neurons in a way that 5-HT
release occurred in the mPFC (terminal release) but not in the
DRN (somatodendritic release),31 thus precluding feedback
inhibition of 5-HT cells by activation of 5-HT1A autoreceptors.

This was consistent with the results obtained after the
optogenetic stimulation of layer five pyramidal neurons of the
mPFC29,36−38 and would ultimately contribute to the rapid
antidepressant-like response. Altogether, the important question
that emerged was: what is the precise mechanism by which the
stimulation of cortico-raphe projection (brought about by DBS,
optogenetics or ketamine) evokes a rapid antidepressant
response associated with increased prefrontal 5-HT? To solve
this issue, we first examined whether the intra-mPFC infusion
reproduced the antidepressant-like effects of systemic ketamine.
Second, we asked whether ketamine could affect noradrenaline,
5-HT, and glutamate efflux in the mPFC and DRN.

■ RESULTS

Effects of Ketamine on the FST. As depicted in Figure 1,
one-way ANOVA showed that the administration of ketamine

through both routes decreased immobility (F3,12 = 7.576; p <
0.005) and increased climbing (F3, 13 = 4.784; p < 0.02) in the
FST without changing swimming behavior. This decreased
immobility was brought about without significant changes in
locomotor activity (Figure S1). Also, as noted in a previous
study, the intra-mPFC perfusion of ketamine did not produced
hyperlocomotion.34

Effects of Ketamine on 5-HT, Noradrenaline, and
Glutamate Efflux. In the different experimental conditions of
this work no significant differences among the basal extracellular
levels of 5-HT, noradrenaline and glutamate in the mPFC and
DRN were observed. Therefore, data was pooled and shown in
Table S1. Two-way repeated measures ANOVA showed that the
systemic administration of ketamine dose-dependently in-
creased 5-HT in the mPFC (Figure 2A) as demonstrated by a
significant effect of dose (F2,15 = 6.633, p < 0.01), time (F9,135 =
10.247, p < 0.0001), and treatment × time interaction (F18,135 =
4.191, p < 0.0001). The increase of prefrontal 5-HT elicited by
the dose of 25mg/kg of ketamine was higher than that of 10mg/
kg (p < 0.03). Results expressed in area under the curve (AUC)
of the same treatments are represented in Figure 2B. In contrast,
the same dosage produced no effect on the 5-HT efflux in the
DRN (Figure 2C,D). Two-way repeated measures ANOVA also
showed that the systemic administration of ketamine increased
noradrenaline in the mPFC (Figure 3A) as demonstrated by
significant effect of treatment (F2,10 = 10.475, p < 0.005) and
treatment × time interaction (F18,99 = 2.158, p < 0.01). Results

Figure 1. Antidepressant-like effects of bilateral intra-mPFC and i.p.
administration of ketamine (KET). Both intra-mPFC (300 μM) and
systemic (10 and 25 mg/kg) ketamine decreased immobility and
increased climbing with respect to control group in the forced swim
test. *p < 0.05, post hoc Dunnett’s multiple comparison tests following
significant ANOVA; 4−6 animals per group.
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expressed in AUC of the same treatments are represented in
Figure 3B. However, no change in dialysate noradrenaline was
observed in the DRN after systemic administration of ketamine
(Figure 3C,D). Two-way repeated measures ANOVA also
showed that the systemic administration of ketamine increased
glutamate in the mPFC (Figure 4A) as demonstrated by a
significant effect of treatment (F2,23 = 37.741, p < 0.00001), time
(F9,207 = 3.256, p < 0.002), and treatment × time interaction
(F18,207 = 2.585, p < 0.001). Results expressed in AUC of the
same treatments are represented in Figure 4B. The systemic
administration of ketamine also increased extracellular gluta-
mate in the DRN (Figure 4C), as shown by the significant effect
of treatment (F2,20 = 8.638, p < 0.002), time (F9,180 = 11.054, p <
0.00001), and treatment × time interaction (F18,180 = 5.690, p <
0.00001). Results expressed in AUC of the same treatments are
represented in Figure 4D. The local infusion of ketamine (300
μM) bilaterally in the mPFC increased locally dialysate
noradrenaline (Figure 5A) [significant effect of treatment
(F3,18 = 6.864, p < 0.0005), time (F9,162 = 5.457, p < 0.0001),
and treatment × time interaction (F27,162 = 3.078, p < 0.0001)],
5-HT (Figure 5C) [significant effect of treatment (F3,16 = 8.403,
p < 0.005), time (F9,144 = 6.445, p < 0.00001), and treatment ×
time interaction (F27,144 = 2.967, p < 0.00001)] and glutamate
(Figure 5E) [significant effect of treatment (F3,20 = 9.220, p <
0.0005), time (F9,180 = 9.161, p < 0.00001), and treatment ×
time interaction (F27,180 = 4.433, p < 0.00001)]. The same results
expressed in AUC of the treatments are represented in Figures
5B, D and F. In addition, the local infusion of ketamine in the
mPFC increased the extracellular concentration of glutamate in

the DRN [significant effect of treatment (F1,12 = 13.046, p <
0.00005), time (F9,108 = 4.018, p < 0.0005), and treatment ×
time interaction (F9,108 = 5.931, p < 0.0001)], but not that of 5-
HT and noradrenaline (Figure 6).

Effects of Ketamine on 8-OH-DPAT-Stimulated
[35S]GTPγS Binding. Ketamine (10 mg/kg) was unable to
alter the stimulation of [35S]GTPγS induced by 8-OH-DPAT in
the DRN (Figure 7).

■ DISCUSSION

In this paper, we uncover a possible neurochemical mechanism
by which ketamine may exert its rapid antidepressant effects.
Here we demonstrated that both systemic and intracortical
administration of ketamine elicits a rapid antidepressant-like
response in the FST, in line with previous work.29,30 In contrast
to what results from SSRIs treatment (increased swimming
response in rats39), increased climbing was observed 30 min
after the administration of ketamine, which suggests that the
rapid antidepressant-like response of ketamine might be rather
due to a stimulation of noradrenaline transmission, which was
also found herein. In line with the present results, previous work
also reported that subanesthetic doses of ketamine increased the
release of not only 5-HT,33,34 but also noradrenaline40 as well as
glutamate41 in the mPFC. Interestingly, ketamine increased
swimming behavior when FST was conducted 24 h after drug
administration,7which concurs with previous work showing that
short-term antidepressant response of ketamine is independent
of serotonergic transmission.6

Figure 2. Systemic (i.p.) administration of ketamine (KET) dose-dependently increased dialysate concentration of 5-HT in the mPFC (A,B), but had
no effect on dialysate 5-HT in the DRN (C,D). *p < 0.002, post hoc Tukey’s multiple comparison tests after significant ANOVA. Number of animals in
parentheses and inserted in the bars.
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It is well-known that SSRIs elevate 5-HT transmission.
However, this occurs first in the DRN before taking place in
serotonergic nerve endings,42 which would act as a brake of
inducing forebrain 5-HT release and the subsequent anti-
depressant response. This effect has been proposed as being
responsible of the delayed therapeutic action of these drugs.14

Recently, it has been shown that the optogenetic stimulation of
prefrontal projection to the DRN evokes antidepressant
effects,36−38 thus reproducing those elicited by intracortical
administration of ketamine.29 Interestingly, the systemic
administration of ketamine increased substantially 5-HT efflux
in the mPFC, but not in the DRN, coincident with previous
work in mice7 and similarly to what occurs after DBS of the
infralimbic cortex.31 This absence of alteration in extracellular 5-
HT in the DRN was coincident with the finding that ketamine
was unable to alter the stimulation of [35S]GTPγS induced by 8-
OH-DPAT in the DRN. This strengthened the notion that
ketamine did not modify the function of 5-HT1A autoreceptors
in the present experimental conditions, thus suggesting that the
autoinhibitory control of raphe 5-HT1A receptors was not
altered. Further, systemic ketamine also stimulated the efflux of
noradrenaline and glutamate in the mPFC, but only that of
glutamate in the DRN. The lack of changes in 5-HT and
noradrenaline efflux in the DRN suggests that ketamine do not
stimulate evenly all noradrenergic and serotonergic neurons in
the locus coeruleus and the DRN, respectively, but only
subpopulations of them that project specifically to the mPFC. It
has to be noted also that an action of ketamine in other regions
that provide stimulatory input to the DRN43 cannot be ruled

out. Therefore, we hypothesize that ketamine activates mPFC,
layer 5 pyramidal neurons that impact on noradrenergic and
serotonergic neurons that project back to themPFC. Two sets of
investigations give further support to our view. First, recent
evidence has shown that a subpopulation of mPFC gluta-
matergic neurons send axonal innervations to the DRN and
locus coeruleus and acute pharmacogenetic activation of these
neurons has antidepressant-like effects.44 Second, ketamine
increased AMPA-induced firing activity of pyramidal neurons,45

and the activation of such neurons releases glutamate in the
DRN that also stimulates AMPA receptors localized to
serotonergic neurons,35,46,47 which eventually evokes release of
serotonin and stimulated 5-HT1A receptors in the mPFC.18 Our
results further indicate that ketamine also exerts a similar
influence upon noradrenergic neurons of the locus coeruleus.
Changes in 5-HT and noradrenaline levels cannot be attributed
to direct effects of 5-HT and/or noradrenaline transporters as
earlier suggested48 because recent publications49,50 and the Ki

database from the National Institute of Mental Health
Psychoactive Drug Screening Program (NIMH PDSP,
https://pdsp.unc.edu/databases/kidb.php) have distinctly evi-
denced that ketamine displays no affinity for rat 5-HT and
noradrenaline transporters.
The infusion of ketamine directly into the DRN did not

change dialysate 5-HT and glutamate in the DRN and mPFC, in
line with previous work,35 which is concordant with the paucity
of NMDA receptors found in this nucleus.51 Thus, this is a
scenario comparable to what we found following DBS of the
infralimbic cortex, i.e., the activation of corticofugal neurons to

Figure 3. Systemic (i.p.) administration of ketamine (KET) dose-dependently increased dialysate concentration of noradrenaline in the mPFC (A,B),
but had no effect on dialysate noradrenaline in the DRN (C,D). Only the dose of 25mg/kg ketamine elevated extracellular noradrenaline in the mPFC.
*p < 0.01, post hoc Tukey’s multiple comparison tests after significant ANOVA. Number of animals in parentheses and inserted in the bars.
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DRN determines the stimulation of serotonergic cells without
producing an efflux of 5-HT in the DRN. Further, the systemic52

and intra-mPFC31 administration of AMPA agonists evoked a
rapid antidepressant effect in the FST. In contrast, the infusion
of AMPA into the DRN did not produce any local change in the
extracellular concentration of 5-HT,35,53 but the intra-DRN
injection of an AMPA receptor antagonist, abolished the
increased efflux of 5-HT in the mPFC after systemic ketamine.35

Indeed, both systemic and intracortical administration of
ketamine increased the percentage of 5-HT cell bodies in the
DRN showing c-Fos immunoreactivity, an effect blocked by
microinjection of an AMPA receptor antagonist into the
mPFC.30 Although further research is needed to ascertain
what mechanism is responsible for this particular kind of DRN
stimulation, our results are coincident with those of Blier’s group
showing that enhanced 5-HT neurotransmission can be
observed in projection areas after acute ketamine administration
without changes in the firing activity of 5-HT neurons in the
DRN.45 Alternatively, it is also possible that the release of
glutamate in the DRN could increase the firing activity of a
subset of serotonergic neurons without a concomitant
somatodendritic release of 5-HT in the nucleus. The influence
upon noradrenergic neurons in the locus coeruleus would have a
dissimilar mechanism inasmuch as ketamine did increase
noradrenergic firing rate and bursting activity.45

■ CONCLUSION

In summary, although the monoamine deficiency hypothesis of
depression has been questioned, the role of serotonin has

regained importance because recent findings show that the
sustained antidepressant response of glutamatergic drugs such as
ketamine depend upon an intact serotonergic system. In the
present work, we suggest that the rapid-antidepressant action of
ketamine might rather be due to increased efflux of glutamate
and noradrenaline in the mPFC, whereas 5-HT would be
responsible for a more sustained effect of the drug.

■ METHODS

Animals.Male Wistar rats (Charles River Laboratories, Cerdanyola
del Valles̀, Spain) weighing 280−350 g (two-month old) were used.
The rats were maintained in a controlled environment (12 h light/dark
cycle, 22 ± 1 °C ambient temperature) where food and water were
always available. All the experimental procedures were conducted in
accordance with national (RD 53/2013) and European legislation
(Directive 2010/63/EU, on the Protection of Animals Used for
Scientific Purposes, 22 September 2010), and were approved by the
Institutional Animal Care and Use Committee of the University of
Barcelona.

Drugs and Reagents. Ketamine hydrochloride (Ketolar) was
purchased from Pfizer and diluted to appropriate doses (10 and 25 mg/
kg) with saline for intraperitoneal (i.p.) administration. For intracortical
infusion, Ketolar was diluted with artificial cerebrospinal fluid (aCSF,
see below for composition) to a concentration of 300 μM or 3 mM.
Standards of noradrenaline, 5-HT, and glutamate, GTPγS and HPLC
and other reagents were purchased from Sigma-Aldrich (Tres Cantos,
Spain), and 8-OH-DPAT was obtained from Tocris Biosciences
(Abingdon, UK). Guanosine-5′-O-(3-[35S]thio) triphosphate ([35S]-
GTPγS) was purchased from PerkinElmer (Waltham, MA).

Forced Swim Test (FST). The FST was conducted as previously
described by Cryan and co-workers.54 Rats were handled daily for 1

Figure 4. Systemic (i.p.) administration of ketamine (KET) dose-dependently increased dialysate concentration of glutamate in the mPFC (A,B) and
in the DRN (C,D). *p < 0.01 different from control and #p < 0.05 different from the dose of 10mg/kg, post hoc Tukey’s multiple comparison tests after
significant ANOVA. Number of animals in parentheses and inserted in the bars.
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week before FST. On day 1 (pretest), rats were placed in a clear

plexyglas cylinder (46 cm height, 20 cm diameter) filled with 24± 1 °C

water to a height of 30 cm, for 15 min. After this pretest, animals were

returned to their home cages and dried under a lamp for 30 min. The

test was conducted and videotaped (ANY maze, Stoelting Europe,

Dublin, Ireland) 24 h after the pretest session in the same cylinder for 5

min immediately following 1 h perfusion of ketamine bilaterally into the

mPFC or 30 min after systemic administration of the drug (10 or 25

mg/kg).We chose 30min after drug administration because at this time

point the effect of ketamine on cortical transmitters is maximal.33,40,41

The 5 min test session was divided into 5 s epochs. At the end of each

epoch the predominant behavior was rated as immobility, climbing and
swimming by an experimenter blind to the treatment.

Locomotor Activity. To check for unspecific changes in gross
activity that would mask FST observations, locomotor activity was
measured in an open field arena (100 cm × 100 cm × 40 cm) with
plastic walls dimly lighted, and recorded during 10 min with a video
camera connected to a computer (ANY maze).

Microdialysis Procedures. Concentric dialysis probes with a 4
mm Cuprophan (pore size 10 000 Da) membrane length were
implanted bilaterally under 60 mg/kg i.p. pentobarbital anesthesia in
the mPFC (AP +3.2 mm, L ±0.6 mm, DV −6.0 mm; from bregma),
according to reference atlas.55 In another set of microdialysis

Figure 5. Bilateral intra-mPFC infusion of 300 μM ketamine for 2 h in the mPFC increased the extracellular concentration of noradrenaline (A,B), 5-
HT (C,D), and glutamate (E,F) in the mPFC of both hemispheres. *p < 0.05, post hoc Tukey’s multiple comparison tests after significant ANOVA.
Number of animals in parentheses and inserted in the bars.
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experiments, two probes were implanted in themPFC and a third probe
with a 2 mm Cuprophan membrane length was implanted in the dorsal
raphe nucleus (DRN) (AP −7.8 mm, L −3.1 mm, DV −7.8 mm, with
an angle of 30° to avoid the aqueduct). Microdialysis experiments were
conducted 48 h after surgery in freely moving rats by continuously
perfusing probes with aCSF (147mMNaCl, 3 mMKCl, 1.2 mMCaCl2,
1.2 mMMgCl2) at a rate of 1 μL/min. Dialysate samples of 20 μL were
collected in microvials containing 5 μL of 10 mM perchloric acid, every
20 min. At the completion of experiments, rats were given an overdose
of sodium pentobarbital and the brains were then rapidly removed,
frozen on dry ice, and stored at −80 °C. Tissue sections were cut on a
cryostat and probe placements were confirmed in histological sections
stained with cresyl violet dye. Experimental data frommisplaced probes
were discarded. Noradrenaline, 5-HT and glutamate were determined
using an Alexys Analyzer (Antec Scientific, Leiden, The Netherlands)
following manufacturer’s methods.
[35S]GTPγS Autoradiography of 5-HT1A Receptor Function-

ality. Coronal brainstem sections (14 μm thick) were cut at −20 °C
using a cryostat and thaw-mounted in slides and stored at −20 °C until
used for [35S]GTPγS binding assays. Labeling of brain sections was
carried out as described previously56 with some modifications. Slide-
mounted sections were preincubated for 30min at room temperature in
a buffer containing 50mMTris-HCl, 0.2 mMEGTA, 3mMMgCl2, 100
mMNaCl, 1 mMDL-dithiothreitol and 2 mMGDP at pH = 7.7. Slides
were subsequently incubated, for 2 h, in the same buffer containing
adenosine deaminase (10 mU/mL) with [35S]GTPγS (0.04 nM), and
consecutive sections were also coincubated with 8-OH-DPAT (10
μM). Nonspecific binding was determined in the presence of 10 μM
GTPγS. After the incubation, the sections were washed twice for 15min
in cold 50 mM Tris-HCl buffer (pH = 7.4) at 4 °C, rinsed in cold
distilled water, and then dried under a cold air stream. Sections were
exposed to autoradiographic film (Carestream Health, New York, NY)
together with 14C microscales (Amersham) at 4 °C for 2 days.
Autoradiograms were analyzed and quantified using a computerized
image analysis system (Scion Image, Scion Corporation, MD).
Autoradiographic values of net agonist-stimulated [35S]GTPγS binding

were calculated by subtracting basal binding from 8-OH-DPAT-
stimulated binding. Data are expressed as percentage of agonist-
stimulated binding over basal activity (100%).

Statistics. Data are expressed as mean ± SEM. FST data was
analyzed by one-way analysis of variance (ANOVA) followed by post
hoc Dunnett’s tests for each behavior. Unless otherwise specified,
microdialysis data were usually analyzed by two-way ANOVA for
repeated measures, with treatment and time as main factors, followed
by Tukey’s post hoc tests. When only two variables were compared,
two-tailed Student’s t test was used. In all cases, the level of significance
was set at p < 0.05.
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