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ABSTRACT Viroporins are viral proteins with ion channel (IC) activity that play an

important role in several processes, including virus replication and pathogenesis.

While many coronaviruses (CoVs) encode two viroporins, severe acute respiratory

syndrome CoV (SARS-CoV) encodes three: proteins 3a, E, and 8a. Additionally, pro-

teins 3a and E have a PDZ-binding motif (PBM), which can potentially bind over 400

cellular proteins which contain a PDZ domain, making them potentially important

for the control of cell function. In the present work, a comparative study of the

functional motifs included within the SARS-CoV viroporins was performed, mostly fo-

cusing on the roles of the IC and PBM of E and 3a proteins. Our results showed that

the full-length E and 3a proteins were required for maximal SARS-CoV replication

and virulence, whereas viroporin 8a had only a minor impact on these activities. A

virus missing both the E and 3a proteins was not viable, whereas the presence of ei-

ther protein with a functional PBM restored virus viability. E protein IC activity and

the presence of its PBM were necessary for virulence in mice. In contrast, the pres-

ence or absence of the homologous motifs in protein 3a did not influence virus

pathogenicity. Therefore, dominance of the IC and PBM of protein E over those of

protein 3a was demonstrated in the induction of pathogenesis in mice.

IMPORTANCE Collectively, these results demonstrate key roles for the ion channel

and PBM domains in optimal virus replication and pathogenesis and suggest that

the viral viroporins and PBMs are suitable targets for antiviral therapy and for muta-

tion in attenuated SARS-CoV vaccines.
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Coronaviruses (CoVs) are pathogens responsible for a wide range of existing and

emerging diseases in humans and domestic or companion animals (1). A CoV

causing the severe acute respiratory syndrome (SARS-CoV) was identified in Southeast

China in 2002 and rapidly spread worldwide to more than 30 countries within

6 months, infecting more than 8,000 people, with mortality in approximately 10% of the

cases (2, 3). While SARS-CoV has not since reappeared in humans, other CoVs, including

ones similar to SARS-CoV, are widely disseminated among bats circulating all over the

world, making future outbreaks possible (4–6). In fact, a novel CoV, the Middle East

respiratory syndrome coronavirus (MERS-CoV), was identified in September 2012 in two

human patients with severe respiratory disease in Saudi Arabia (7, 8); since then, the

WHO has reported 2,144 laboratory-confirmed cases and at least 750 deaths (as of
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29 March 2018) (http://www.who.int/emergencies/mers-cov/en/). These data indicate

that emergence of other highly pathogenic CoVs is likely and thus that the study of the

virus-host interaction is essential to develop antiviral therapies and safe vaccines.

Viroporins constitute a large class of multifunctional viral proteins with ion channel

(IC) activity that are widely distributed among different viral families (9); highly patho-

genic human viruses such as human immunodeficiency virus 1 (HIV-1), hepatitis C virus

(HCV), influenza A virus (IAV), rotavirus (RV), enterovirus, and CoVs such as SARS-CoV

and MERS-CoV encode them (10–16). Viroporins promote several steps of the virus

replication cycle, including entry, genome replication, morphogenesis, and release from

the infected cell (17, 18). Several viroporins have important roles in viral pathogenesis,

promoting ion imbalances within cells (13, 19–21) or disrupting cellular pathways

through protein-protein interactions (22). Given their potential as antiviral targets, there

is substantial interest in the study of these proteins (18, 23).

Several CoVs, such as MERS-CoV, HCoV-229E, HCoV-OC43, and porcine epidemic

diarrhea virus (PEDV), encode two viroporins (24–26), but, remarkably, SARS-CoV en-

codes three: proteins 3a, E, and 8a (14, 27, 28). The 3a protein is 274 amino acids (aa)

in length with three transmembrane domains (TMDs). It is the largest SARS-CoV

accessory protein and is likely involved in virus release (27) and pathogenesis (29). It

causes membrane rearrangements in infected cells, leading to an increase in levels of

intracellular vesicles that may facilitate nonlytic release of viral particles (30). Further-

more, it colocalizes with M protein, which, together with E protein, is essential for virus

assembly, supporting the notion that the 3a protein is important for SARS-CoV assem-

bly or budding (31, 32). However, most studies have been based on 3a overexpression

and little is known about the relevance of this protein in the context of natural

infection.

SARS-CoV E protein is an integral membrane protein of 76 aa with only one TMD.

The residues responsible for E protein IC activity have been previously identified (33,

34). E protein IC activity is important for SARS-CoV fitness and pathogenesis, since both

were diminished in its absence (34).

The 8a protein found in SARS-CoV-infected human cells resulted from a 29-

nucleotide (nt) deletion in open reading frame 8 (ORF8) that occurred after the virus

crossed species to infect humans (35). ORF8 genes encode two proteins, ORF8a and

ORF8b, which represent proteins of 39 and 84 aa, respectively. Overexpression assays

showed that ORF8a induces apoptosis through a mitochondrion-dependent pathway

(36) and has IC activity (28).

Viroporins and cellular IC proteins often rely on protein-protein interactions for

clustering of ICs at proper locations in the cell (37–39). These interactions are mediated

between PDZ domains and PDZ-binding motifs (PBMs), peptide sequences that are

most frequently located at the C terminus of the IC proteins (40, 41). PDZ domains are

protein recognition sequences, 80 to 90 aa in length, and constitute a large family of

globular domains found in prokaryotes and eukaryotes. There are more than 400

cellular protein isoforms containing a PDZ domain in the human proteome (42). The

PBM core sequence includes 4-aa residues, numbered from the C terminus (p0), which

is always hydrophobic, to the N terminus (p-1, p-2, and p-3). There are three classes of

PBMs, depending on the identity of residue p-2: class I for Thr/Ser, class II for any

hydrophobic residue, and class III for Glu/Asp. Protein-protein interactions involving

PDZ domains modulate cellular pathways important for viral replication, dissemination

in the host, and pathogenesis (43). Furthermore, some PDZs also bind PBMs located in

the internal region of proteins or lipids (44, 45). Of the three SARS-CoV viroporins, both

proteins 3a and E have a class II PBM at their C terminus; while the PBM of E protein is

involved in pathogenesis (46, 47), the role of the PBM of protein 3a, and of similar

motifs present in other CoV proteins such as MERS-CoV proteins E and 5, remains

unknown.

In the present work, using mutational analysis, we showed that only the 3a and E

proteins were clearly involved in SARS-CoV replication and virulence. Neither single

deletion of the IC activity or of PBM from protein 3a diminished SARS-CoV replication
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and virulence, in contrast with E protein, which required both for virulence (34, 46).

Protein 3a IC activity was characterized in planar lipid bilayers, showing that it forms

non-voltage-gated ion channels. Furthermore, we identified residues located in TMD2

and TMD3 of the 3a protein that were involved in its IC activity. The potential

interdependence of the three viroporins described in SARS-CoV was studied by dele-

tion of single viroporins or of different combinations of two viroporins. The variant

missing both the 3a and E proteins was not viable, indicating that the presence of at

least one of the proteins is essential for virus viability. Furthermore, it was shown that

either protein should maintain its PBM to compensate for the absence of the other

full-length protein. These results suggest that PBMs interact with cellular proteins with

PDZ domains to change cell metabolism, enhancing virus replication or pathogenicity.

Identification and inhibition of specific cellular pathways affected by these interactions

may be crucial for the identification of new antiviral strategies.

RESULTS

SARS-CoV viroporins E and 3a were required for efficient replication in vitro

and in vivo. To study the role of the SARS-CoV viroporins in virus replication and

virulence, three mutant viruses, each lacking one gene (recombinant SARS [rSARS]-

CoV-MA15-Δ3a, -ΔE, and -Δ8a), were engineered from a mouse-adapted infectious

cDNA clone (MA15) (48, 49). Analysis of the growth kinetics of each mutant in Vero E6

cell supernatants (Fig. 1A) was used to determine their requirement for replication.

Cell-associated virus was also analyzed at 24 and 48 h postinfection (hpi), showing

results similar to those observed for the released virus (see Fig. S1 in the supplemental

material). The Δ3a and ΔE mutants grew to lower titers than the parental wild-type (wt)

virus (Fig. 1A). However, while the ΔE mutant showed 100-fold-lower titers (around 8 �

105 PFU/ml), Δ3a titers decreased slightly (3-fold) (3 � 107 PFU/ml). These results show

that both proteins were required for optimal virus replication in cell culture. In contrast,

the Δ8a virus reached peak titers (9 � 107 PFU/ml) similar to those observed for the

parental virus.

To evaluate the requirement for protein 3a, E, or 8a for optimal virus growth in vivo,

BALB/c mice were infected either with rSARS-CoV-MA15 or with each of the viroporin

deletion mutants SARS-CoV-MA15-Δ3a, -ΔE, and -Δ8a, and viral titers in lungs were

determined at 2 and 4 days postinfection (dpi) (Fig. 1B). The highest titers were reached

at 2 dpi, and the titers decreased in all cases by between 5-fold and 40-fold at 4 dpi,

with the parental and Δ8a viruses achieving the highest titers in lung tissue (around

108 PFU/g at 2 dpi and 2 � 107 PFU/g at 4 dpi). However, compared to the parental

virus, titers were reduced by 1 and 2 log units in the case of Δ3a and ΔE virus,

respectively. Interestingly, the decrease in virus titers after SARS-CoV-MA15-Δ3a infec-

tion was greater in vivo than in vitro. Thus, proteins E and 3a were shown to be critical

for both in vitro and in vivo virus replication.

SARS-CoV viroporins E and 3a were both associated with virulence in a mouse

model. To evaluate the relevance of SARS-CoV E, 3a, and 8a viroporins for virulence,

BALB/c mice were either subjected to mock infection or infected with parental rSARS-

CoV-MA15 or with one of the deletion mutants rSARS-CoV-MA15-Δ3a, -ΔE, and -Δ8a.

Clinical disease and survival were monitored through 10 dpi (Fig. 2). Mice infected with

viruses lacking either E protein or 3a protein recovered from infection with 100%

survival, although mice infected with the Δ3a virus showed mild disease symptoms. In

contrast, mice infected with the parental virus or the Δ8a virus developed manifesta-

tions of serious disease (lethargy and ruffled fur) starting from 2 dpi. These mice all died

by 6 dpi, clearly showing that both E and 3a proteins were involved in SARS-CoV

virulence in the mouse model, while 8a did not seem to play a major role.

Characterization of the IC activity of protein 3a in planar lipid bilayers. The IC

activity of protein E is required for SARS-CoV replication and virulence (34). However, as

the relevance of the IC activity of the 3a protein was not known, we studied 3a protein

in planar lipid bilayers and identified the amino acids involved in ion conductance. This

system was used because its high sensitivity allows the detection of electric currents of
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a single ion channel (50). To this end, a baculovirus was engineered to express the

parental 3a protein in Sf-9 cells. Conductance of purified protein 3a was evaluated in

the presence of KCl in planar lipid bilayers with a biologically relevant mix of

1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)/1,2-dioleoyl-sn-glycero-3-phospho-

L-serine (DOPS)/1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) with ratios of

3:1:1 (wt/wt), which is a composition similar to that of intracellular organelle mem-

branes, such as the endoplasmic reticulum (ER)-Golgi intermediate compartment (ER-

GIC). Single-channel conductance was estimated from a statistical analysis of the

current jump amplitudes. This procedure allows a reliable estimate of the most prob-

able value of current change every time a new channel is inserted or disappears.

Although several channels were being inserted, the magnitude of the current through

a single channel could be discriminated. Current jumps corresponding to 201 inde-

FIG 1 Growth kinetics of SARS-CoV viroporin-defective mutants. (A) Subconfluent monolayers of Vero E6

cells were infected with wild-type (WT) (black filled circles), ΔE (blue filled squares), Δ3a (red filled circles),

and Δ8a (green filled diamonds) SARS-CoV at a MOI of 0.001. Culture supernatants were collected at 4,

24, 48, and 72 hpi and titrated by plaque assay. The results are representative of three replicate

experiments. (B) Groups of six 16-week-old BALB/c mice were infected with 100,000 PFU of either the

parental virus (WT, black columns) or genetically engineered viruses lacking E protein (ΔE, blue columns),

3a protein (Δ3a, red columns), or 8a protein (Δ8a, green columns). At 2 and 4 dpi, 3 mice from each group

were sacrificed to determine lung virus titers. Data summarize two replicate experiments. Data represent

means � standard deviations (SD). *, P value �0.1; **, P value �0.01; ***, P value �0.001.
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pendent events were measured under conditions of an applied voltage of �100 mV.

Histograms of the current jump amplitudes of the recorded traces showed that the

most frequent events corresponded to single-channel conductance of 16 pA (Fig. 3A

and B). Simultaneous bursts of two or three 3a ion channels were also observed,

although with much lower frequency (Fig. 3B).

To test if 3a behaves as a voltage-gated IC, its activity was also measured in planar

lipid bilayers under conditions of different voltages in the presence of monovalent

(NaCl) and divalent (CaCl2) cations (Fig. 3C). In all cases, a linear current-voltage (I-V)

relationship was obtained, demonstrating that the channel displayed resistance (ohmic)

behavior for both positive and negative potential. These results indicate that the

protein 3a IC was neither open nor closed at specific electric potentials.

Measurement of the reversal potential (Erev) of an ion channel, which is defined as

the voltage that needs to be applied to yield zero electric current when there is an ion

concentration gradient across the membrane, is the method of choice to quantify ion

selectivity. Determination of the sign of the Erev provides a quick estimation of the

channel selectivity, that is, of its preference for cations or anions (51, 52). By comparing

the measured Erev to the theoretical Erev that would be obtained in the case of a neutral

pore (i.e., representing only the difference between cation and anion intrinsic mobili-

ties), the selectivity of the ion channel can be inferred. The theoretical Erev is calculated

using the Goldman-Hodgkin-Katz (GHK) equation, replacing the permeability ratio

P
�
/P

�
by the solution diffusion coefficient ratio D

�
/D

�
(53). Higher, lower, or similar

measured Erev values indicate anion selectivity, cation selectivity, or no selectivity,

respectively. Interestingly, in the presence of monovalent ions (Na� and K�), the

protein 3a IC showed weak cation selectivity. However, in the presence of Ca��, the

channel behaved as a neutral channel with no preference for anions or cations

(Table 1). Taken together, these results indicated that at least Na�, K�, and Ca�� were

conducted through the 3a protein IC.

Identification of amino acids involved in protein 3a IC activity. In order to

identify the amino acids necessary for protein 3a IC activity, a set of recombinant

baculoviruses (rBV) expressing mutated 3a proteins was engineered. Amino acid sub-

stitutions were created to disrupt the IC activity of 3a with minimal impact on its

three-dimensional structure, mutating residues predicted to face the lumen of the pore.

As the 3a protein structure has not yet been experimentally determined, in silico

models were used to select the residues potentially facing the lumen of the pore (54,

55). As the 3a protein has three TMDs, mutants with changes to a single TMD (TMD1�,

TMD2�, or TMD3�) or to two TMDs (TMD[2,3]�) were engineered (Table 2). Mutant 3a

FIG 2 Virulence of SARS-CoV viroporin-defective mutants. Groups of five 16-week-old BALB/c mice were

subjected to mock infection (PBS, gray filled circles) or infected with 100,000 PFU of either the parental virus (wt,

black filled circles) or genetically engineered viruses missing E protein (ΔE, blue filled squares), 3a protein (Δ3a,

red filled circles), or 8a protein (Δ8a, green filled diamonds). Mean levels of weight loss (left graph) and survival

(right graph) through 10 dpi are shown for each group. Data summarize two replicate experiments with

equivalent results. Error bars represent the standard deviations of mouse weight data.
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proteins were expressed in insect cells and purified, and their IC activity was evaluated

in planar lipid bilayers (Fig. 4). The TMD1� mutant retained IC activity, but the TMD2�,

TMD3�, and TMD[2,3]� variants did not, consistent with the importance of TMD2 and

TMD3, as predicted by in silico models (54, 55).

FIG 3 Characterization of the SARS-CoV 3a protein ion channel. (A) Recording of a single-channel insertion of SARS-CoV

3a protein. (B) Histogram of current jump amplitude (right) at �100 mV in 500 mM KCl, composed of values from 201

recording events. (C) SARS-CoV 3a protein voltage-independent ion channel. The 3a protein showed a linear current-voltage

relationship. Displayed data correspond to representative I-V plots from reversal potential experiments performed with

500/50 mM solutions of monovalent (NaCl, red filled squares) and divalent (CaCl2, blue filled triangles) cations. Each

experiment was performed at least three times; the lines represent linear regression fits of data points.

TABLE 1 Results of protein 3a reversal potential experiments performed with 500/50 mM

salt solutions

Ion solution

Erev (mV)a

Experimental Reference

NaCl �19.1 � 14.8 �8.86

KCl �13.0 � 4.0 �0.73

CaCl2 �18.8 � 6.0 �20.3

aExperimental reversal potential (Erev) values represent the averages of results from at least 7 independent

experiments. Reference Erev values represent theoretical values for a neutral pore.
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To resolve the exact residues necessary for protein 3a IC activity, a complementary

set of baculoviruses incorporating single amino acid substitutions within mutants

TMD2� (Y91A and H93A) and TMD3� (Y109A, Y113A, and Q116A) was generated. These

mutant proteins were expressed and purified, and their IC activity was evaluated. TMD2

point mutants Y91A and H93A and TMD3 point mutant Y109A completely abrogated

protein 3a IC activity, whereas TMD3 point mutants Y113 and Q116 showed conduc-

tance that was equivalent to and only moderately decreased from that seen with the

wt protein, respectively. Therefore, these results identified 3 amino acids that could be

mutated to eliminate protein 3a IC activity.

Protein 3a IC activity was not required for SARS-CoV replication and virulence.

To study the relevance of protein 3a IC activity in virus replication and virulence, the

following collection of full-length rSARS-CoVs with and without protein 3a IC activity

was generated by introducing specific mutations into the 3a gene: rSARS-CoV-MA15-

3a-TMD1�, -TMD2�, -TMD3�, -TMD[2,3]�, -Y91A, -H93A, -Y109A, -Y113A, and -Q116A.

All these viruses were similar with respect to growth kinetics in Vero E6 cells (Fig. 5A),

indicating that replication was not significantly affected by altered protein 3a IC activity.

The requirement for protein 3a IC activity in vivo was also studied by measuring the

titers of 3a IC mutants in the lungs of infected BALB/c mice at 2 and 4 dpi (Fig. 5B). Peak

titers were reached at 2 dpi and had decreased by around 1 log unit at 4 dpi in all cases.

Every mutant showed replication levels similar to those seen with the wt strain (around

1 � 107 PFU/g of lung tissue at 2 dpi and 4 � 106 PFU/g at 4 dpi), with the exception

TABLE 2 3a protein ion channel mutations

Mutant Mutations

TMD1� S40A, S58A

TMD2� Y91A, H93A

TMD3� Y109A, Y113A, Q116A

TMD[2,3]� Y91A, H93A, Y109A, Y113A, Q116A

FIG 4 Effect of mutations on the ion channel activity of SARS-CoV 3a protein. Recombinant 3a protein

variants were reconstituted in artificial lipid bilayers, and their IC activity was tested in 500 mM KCl

solutions. Mean conductance values were measured for variants showing IC activity. Negative control

(C�) data indicate conductance values obtained in the absence of any protein; error bars represent the

standard deviations of data obtained in at least 100 independent measurements.
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of TMD3�, which had titers at least 1 log unit lower than those seen with the rest of the

viruses (3 � 106 PFU/g at 2 dpi and 1 � 104 PFU/g at 4 dpi) (Fig. 5B). These results

indicated that protein 3a IC activity was not essential for SARS-CoV replication in mouse

lungs.

The requirement of protein 3a IC activity for SARS-CoV virulence was studied in two

independent experiments. In the first, BALB/c mice were infected with rSARS-CoV-MA15

(virulent virus control), rSARS-CoV-MA15-Δ3a (attenuated virus control), or one of the

rSARS-CoV mutants TMD1�, TMD2�, TMD3�, and TMD[2,3]� (Fig. 6A), with clinical

FIG 5 Growth kinetics of SARS-CoV mutants targeting 3a protein ion channel activity. (A) Subconfluent

monolayers of Vero E6 cells were infected at a MOI of 0.001 with wild-type SARS-CoV (WT, black filled

circles) or with variants with mutations affecting 3a protein TMD1 (TMD1-, light green filled circles), TMD2

(TMD2-, light blue filled triangles), TMD3 (TMD3-, ochre filled triangles), or both TMD2 and TMD3

(TMD[2,3]-, light brown filled triangles) or residue Y91 (Y91A, purple filled diamonds), residue H93 (H93A,

deep blue filled diamonds), residue Y109 (Y109A, orange filled diamonds), residue Y113 (Y113A, dark

brown filled diamonds), or residue Q116 (Q116A, red filled diamonds). Culture supernatants collected at

4, 24, 48, and 72 hpi were titrated by plaque assay. Results are representative of three replicate

experiments. For the sake of clarity, SD data are not shown but the values were, in all cases, lower than

5%. (B) Groups of six 16-week-old BALB/c mice were infected with 100,000 PFU of either the parental

virus (WT, black columns), or mutants TMD1� (light green columns), TMD2� (light blue columns), TMD3�

(ochre columns), TMD[2,3]� (light brown columns), Y91A (purple columns), H93A (deep blue columns),

Y109A (orange columns), Y113A (dark brown columns), and Q116A (red columns). At 2 and 4 dpi, 3 mice

from each group were sacrificed to determine virus titers. Data summarize two replicate experiments.

Data represent means � SD. *, P value �0.1; **, P value �0.01; ***, P value �0.001.
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disease and survival evaluated for 10 days. All mice infected with the parental virus or

the TMD1� mutant showed disease symptoms starting at 2 dpi, and all died at 5 or

7 dpi, respectively. Mice infected with the TMD2� mutant showed acute disease

starting at 2 dpi, and 80% of the mice had died by between 4 and 7 dpi. In contrast,

mice infected with either TMD3� or TMD[2,3]� mutants recovered from the disease

with 100% survival, similarly to mice infected with the attenuated SARS-CoV-Δ3a

variant (Fig. 6A). During the experiment, viruses were recovered from the lungs of

moribund mice, and the 3a gene was sequenced. No compensatory mutations restor-

ing IC activity were identified in any case. The results suggest that the TMD3� and

TMD[2,3]� mutants were attenuated in an IC-independent manner, since the TMD2�

mutant was only marginally attenuated.

In the second virulence experiment, mice were infected with rSARS-CoV incorpo-

rating protein 3a point mutations (Y91A, H93A, Y109A, Y113A, and Q116A), with the

parental and Δ3a variants serving as virulent and attenuated controls, respectively. All

of the 3a point mutants caused severe disease with 100% mortality by 6 dpi, similarly

to mice infected with the wt parent and in contrast to those infected with the Δ3a

variant, which survived (Fig. 6B). No compensatory mutations restoring IC activity were

identified in this experiment, further confirming that protein 3a IC activity was not

essential for SARS-CoV virulence in the mouse model used.

FIG 6 Virulence of SARS-CoV 3a ion channel mutants. Groups of five 16-week-old BALB/c mice were

subjected to mock infection (PBS, gray filled squares) or infected with 100,000 PFU of the parental virus (WT,

black hexagons) or with genetically engineered mutants lacking the 3a protein (Δ3a, dark green filled

circles), and (A) mutants with altered TMD1 (TMD1�, light green filled circles), TMD2 (TMD2�, light blue

filled diamonds), TMD3 (TMD3�, ochre filled diamonds), or both TMD2 and TMD3 (TMD[2,3]�, brown filled

diamonds). (B) Additional comparisons with 3a mutants Y91A (purple filled diamonds), H93A (deep blue

filled triangles), Y109A (orange filled triangles), Y113A (brown filled triangles), or Q116A (red filled

diamonds) were performed. All mice were evaluated for weight loss (left) and survival (right) through 10

dpi. Data summarize two replicate experiments with equivalent results. Error bars represent the standard

deviations for mouse weight.
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The PBM of protein 3a was not required for SARS-CoV replication and viru-

lence. To analyze the requirement for the PBM of protein 3a for replication and

virulence, a virus lacking a functional PBM in the 3a protein (3aPBM�) was engineered.

As ORF3a partially overlaps ORF3b, the protein 3a PBM core sequence (SVPL) was

disrupted with amino acid substitutions (GMSM), with codons carefully selected to

ensure that protein ORF3b was not mutated. Growth of the 3aPBM� mutant in Vero E6

cells and in the lungs of infected mice was the same as that seen with rSARS-CoV-MA15

(Fig. 7A). Also, the 3aPBM� mutant was as pathogenic as the parental virus (Fig. 7B).

These results indicated that, in the mouse model, replication and virus virulence were

independent of the PBM of protein 3a.

Simultaneous requirement of viroporins by SARS-CoV. In order to study the

interdependence of SARS-CoV viroporins, all possible combinations of single-, double-,

and triple-deletion mutants were engineered (Table 3). All combinations were effi-

ciently rescued, with the remarkable exceptions of the triple mutant [rSARS-CoV-MA15-

Δ(3a,E,8a)] and the one lacking both E and 3a proteins [rSARS-CoV-MA15-Δ(3a,E)]. The

ΔE virus and double-deletion mutants Δ(3a,8a) and Δ(E,8a) showed significantly re-

duced titers (1 � 106, 2 � 106, and 6 � 105 PFU/ml, respectively) compared to the Δ3a

and Δ8a mutants and the parental virus. Although a role for protein 8a was not

FIG 7 Requirement of the PBM of SARS-CoV 3a protein for replication and virulence. (A) (Left panel)

Subconfluent monolayers of Vero E6 cells were infected with wild-type (WT; black filled circles), Δ3a

(green filled circles), or 3a-PBM� (red filled diamonds) SARS-CoV at a MOI of 0.001. Culture supernatants

collected at 4, 24, 48, and 72 hpi were titrated by plaque assay. Results are representative of three

replicate experiments. (Right panel) Groups of six 16-week-old BALB/c mice were infected with

100,000 PFU of the parental virus (WT, black columns) or of a SARS-CoV variant lacking the protein 3a

PBM (3a-PBM�, red columns). At 2 and 4 dpi, 3 mice from each group were sacrificed to determine virus

titers. Data summarize two replicate experiments. Data represent means � SD. (B) Groups of five

16-week-old BALB/c mice were subjected to mock infection (PBS, gray filled squares) or infected with

100,000 PFU of the parental (wild-type) virus (WT; black filled hexagons) or of genetically engineered

mutants lacking the 3a protein (Δ3a, green filled circles) or lacking the protein 3a PBM (3a-PBM�, red

filled diamonds). Mean levels of weight loss (left graph) and survival (right graph) through 10 dpi are

represented for each group. Data summarize two replicate experiments with equivalent results. Error bars

represent the standard deviations of mouse weight data.
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described for virus replication, the titers of viruses missing 8a and 3a or E were

significantly lower than the titers of Δ3a and ΔE viruses. Also, every one of the viable

mutant viruses which lacked either 3a or E proteins showed plaque sizes that were

significantly smaller than those seen with the wt and Δ8a viruses.

The results showed that at least either the 3a protein or the E protein must be

present for virus viability, which indicates that just one of these proteins could provide

the activities required for virus growth.

SARS-CoV 3a protein subcellular localization. To begin to understand the nature

of the replacement of E protein by 3a, or vice versa, in the replication of SARS-CoV, we

assessed the cellular localization of each protein. The SARS-CoV E protein localizes to

the ERGIC (56), but less is known about protein 3a localization (27). The potential

colocalization of the 3a and E proteins was first studied by infecting Vero E6 cells with

wt rSARS-CoV. Confocal microscopy analysis of rSARS-CoV-MA15 at 24 hpi showed that

the proteins were located in different cell subcompartments during infection, as the

Pearson’s coefficient value was below 0.6 (see Table S1 in the supplemental material)

(57); protein 3a mainly accumulated at an unidentified perinuclear compartment

different from the ERGIC (Fig. 8A). E protein IC activity promotes virulence by releasing

calcium from the ERGIC, leading to inflammasome activation (34, 58). We showed that

protein 3a IC activity is not involved in virus virulence. To extend these results, we next

determined whether 3a was localized to any of the known cellular calcium reservoirs,

i.e., the ER, the Golgi apparatus, and the mitochondria (59), using specific markers,

including protein disulfide isomerase (PDI) (ER marker), 58 K (Golgi marker), and

aconitase 2 (mitochondrion marker) (Fig. 8B). Also, other subcellular compartments

were analyzed for colocalization with the 3a protein by the use of antibodies (Abs)

against Na�/K� ATPase (plasma membrane marker), Rab5 (early endosome marker),

Rab7 (late endosome marker), and LAMP-1 (lysosome marker) (Fig. 9). Pearson’s coef-

ficient was below 0.6 in all cases (Table S1). Overall, 3a protein did not localize at any

of the main intracellular calcium storage locations, suggesting that it is not located at

a site that facilitates increased cytosolic calcium levels. Collectively, these results

suggest that the IC activity of proteins 3a and E, while shared by the two proteins, is not

the function responsible for the replacement for the full-length E and 3a proteins.

Identification of candidate motifs responsible for the replacement between E

and 3a proteins. To identify which E protein domain was essential in the absence of

full-length 3a protein, a set of Δ3a mutants was engineered with substitutions or

deletions throughout the E protein sequence (Fig. 10A), including (i) alanine substitu-

tions in the N-terminal domain [rSARS-CoV-MA15-(Δ3a,EΔ1)]; (ii) disruption of the TMD,

abrogating E protein IC activity [(Δ3a,E-N15A)] (34); (iii) short in-frame deletions

throughout the C-terminal domain [(Δ3a,EΔ2), (Δ3a,EΔ3), (Δ3a,EΔ4), (Δ3a,EΔ5), and

(Δ3a,EΔ6)]; (iv) truncation of E protein by the introduction of a stop codon 9 aa

upstream of the PBM [(Δ3a,E-ΔPBM)]; (v) interruption of the E protein PBM by amino

acid substitutions within its core sequence [(Δ3a,E-PBM�)]; and (vi) replacement of the

E protein PBM with an alternative synthetic PBM sequence with proven binding to PDZ

domains (46) [(Δ3a,E-PBM*)]. The viability of each mutant was determined after rescue

TABLE 3 Simultaneous requirements of viroporins by SARS-CoV

Virus name

SARS-CoV viroporin

Viral titer (PFU/ml)3a E 8a

SARS-CoV wt � � � (4.0 � 1.2) � 107

SARS-CoV Δ8a � � � (5.0 � 2.1) � 107

SARS-CoV Δ3a � � � (1.0 � 1.9) � 107

SARS-CoV ΔE � � � (1.0 � 0.8) � 106

SARS-CoV Δ[E, 8a] � � � (6.6 � 1.4) � 105

SARS-CoV Δ[3a, 8a] � � � (2.4 � 1.1) � 106

SARS-CoV Δ[3a, E] � � � �2.0 � 101a

SARS-CoV Δ[3a, E, 8a] � � � �2.0 � 101a

aData were below the detection threshold.
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from infectious bacterial artificial chromosome (BAC) clones. For each mutant, two

independently generated BACs were analyzed (Fig. 10A). Mutations within the

N-terminal domain or TMD of protein E did not affect virus viability, indicating that

neither harbored the motif responsible for viroporin replacement. However, when the

protein E PBM was disrupted by amino acid substitutions [(Δ3a,E-PBM�)], infectious

virus was not rescued. Consistent with this, when the original PBM was substituted for

an alternative one [(Δ3a,E-PBM*)], viable virus was recovered. Furthermore, the trun-

cated mutant [(Δ3a,E-ΔPBM)] rapidly reverted in the first passage, losing the engineered

stop codon during passage in cell culture and regaining the PBM [Δ3a,E-ΔPBM(rev)].

Collectively, these data strongly support the idea of the requirement of the PBM for

FIG 8 Analysis of the subcellular localization of SARS-CoV 3a and E proteins by immunofluorescence.

Vero E6 cells were grown on coverslips and infected with rSARS-CoV at a MOI of 0.3 and were

subsequently fixed with 4% paraformaldehyde at 24 hpi. (A) Cells were labeled with antibodies specific

for 3a protein (green) or E protein (red). (B) Cells were labeled with antibodies specific for 3a protein

(shown in green) or for PDI (ER marker), 58 K (Golgi marker), or aconitase 2 (mitochondrion marker)

(shown in red). In all cases, nuclei were stained with DAPI (blue).
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viability of SARS-CoV (Fig. 10A) and indicate that it was the E protein with a functional

PBM that compensated for the loss of the full-length 3a protein. An additional mutant

was generated in which the protein 3a PBM was mutated in the context of full-length

E protein deletion [(3a-PBM�,ΔE)], but the rescue of this virus was not possible

(Fig. 10B), again showing the necessity of at least one of the two proteins with a

functional PBM for virus viability in the context of complete deletion of either the E

gene or the 3a gene.

Also, virus titers were significantly decreased after one passage for mutants Δ3a,EΔ1

and Δ3a,E-ΔPBM(rev) compared to the Δ3a virus (Fig. 10A). In addition, Δ3a viruses with

small deletions throughout the C terminus of E protein were not viable, possibly due

to the requirement of the 3a protein native structure or of a length essential for PBM

availability for binding to other viral or cellular proteins (Fig. 10A). To analyze the

relevance of protein shortening or folding, an additional mutant was constructed in the

Δ3a background by filling in the EΔ4 deletion with an alanine-rich sequence in order to

restore the original length or folding of the E protein [(Δ3a,EΔ4*)] (Fig. S2). This mutant

virus was viable, indicating the lack of sequence specificity for the observed function-

ality. An alternative role for other domains located in the middle of the E protein C

terminus cannot be completely ruled out.

FIG 9 Analysis of the subcellular localization of SARS-CoV 3a by immunofluorescence. Vero E6 cells were

grown on coverslips and infected with rSARS-CoV at a MOI of 0.3 and were fixed with 4% paraformaldehyde

at 24 hpi. Cells were labeled with antibodies specific for 3a protein (shown in green) or for Na�/K� ATPase

(plasma membrane marker), rab5 (early endosome marker), rab7 (late endosome marker), and lamp-1

(lysosome marker) (shown in red). In all cases, nuclei were stained with DAPI (blue).
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To further study replication dependence on the PBMs of E and 3a, a collection of

mutants with one [(3a-PBM�) or (E-PBM�)] or both [(3a,E]-PBM�) viral PBM sequences

removed was generated (Fig. 10A). All three PBMmutants were viable, showing that the

consequences of the presence of E and 3a protein PBMs when these proteins have

been completely deleted are different from those seen when only their PBM is missing.

However, virus titers decreased 10-fold when both viral PBMs were missing in com-

parison to the levels seen with the parental virus or mutants lacking only one PBM

FIG 10 Mapping of the E protein domain required for the replacement of the 3a protein. (A) Viability of a set of SARS-CoV Δ3a mutants

with added mutations within the E gene was evaluated in Vero E6 cells. Changes to the E protein included the following: alanine

substitutions in the N-terminal domain [rSARS-CoV-MA15-(Δ3a,EΔ1)]; disruption of the TMD, abrogating E protein IC activity [(Δ3a,E-

N15A)]; short in-frame deletions throughout the C-terminal domain [(Δ3a,EΔ2), (Δ3a,EΔ3), (Δ3a,EΔ4), (Δ3a,EΔ5), and (Δ3a,EΔ6)]; truncation

of the E protein by introduction of a stop codon 6 aa upstream of the PBM [(Δ3a,E-ΔPBM)]; interruption of the E protein PBM by amino

acid substitutions within its core sequence [(Δ3a,E-PBM�)]; and replacement of the E protein PBM with an alternative PBM sequence

[(Δ3a,E-PBM*)]. The ΔPBM(rev) sequence represents the sequence of a spontaneous revertant virus isolated after growth of the original

ΔPBM strain in cell culture. (B) Viability of SARS-CoV ΔE mutants with or without 3a protein PBM was evaluated in Vero E6 cells. Titers of

the viable viruses after the first passage (representative of three replicate experiments) are shown. Data represent means � SD. NR, not

rescued.
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(Fig. 11A). Remarkably, when PBM was present in E protein, the virus was highly virulent

independently of whether the 3a protein included a PBM (Fig. 11B). In contrast,

mortality significantly decreased when E protein lacked a PBM, regardless of the

presence or absence of a PBM within protein 3a. These results indicated that the impact

of the presence or absence of the E protein PBM on virulence is definitive, as it

determines whether a virus is pathogenic or nonpathogenic, respectively. In contrast,

the presence or absence of 3a protein with or without its PBM had little impact on virus

virulence, illustrating the much greater relevance of the E protein PBM than of the 3a

PBM with respect to virus pathogenicity.

DISCUSSION

Viroporins are highly relevant for viral replication and pathogenesis, and their

requirement in a large number of physiological processes makes their study a field of

growing interest (17, 18, 23). CoVs usually encode two or more viroporins, including the

conserved structural E protein and additional ones encoded by accessory genes. The

roles of these viroporins in replication and virulence had been studied in detail only for

SARS-CoV E protein (34, 46, 58, 60), though roles in replication have also been

FIG 11 Virulence of recombinant SARS-CoV combining the knockdown of 3a and E protein PBMs. (A) Schematic

of recombinant mutants with knockdown of the PBMs of the 3a and E proteins in different combinations. Titers of

the viable viruses (representative of three replicate experiments) are shown. Data represent means � SD. (B)

Groups of five 16-week-old BALB/c mice were subjected to mock infection (PBS, gray filled squares) or infected with

100,000 PFU of the parental (wild-type) virus (WT; black filled hexagons) or of genetically engineered viruses lacking

either the protein 3a PBM (3a-PBM�, red filled diamonds) or the E protein PBM (E-PBM�, ochre filled circles) or both

[(3a,E)-PBM�, green filled circles]. Mean levels of weight loss (left) and survival (right) through 10 dpi are

represented for each group. Data summarize two replicate experiments with equivalent results. Error bars represent

the standard deviations of mouse weight data.
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established for HCoV-OC43 ns12.9 (25), HCoV-229E 4a (24), and PEDV 3 (26). MERS-CoV

encodes two proteins, E and 5, homologues of the SARS-CoV E and 3a proteins,

respectively. While the IC activity of MERS-CoV E protein has been previously described

(15), the potential IC activity of protein 5 is yet to be studied in detail. However, due to

its similarity to SARS-CoV 3a, HCoV-229E 4a, and PEDV 3, IC conductance by this protein

is expected. Furthermore, both the MERS-CoV E and 5 proteins have a putative PBM at

their carboxy terminus, similarly to the SARS-CoV E and 3a proteins.

SARS-CoV encodes three viroporins: 3a, E, and 8a (14, 27, 28). We have previously

shown that a SARS-CoV mutant lacking E protein was attenuated in mice (61). Here, we

show that removal of the 3a protein slightly reduced virus titers in vitro compared to

the results seen with the parental virus (Fig. 1A). In contrast, the titers of the Δ3a mutant

were reduced 10-fold in vivo (Fig. 1B), indicating that the 3a protein was required for

optimal SARS-CoV replication. This result is in agreement with previous studies showing

a slight reduction of SARS-CoV-Δ3a titers in Vero E6 cells (62). Nevertheless, it has to be

noted that the mice in the previous study were infected with a human SARS-CoV Urbani

strain, which causes only a mild murine infection, in contrast to our mouse-adapted

strain (61). The reduction of titers after infection with Δ3a mutant viruses may reflect

the role of 3a in membrane rearrangement, increasing the levels of intracellular vesicles

that can promote nonlytic release of viral particles (30). Alternatively, protein 3a may

induce apoptosis (30, 63) and may enhance inflammation by activating nuclear factor

kappa B (NF-kB), leading to the production of proinflammatory cytokines such as

interleukin-8 (IL-8) and RANTES (CCL5) (29). In fact, histopathological analysis of lungs

from SARS-CoV-Δ3a-infected mice showed minimal damage or cellular infiltration at 2

and 4 dpi, whereas mice infected with the SARS-CoV parental virus revealed interstitial

and peribronchial cell infiltration and edema in both alveolar and bronchiolar airways

at 2 dpi and, mainly, at 4 dpi (see Fig. S3 in the supplemental material). This suggests

that the attenuation of the Δ3a mutant may be due to its inability to activate an

exacerbated proinflammatory response, resulting in survival of infected mice. In fact,

similar results were obtained in the lungs of mice infected with rSARS-CoV-MA15-ΔE,

which also led to attenuation by downregulation of the host proinflammatory response

(61, 64).

We showed that deletion of SARS-CoV protein 8a alone did not have a measurable

effect on replication and virulence in mice (Fig. 1 and 2). This is in line with the fact that

ORF8 was lost during the SARS-CoV pandemic and that viruses lacking this gene were

recovered from patients who died from SARS-CoV infection, supporting the idea that it

is also not required for virulence in humans (65). However, viruses lacking 8a protein

when 3a protein was also deleted had titers 10-fold lower than those seen with the

parental virus, indicating that simultaneous deletion of the two proteins may contribute

to replication to at least a small extent.

Residues involved in E protein IC activity have been previously identified (33), and

this activity was essential for replication and virulence (34). We previously reported that

the E ion channel activates the inflammasome through calcium release from intracel-

lular stores (34, 58). IC activity of SARS-CoV E protein is exerted in the membrane of the

ERGIC. This facilitates the release of Ca2� from this intracellular compartment, which

contributes to the activation of the inflammasome complex, leading to the release of

proinflammatory cytokines such as tumor necrosis factor alpha (TNF-�), IL-1�, and IL-6.

The accumulation of these cytokines promotes an exacerbated proinflammatory re-

sponse, which leads to death. Thus, E protein IC activity is a virulence factor similar to

the IC activities of M2 from influenza virus (19) or rotavirus NSP4 (13, 66). As E protein

IC activity promotes virulence via inflammasome activation (34, 58), we hypothesized

that protein 3a IC activity could act in a similar way. However, as no correlation was

found between protein 3a IC activity and SARS-CoV titer and pathogenicity, we

conclude that, in our mouse model, the IC activity of 3a protein did not affect

replication and virulence in the same way as that of E protein. However, SARS-CoV 3a

protein TMD3� and TMD[2,3]� mutants displayed no IC activity and were attenuated.

In principle, a possible explanation for this observation is that the TMD3� three-amino-
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acid mutations present in both mutant TMD3� and mutant TMD[2,3]� could have

disrupted a function of the 3a protein other than its IC activity. Nevertheless, viruses

that included the point mutations that disrupt IC activity (Y91A, H93A, and Y109A) and

which are less likely to affect other functions of the 3a protein than the 3-amino-acid

and 5-amino-acid mutations of TMD3� and TMD[2,3]�, respectively, were completely

virulent. The TMD3� mutant showed 10-fold-lower titers in the lungs of infected mice.

The impact of these mutants on virus replication and virulence may in principle be due

to an exclusive effect on 3a protein functions different from its IC activity. The

TMD[2,3]� mutant maintained the same titers as the native virus, which could be

explained if the mutations in TMD2 were structurally compensated for the ones in

TMD3 when the two were simultaneously present in protein 3a. Overall, these results

indicate that protein 3a IC activity is not involved in virus virulence.

There are several factors that may account for the differences in the degrees of

relevance of the SARS-CoV E and protein 3a IC activities. The two proteins localize to

different subcellular compartments (Fig. 8A), suggesting that the IC activity of the two

proteins regulates ion transport between different compartments. E protein locates in

the ERGIC (56) and induces calcium efflux during SARS-CoV infection, which activates

the inflammasome complex, leading to the acute proinflammatory response associated

with virus pathogenicity (34, 58). As protein 3a is not found at any of the main

intracellular Ca2� storage locations (Fig. 8B), its IC activity most likely induces cellular

pathways that are less relevant to pathogenesis.

Note that SARS-CoV 3a protein subcellular localization had been previously studied

by transfecting cells with a plasmid, which overexpresses a tagged variant of 3a protein,

leading to the conclusion that protein 3a is located at the Golgi compartment or at

the cell surface (31, 67). These studies have also been performed in the context of the

infection but without the use of subcellular compartment markers, leading to the

observation that protein 3a was located in the cell membrane, in the cytoplasm, and in

the nucleus (27). After our analysis in the context of the infection using markers for

cellular compartments, we could not conclude that the SARS-CoV 3a protein is located

in any of the previously described compartments. Furthermore, knowledge of the

cellular location in which the 3a protein accumulates remained elusive after our analysis

performed using markers for the following different intracellular compartments: ER,

Golgi apparatus, mitochondria, early and late endosomes, lysosomes, and the plasma

membrane.

The E protein PBM is another virulence factor of SARS-CoV (46), with a homologous

motif present in protein 3a. However, analysis of mutants lacking the 3a PBM showed

no effect on virus production or virulence (Fig. 7). The requirement for protein E with

its PBM was dominant for SARS-CoV virulence in comparison to the requirement for

protein 3a with its PBM (Fig. 11). Furthermore, a SARS-CoV with E protein that included

its PBM was virulent in the presence or absence of 3a protein PBM, whereas in the

reverse situation (the presence of 3a protein with its PBM and of E protein lacking its

PBM), the virus was always attenuated, reinforcing the idea of the dominance of the E

protein PBM for virus pathogenicity over that of 3a protein.

The interaction of the E protein PBM with syntenin PDZ motifs activates the p38

mitogen-activated protein kinase (MAPK) pathway and promotes an acute proinflam-

matory response that leads to death (46). However, other viral PBMs likely show a

preference for distinct PDZ domains. There are 266 motifs present in more than 400

cellular protein isoforms, each containing between 1 and 13 PDZ domains (42). As

SARS-CoV E and 3a protein PBM sequences are different (DLLV and SVPL, respectively),

they are likely to interact with different networks of PDZ-containing cellular proteins.

The protein 3a PBM interaction with cellular PDZ proteins most likely induces a

signaling pathway that either is not pathogenic for the host or is activated at a lower

intensity due to a reduced affinity of the viral PBM for the cellular PDZ domain,

explaining why viruses with or without the PBM of 3a showed no significant differences

in pathogenicity. However, given that the protein 3a PBM is required for virus viability
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when full-length E protein is missing, it can be confirmed that the pathways activated

by the protein 3a PBM have some impact on virus replication.

In order to study the interdependence of the SARS-CoV viroporins, the effects of

deletion of one viroporin or of simultaneous deletions of two or three viroporins were

determined. The 8a protein was included to determine its potential relevance in the

absence of the other viroporins, showing a significant impact on viral growth under

conditions in which 3a protein or E protein was absent. In contrast, we observed that

SARS-CoV was not viable when both the 3a and E proteins were absent but that its

viability was rescued by the presence of either 3a or E. We showed that the E protein

could compensate for the loss of the other viroporin providing that it carried a

functional PBM (Fig. 10A), a conclusion reinforced by the results obtained with five

different recombinant viruses. Even more biologically relevant was the rapid reversion

of a stop codon introduced 9 aa upstream of the carboxy terminus of the E protein in

mutant ΔPBM. Reversion was identified only in this mutant, presumably because

reversion of a single altered codon occurs more easily than the 4-aa changes in E-PBM�

or the deletions performed (Fig. 10A). Our results also showed that a 3a protein carrying

a PBM could compensate for the loss of E protein and could restore virus replication but

not virulence (Fig. 10B and 11).

The idea of the requirement of SARS-CoV PBMs for virus replication and virulence is

also supported by our previous observations revealing that ΔE mutants evolved to

introduce a new transmembrane protein with a PBM to compensate for the loss of the

whole E protein during passage either in cell culture or in vivo (68). In addition, when

SARS-CoV-ΔE was passaged in mice, it spontaneously gained an internal PBM in the 8a

protein. PBMs are also phylogenetically conserved in proteins from SARS-CoV and

MERS-CoV isolates from humans, civet cats, dromedary camels, and bats (Fig. S4),

further reinforcing the idea of the relevance of PBMs for coronavirus viability. Viral

PBM-cellular PDZ interactions have been previously described in several viruses. For

instance, the PBM of E6 oncoprotein from human papillomavirus 16 (HPV-16) interacts

with several cellular proteins containing PDZ motifs, leading to tumorigenesis and virus

dissemination (69). On the other hand, different strains of rabies virus (RABV) include a

variety of PBMs in the G protein that differentially contribute to viral virulence through

activation of a variety of signaling pathways (70). In the case of influenza virus, NS1

protein has a PBM located at its carboxy terminus that is possibly involved in enhanced

virulence (71). In addition, the vaccinia virus F11 protein has both a PDZ domain and

a PBM, which influence viral spread (72).

Overall, we conclude that the SARS-CoV E and 3a proteins have in common two

important characteristics: IC activity and PBM. Both the IC and the PBM of E protein are

involved in SARS-CoV virulence and replication, whereas the corresponding motifs in

protein 3a are not. We showed a dominance of E protein PBM and IC activities over that

of the 3a protein homologues. However, the protein 3a PBM became relevant for virus

viability in the absence of full-length E protein. These results contribute to a better

understanding of the role of CoV IC activities and PBMs, with impacts on the rational

design of future vaccines and antivirals.

MATERIALS AND METHODS

Ethics statement. Animal experimental protocols were approved by the Ethical Committee of the

Center for Animal Health Research (CISA-INIA) (permit numbers 2011-009 and 2011-09) in strict accor-

dance with Spanish National Royal Decree (RD 53/2013) and international EU guidelines 2010/2063/UE

and Spanish national law 32/2007. Infected mice were housed in a self-contained ventilated rack

(Allentown, NJ).

Viruses. Mouse-adapted (MA15) (48) parental wild-type (wt) and recombinant viruses were rescued

from infectious cDNA clones generated in a bacterial artificial chromosome (BAC) (49, 73–75).

Generation of recombinant viruses. Viruses with mutations in SARS-CoV viroporins E, 3a, and 8a

were constructed in an infectious cDNA clone of SARS-CoV-MA15 within a bacterial artificial chromosome

(BAC) (plasmid pBAC-SARS-CoV-MA15) (49, 73, 76). Generation of the E deletion mutant was described

previously (61). The 3a gene was deleted by overlap extension PCR using pBAC-SARS-CoV-MA15 and the

primers shown in Table S2 in the supplemental material. Mutations included deletion of a region

(nt 25270 to 25668) of the SARS-CoV genome, resulting in deletion of the 3a protein while retaining the

3b protein; a disruption of the ATG start codon of the 3a gene; and point mutations at nt 25673 and
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25683 to introduce two stop codons and a point mutation at nt 26042 to disrupt a potential initiation

codon. A PCR product was generated from nt 24937 to 26060 of the SARS-CoV genome, digested at

flanking SwaI and BamHI sites, and cloned into intermediate plasmid pBAC-SARS-PmeI-BamHI-SARS-CoV

(which contains the nt-18404-to-26044 sequence of the SARS-CoV infectious cDNA clone) to generate

plasmid pBAC-SARS-PmeI-BamHI-Δ3a. Finally, that plasmid was digested with PmeI and BamHI and the

fragment carrying the 3a deletion was reinserted into a similarly digested pBAC-SARS-CoV-MA15 plasmid

to generate pBAC-SARS-CoV-Δ3a. To construct the 8a deletion mutant, a DNA fragment containing

nt 26790 to 28753 of the SARS-CoV genome flanked by restriction sites XcmI and NheI was assembled

by overlap extension PCR using pBAC-SARS-CoV-MA15 as the template and the primers indicated in

Table S1; this process resulted in the deletion of the first 82 nt of the 8a gene without affecting the 8b

gene. The final PCR products were digested with XcmI and NheI and cloned into intermediate plasmid

pBAC-BamHI-RsrII-SARS-CoV (which contains nt 26044 to 29782 of the SARS-CoV infectious cDNA clone

[49]), thus obtaining pBAC-BamHI-RsrII-SARS-CoV-Δ8a. That plasmid was digested with BamHI and RsrII,

and the fragment carrying the deletion of the 8a gene was reinserted into pBAC-SARS-CoV-MA15,

generating pBAC-SARS-CoV-Δ8a.

To generate mutants with mutations in the 3a IC, DNA fragments containing nt 25016 to 26044 of

the SARS-CoV genome were produced by overlap extension PCR using plasmid pBAC-SARS-CoV-MA15 as

a template and the primers indicated in Table S1. The following mutations were introduced: S40A (TCA

to GCA), S48A (AGC to GCC), Y91A (TAT to GCT), H93A (CAT to GCT), Y109A (TAT to GCT), Y113A (TAT to

GCT), Q116A (CAA to GCA), TMD1� (including both S40A and S48A), TMD2� (including both Y91A and

H93A), TMD3� (including Y109A, Y113A, and Q116A), and TMD[2,3]� (including Y91A, H93A, Y109A,

Y113A, and Q116A). The PCR products were digested at flanking SwaI and BamHI sites and cloned into

pBAC-PmeI-BamHI-SARS-CoV (49). Intermediate plasmids were digested with PmeI and BamHI and

recloned into pBAC-SARS-CoV-MA15 to generate infectious SARS-CoV cDNA clones for each mutation. To

mutate the PBM sequence of 3a, overlap extension PCR was performed using pBAC-SARS-CoV-MA15 as

the template and the primers indicated in Table S2, resulting in a DNA fragment containing nt 26044 to

26790 of the SARS-CoV genome. The core 3a PBM (SVPL; nt AGCGTGCCTTTG), was replaced with an

alternative sequence (GMSM; nt GGCATGTCTATG). As the 3a and 3b genes overlap in this region, care

was taken to introduce only silent mutations into the 3b ORF. The resulting PCR fragment was digested

at flanking BamHI and XcmI sites and cloned into intermediate plasmid pBAC-BamHI-RsrII-SARS-CoV (49),

resulting in pBAC-BamHI-RsrII-SARS-CoV-3amutPBM. This plasmid was digested with BamHI and RsrII, and

the fragment carrying the mutated 3a PBM was reinserted into pBAC-SARS-CoV-MA15 to generate

plasmid pBAC-SARS-CoV-3a-PBM�.

Viruses combining deletion of the 3a gene with mutations throughout the E gene were generated

by digesting previously described plasmids pBAC-SARS-CoV-MA15-EΔ1, -EΔ2, -EΔ3, -EΔ4, -EΔ5, and -EΔ6

(75) and -E-PBM� and -E-PBM* (46) with BamHI and RsrII and cloning the fragments with mutations into

a similarly digested pBAC-SARS-CoV-MA15-Δ3a plasmid.

In order to generate recombinant baculoviruses for 3a protein (rBV-3a), all constructs of the SARS-CoV

3a gene were cloned into a pFastBac vector (Invitrogen) containing a tobacco etch virus (TEV) cleavable

site and 10 histidine residues fused to the C terminus of the 3a constructs. Recombinant baculoviruses

were produced following the instructions of the manufacturer (Invitrogen).

Recovery of recombinant SARS-CoV variants from the cDNA clones. BHK cells were grown to 95%

confluence in 12.5-cm2 flasks and transfected with 6 �g of infectious cDNA clone and 18 �l of

Lipofectamine 2000 (Invitrogen), according to the manufacturer’s specifications. At 6 h posttransfection

(hpt), cells were trypsinized, added to confluent Vero E6 cells monolayers grown in 12.5-cm2 flasks, and

incubated at 37°C for 72 h. Cell supernatants were harvested and passaged once on fresh cells, and the

recovered viruses were cloned by three rounds of plaque purification following standard procedures.

Cells. Vero E6 cells and BHK cells were kindly provided by E. Snijder (University of Leiden, the

Netherlands) and H. Laude (Unité de Virologie et Immunologie Molecularies, INRA, France), respectively.

In all cases, cells were grown in Dulbecco’s modified Eagle’s medium (DMEM; Gibco) supplemented with

25 mM HEPES, 2 mM L-glutamine (Sigma), 1% nonessential amino acids (Sigma), and 10% fetal bovine

serum (FBS; BioWhittaker, Inc.). Virus titrations were performed in Vero E6 cells as previously described

(61).

Mice. Eight-week-old specific-pathogen-free BALB/c Ola Hsd female mice were purchased from

Harlan Laboratories and maintained for 8 additional weeks in the animal care facility at the National

Center of Biotechnology (Madrid). For infection experiments, mice were anesthetized with isoflurane and

intranasally inoculated at 16 weeks of age with 100,000 PFU of the indicated viruses. All work with

infected animals was performed in a biosafety level 3� (BSL3�) laboratory (CISA, INIA) by technicians

wearing personal protection equipment (3M).

Generation of polyclonal antibodies specific for the SARS-CoV 3a protein. A synthetic peptide

corresponding to residues 11 to 24 of the SARS-CoV 3a protein (C-ESITAQPVKIDNAS) was generated and

used to immunize two rabbits (Biogenes, Berlin, Germany) according to the standard protocol of the

supplier. Serums were collected at 45 dpi and evaluated by enzyme-linked immunosorbent assay (ELISA)

and immunofluorescence and Western blot analysis using Vero E6 cells infected with SARS-CoV-wt or

SARS-CoV-Δ3a as a negative control.

Virus genome sequencing. Regions of the SARS-CoV genome corresponding to the 3a, E, and 8a

genes were sequenced after reverse transcriptase PCR (RT-PCR). Briefly, total RNA from infected cells or

homogenized mouse lungs was collected and purified using an RNeasy kit (Qiagen) according to the

manufacturer’s specifications. For RT reactions, 100 ng of RNA, random oligonucleotide primers, and

ThermoScript reverse transcriptase (Invitrogen) were used. RT products were subsequently subjected to
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PCR using Vent polymerase (New England Biolabs) and the following primer pairs: 24937-VS (GGCGAC

ATTTCAGGCATTAACGC) and 26086-RS (GGCACGCTAGTAGTCGTCGTCGGC), which amplify the 3a gene;

E-VS (CTCTTCAGGAGTTGCTAATCCAGCAATGG) and E-RS (TCCAGGAGTTGTTTAAGCTTCTCAACGGTA),

which amplify nucleotides 26017 to 26447, including the E gene; and 27545-VS (GGAGGTTCAACAAGA

GCTCTACTCGCC) and 28008-RS (GACAGTTGATAGTAACATTAGGTGTGC), amplifying a region that includes

the 8a gene. Sequence assembly and comparison with the parent consensus sequence were performed

with SeqMan software (Lasergene, Madison, WI).

Growth kinetics. Subconfluent monolayers (90% confluence) of Vero E6 cells in 12.5-cm2 flasks were

infected at a multiplicity of infection (MOI) of 0.001 with the indicated viruses. Culture supernatants were

collected at 0, 4, 24, 48, and 72 h postinfection (hpi), and virus titers were determined as previously

described (61). For the analysis of cell-associated virus, Vero E6 cells were infected at a MOI of 0.001 with

the indicated viruses. At 24 and 48 hpi, cells were recovered in phosphate-buffered saline (PBS) buffer

and disrupted by four freeze-thaw cycles. Samples were then centrifuged to remove cell debris, and

supernatants were titrated as previously described (59).

Virus infection and growth in mice. BALB/c mice were anesthetized with isoflurane and intranasally

inoculated with 100,000 PFU of virus mixed with 50 �l of DMEM. Weight loss and mortality were

evaluated daily. To determine SARS-CoV titers, lungs were homogenized in PBS containing 100 IU/ml

penicillin, 0.1 mg/ml streptomycin, 50 �g/ml gentamicin, and 0.5 �g/ml amphotericin B (Fungizone),

using a gentleMACS dissociator (Miltenyi Biotec, Inc.). Virus titrations were performed in Vero E6 cells as

previously described (61). Viral titers were expressed as PFU counts per gram of tissue.

Histopathology.Mice were sacrificed at 2 and 4 dpi. Lungs were removed, fixed in zinc formalin, and

embedded in paraffin. Histopathological examinations were performed on sections stained with

hematoxylin-eosin.

Ion channel reconstitution and ionic current recording. Planar bilayers were formed by apposition

of two monolayers prepared from a mixture of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), 1,2-

dioleoyl-sn-glycero-3-phospho-L-serine (DOPS), and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine

(DOPE) at a DOPC/DOPS/DOPE ratio of 3:1:1 (wt/wt) (Avanti Polar Lipids, Alabaster, AL) mixed in pentane

at 5 mg/ml. Lipids were added on ~100-�m-diameter orifices in the 15-�m-thick Teflon partition that

separated two identical chambers (50, 77); the orifices were pretreated with a 1% solution of hexade-

cane–pentane. Aqueous solutions of KCl, NaCl, or CaCl2 were buffered with 5 mM HEPES at pH 6. All

measurements were performed at room temperature (23 � 1°C). Ion channel insertion was achieved by

adding 0.5 to 1 �l of a 300 �g/ml solution of recombinant protein in a buffer containing acetonitrile-

isopropanol (40:60) on one side of the chamber (here referred to as the cis side).

An electric potential was applied using Ag/AgCl electrodes in 2 M KCl–1.5% agarose bridges

assembled within standard 250-�l pipette tips. The potential was defined as positive when it was higher

on the cis side, whereas the trans side was set to ground. An Axopatch 200B amplifier (Molecular Devices,

Sunnyvale, CA) was used in the voltage-clamp mode to measure the current and the applied potential.

The chamber and the head stage were isolated from external noise sources with a double metal screen

(Amuneal Manufacturing Corp., Philadelphia, PA). Single-channel conductance data were obtained from

current measurements under conditions of an applied potential of �100 mV and were evaluated using

the Gaussian fit tool of Sigma plot 12 (Systat Software, Inc.).

The reversal potential, Erev, was determined as follows. First, a lipid membrane was formed at a given

salt concentration gradient. Second, one or several channels were inserted into the bilayer and a net ionic

current appeared due to the concentration gradient. Third, the ionic current through the channel or

channels was manually set to zero by adjusting the applied potential. The potential needed to achieve

zero current was then corrected using values corresponding to the liquid junction potentials of the

electrode salt bridges (78) to obtain the final Erev.

Confocal microscopy. Vero E6 cells were grown to 90% confluence on glass coverslips and infected

with wt SARS-CoV at a MOI of 0.3 PFU/cell. At 24 hpi, the medium was removed and cells were washed

twice with PBS and fixed with 4% paraformaldehyde–PBS for 30 min at room temperature. Cells were

subsequently washed twice with PBS, permeabilized for 10 min with ice-cold methanol, and then blocked

with PBS containing 10% FBS for 40 min at room temperature. Immunofluorescence was performed

using mouse Abs specific for SARS-CoV E protein (generated as described in reference 56) (1:500), protein

disulfide isomerase (PDI; Abcam, Inc.) (1:500), 58 K (Abcam, Inc.) (1:100), aconitase 2 (Abcam, Inc.) (1:500),

rab5 (BD Biosciences) (1:100), rab7 (BD Biosciences) (1:100), lamp-1 (Santa Cruz Biotechnologies) (1:50),

and Na�/K� ATPase (Santa Cruz Biotechnologies) (1:50) and rabbit Abs specific for SARS-CoV 3a protein

(1:500). Primary antibodies were diluted in PBS containing 5% FBS and incubated for 90 min at room

temperature, and then coverslips were washed four times with PBS before incubation with secondary

antibodies was performed. Alexa 488- or Alexa 546-conjugated antibodies specific for the different

species (Invitrogen) were diluted 1:500 in PBS containing 5% FBS and incubated for 45 min at room

temperature. Nuclei were stained using DAPI (4=,6-diamidino-2-phenylindole; Sigma) (1:200), and cov-

erslips were mounted in ProLong Gold anti-fade reagent (Invitrogen) and examined on a Leica SP5

confocal microscope (Leica Microsystems, Inc.). Image analysis was performed using ImageJ (79) and the

JACoP plug-in (57). Three areas per image of 120 by 120 pixels with high accumulation of 3a protein were

analyzed to determine Pearson’s coefficient (Pc). Pc values below 0.6 were considered negative for

colocalization. Partial colocalization was considered to have occurred for Pc values between 0.6 and 0.85.

Pc values between 0.85 and 1 were considered positive for colocalization.

Production and purification of SARS-CoV 3a protein and its mutant variants from a recombi-

nant baculovirus (rBV-3a). H5 cells at 80% confluence were infected (MOI � 1) with rBV-3a (constructed

as specified in the “Generation of recombinant viruses” section above) and incubated at 22°C for 72 h.
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Cells were harvested and resuspended in lysis buffer 1 (50 mM Tris-HCl, 300 mM NaCl, 0.5% Triton X-100,

pH 7.5) supplemented with 1% protease inhibitor cocktail (Sigma). Protein extracts were centrifuged at

12,000 � g for 10 min at 4°C, and the pellets were resuspended in lysis buffer 2 (8 M urea, 50 mM Tris-HCl,

300 mM NaCl, 1% IGEPAL, 1 mM �-mercaptoethanol, 10 mM imidazole, pH 7.5). Each sample was

sonicated three times for 20 s each time and centrifuged at 12,000 � g for 10 min at 4°C. Finally, the

protein present in the supernatant was purified through metal affinity chromatography (IMAC) using

cobalt resin (Clontech) following the manufacturer’s instructions. Every fraction from the purification

process was analyzed in 12% polyacrylamide gels using Coomassie Blue EZBlue gel staining reagent

(Sigma). Then, the obtained protein was desalted using a PD-10 desalting column (GE Healthcare) and

eluted in PBS.

Statistical analysis. Two-tailed, unpaired Student’s t tests were used to analyze the differences in

mean values between groups. All results were expressed as means � standard deviations; P values of

�0.1 were considered significant.

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at https://doi.org/10.1128/mBio

.02325-17.
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