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HEIKE MÜNZBERG, LIHONG HUO, EDUARDO A. NILLNI, ANTHONY N. HOLLENBERG, AND

CHRISTIAN BJØRBÆK

Department of Medicine, Division of Endocrinology (H.M., L.H., A.N.H., C.B.), Beth Israel Deaconess Medical Center and
Harvard Medical School, Boston, Massachusetts 02215; and Division of Endocrinology, Department of Medicine (E.A.N.),
Brown Medical School, Rhode Island Hospital, Providence, Rhode Island 02903

Leptin acts on the brain to regulate body weight and neu-
roendocrine function. Proopiomelanocortin (POMC) neurons
in the hypothalamus are important targets of leptin. These
cells express the leptin receptor ObRb, and leptin can regulate
POMC mRNA levels, but the cellular mechanisms by which
this occurs is unknown. Here we show evidence that leptin
stimulates pomc gene transcription via activation of intra-
cellular signal transducer and activator of transcription 3
(STAT3) proteins. In pomc-promoter assays using transfected
cells, leptin induces pomc promoter activity. Expression of
dominant negative STAT3 strongly suppresses this effect.
Furthermore, maximal activation requires the presence of the
STAT3-binding site, tyrosine 1138, of ObRb. Mutational anal-
ysis identifies a 30-bp promoter element that is required for

regulation by leptin. In rats, robust leptin-dependent induc-
tion of STAT3 phosphorylation is demonstrated in hypo-
thalamic POMC neurons using double immunohistochemis-
try. In total, approximately 37% of POMC cells are positive for
phospho-STAT3 after leptin treatment. Furthermore, leptin-
responsive POMC neurons are concentrated in the rostral
region of the hypothalamus. Combined, our data show that a
subpopulation of POMC neurons is leptin-responsive and sug-
gest that stimulation of hypothalamic pomc gene expression
in these cells requires STAT3 activation. We speculate that
STAT3 is critical for leptin-dependent effects on energy ho-
meostasis that are mediated by the central melanocortin
system. (Endocrinology 144: 2121–2131, 2003)

CENTRAL PATHWAYS CONTROL the regulation of
body weight and food intake by the fat-derived hor-

mone leptin (1, 2). Herein, the hypothalamus plays an im-
portant part in which several different leptin-responsive
populations of neurons can be distinguished (3, 4). Of these,
the proopiomelanocortin (POMC) neurons in the arcuate
nucleus (ARC), producing the anorectic peptide �-MSH via
endoproteolytic processing of the POMC polypeptide pre-
cursor (5), are key mediators of leptin action. A separate
population of cells in the ARC coexpresses the melanocortin-
receptor antagonist, agouti-related-protein and neuropep-
tide Y (NPY; Refs. 3, 6, and 7). These cells and the POMC
neurons express the long form of the leptin receptor, ObRb,
and are thus likely to be direct targets of circulating leptin
(8–12). Consistent with this are recent findings that POMC
neurons respond rapidly to leptin by increasing axonal firing
rates and by decreasing membrane potentials, likely leading
to release of neurotransmitters and neuropeptides, including
�-MSH (13). The critical role of the melanocortin system in
body weight regulation is evident from pharmacological ex-

periments (14–17), as well as studies of mutations in the pomc
gene (18, 19) and in the gene encoding the melanocortin-4
receptor, both leading to severe obesity in rodents and in
humans (20–22). Indeed, the lack of only one functional copy
of either gene results in increased fat mass and body weight,
although to a less severe degree compared with loss of both
alleles (22, 23). Combined, this suggests that each step in the
central melanocortin system is tightly regulated to maintain
normal energy balance.

Further evidence for the regulation and importance of the
melanocortin system in leptin action stems from early find-
ings that mice lacking functional leptin or leptin receptors are
morbidly obese and have significantly reduced pomc mRNA
levels in the hypothalamus (24–26). In addition, fasting of
mice and rats for 2–3 d leads to a reduction in circulating
leptin concentrations that is accompanied by a fall in pomc
mRNA that can be prevented by administration of recom-
binant leptin during the fasting period (26, 27). The molecular
mechanisms controlling this regulation by leptin have not
been reported, and this question is the focus of the present
study.

Transfection studies show that the long signaling form of
the leptin receptor, ObRb, is rapidly phosphorylated on ty-
rosine residues in response to leptin (28). This phosphory-
lation is mediated by activation of Janus-activated kinase
(JAK)2 proteins that are constitutively associated with con-
served intracellular sequences of ObRb, located proximal to
the transmembrane domain (28–31). ObRb contains three
intracellular tyrosine residues, located at positions 985, 1077,
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and 1138 (32). Tyrosine 1138 is located three amino acids N
terminal to a glutamine residue (YXXQ), generating a con-
sensus signal transducer and activator of transcription 3
(STAT3)-binding motif (33). Indeed, cytoplasmic STAT pro-
teins that bind to the phosphorylated Y1138 residue become
tyrosine-phosphorylated by JAK2, then dimerize and trans-
locate to the nucleus to regulate gene transcription (34–37).
STAT3 nuclear translocation and STAT3 DNA-binding ac-
tivity in response to leptin in the hypothalamus have been
reported using STAT3-immunohistochemical techniques
and gel-shift assays, respectively (38–41), but the nature of
the cells in which this occurs and the biological importance
of this event are unknown. We therefore hypothesized that
leptin affects pomc promoter activity via activation of STAT3
in POMC neurons.

We here demonstrate that leptin induces STAT3 phos-
phorylation in nuclei of POMC neurons in the hypothalamus
of rodents. Furthermore, in vitro studies show that leptin can
directly activate the proximal pomc promoter in cells express-
ing the leptin receptor and that this requires STAT3 phos-
phorylation. We conclude that STAT3 is likely to be critical
for mediating genomic effects of leptin to regulate pomc gene
expression in the hypothalamus.

Materials and Methods
Materials

Recombinant mouse leptin was obtained from Dr. E. Parlow (Na-
tional Institute of Diabetes and Digestive and Kidney Diseases and the
National Hormone and Pituitary Program, Torrance, CA). The expres-
sion vector encoding the long form of the murine leptin receptor (ObRb
WT) was described earlier (28), and its mutant with replacement of
tyrosine 1138 to serine (ObRb Y1138S) was generated by site-directed
mutagenesis (CLONTECH Laboratories, Inc., Palo Alto, CA) by Dr. M.
Myers (Joslin Diabetes Center, Boston, MA). Dr. S. Melmed [University
of California-Los Angeles (UCLA), Los Angeles, CA] and Dr. T. Hirano
(Osaka University, Osaka, Japan) provided the wild-type (WT) STAT3
and dominant negative (DN) STAT3 (Y705F) expression vectors. A
human (�879/�6) and a rat (�706/�64) pomc promoter-luciferase con-
struct were described earlier (42, 43) and kindly given by Dr. S. Melmed.
All reagents for transfection were from Invitrogen (Carlsbad, CA). Buffer
supply for immunohistochemistry (IHC) and immunocytochemistry
(ICC) was purchased from Sigma (St. Louis, MO), ABC Vectastain was
from Vector Laboratories Inc. (Burlingame, CA), and diaminobenzidine
(DAB) developing solution was from Roche (Basel, Germany). Phospho-
specific-(Y705)-STAT3 antibodies were purchased from New England
Biolabs, Inc. (Beverly, MA); sheep-anti-�-MSH polyclonal antibody from
Chemicon (Temecula, CA); normal donkey serum, biotinylated donkey-
antisheep, and goat-antirabbit from Jackson ImmunoResearch Labora-
tories, Inc. (West Grove, PA); and normal goat serum from Invitrogen.

Generation of deletions of the rat and human
pomc promoters

Deletions of the human pomc promoter were made from the �879 to
�6 fragment originally cloned into pGL3-basic vector (provided by Dr.
S. Melmed). Specifically, deletions were generated by applying PCR and
using the mentioned parental human pomc-promoter plasmid as tem-
plate, and with specific primers to amplify the desired fragments of the
promoter (�761/�6, �361/�6, �161/�6, �91/�6, and �61/�6) and
using Pfx polymerase (Invitrogen). In addition, restriction sites for KpnI
and HindIII were added to the appropriate ends of the PCR primers. To
clone the PCR products into the pGL2-Basic vector (Promega Corp.,
Madison, WI), both the PCR products and the pGL2-Basic vector were
digested with KpnI and HindIII (New England Biolabs, Inc.) and then
finally ligated using T4 DNA ligase (Promega Corp.). After that, the
constructs were transformed into competent cells, and positive clones

were purified with MiniPrep Kit (QIAGEN, Valencia, CA). A compa-
rable construct of the rat promoter (�704/�64) cloned into pGL2-Basic
was also made by PCR as described above for the human promoter, but
using rat-specific primers and the rat construct (�706/�64) from Dr. S.
Melmed as template. Integrity of all plasmids was confirmed by DNA
sequencing and by restriction enzyme digests.

Cell culture and transient transfection

The 293T and AtT-20 cells were grown in DMEM with 10% fetal calf
serum, penicillin (100 U/ml), and streptomycin (10 mg/ml) added and
incubated at 37 C in 5% CO2. After growing to approximately 70%
confluence, cells were transfected with LipofectAMINE (Invitrogen)
according to the recommendations of the manufacturer. All stimulations
were done 12–18 h post transfection. Hormone concentrations and stim-
ulation times are indicated in the figure legends.

Luciferase and �-galactosidase assays

Cells were lysed, and aliquots were used for luciferase assay as
described earlier (44). Briefly, luciferin (Molecular Probes, Inc., Eugene,
OR) and assay buffer were added simultaneously to the cell lysate, and
luciferin was measured for 20 sec in a Luminometer (LB 9501, EG&G
Berthold, Bad Wildbad, Germany). Using Galacton (Tropix Inc., Bed-
ford, MA), �-galactosidase activities were determined as described by
the manufacturer, and samples were measured in the Luminometer for
5 sec.

ICC

The 293T cells were plated on poly-d-lysine (20 �g/ml; Sigma)
-coated four-chamber glass Lab-Tek (Nunc Inc., Naperville, IL) slides
and transfected with ObRb and STAT3 vectors as described above. Cells
were stimulated with and without leptin for 20 min. Stimulation me-
dium was rapidly removed, and cells were washed with ice-cold PBS,
followed by fixation in precooled methanol for 10 min at �20 C. After
three washing steps (Tris-buffered saline/0.1% Triton X-100), unspecific
binding sites were blocked for 1 h at room temperature (5% normal goat
serum in 0.1% Triton X-100). After that, cells were incubated with phos-
pho-STAT3 (P-STAT3) antibody (1:3000 in blocking solution) overnight
at 4 C. The next day, cells were washed in Tris-buffered saline and
incubated with an Alexa 579 conjugated antirabbit antibody (1:1000 in
blocking solution) for 2 h. After a final wash, the chambers were re-
moved from the slides and cover-slipped with Vectashield Mounting
Medium (Vector Laboratories, Inc., Burlingame, CA) containing dia-
midinophenolindole for nuclear counterstain. Results were visualized
on a fluorescence microscope (Axioscope2, Carl Zeiss, Thornwood, NY),
and pictures were taken with a digital camera (AxioCam, Carl Zeiss).

IHC

Male Sprague Dawley rats, 4–5 wk of age, were purchased from
Jackson ImmunoResearch Laboratories, Inc. (Bar Harbor, ME). The an-
imals and procedures used were in accordance with the guidelines and
approval of the Harvard Medical School and Beth Israel Deaconess
Medical Center Institutional Animal Care and Use Committees. Rats
were injected ip with leptin (1.0 mg/kg body weight) or vehicle (PBS).
Animals were then deeply anesthetized with ketamine (100 �g/kg body
weight) and xylazine (10 �g/kg body weight), the heart was uncovered,
and the circulation was flushed with 0.9% saline for 5 min via the left
ventricle, followed by 10% neutral buffered formalin solution for 30 min.
After that, the brain was carefully removed, postfixed for 12–15 h in
formalin solution, and finally cryoprotected in 20% sucrose solution.
Brains were frozen in dry ice and cut in 25-�m coronal sections on a
microtome, collected in five series, and stored in 0.02% sodium azide
containing PBS at 4 C until further use. From the five series of brain
sections, one was used for single P-STAT3 IHC, another for single
�-MSH IHC, a third series was used for double staining, and a forth
series was driven to Nissl stain to determine the morphology of the
sections. For IHC, free-floating tissue sections were used. For �-MSH
IHC, sections were incubated in 0.3% H2O2 to block endogenous per-
oxide, blocked in 3% normal donkey serum in PBS/0.25% Triton X-100/
0.02% sodium azide for 1 h, and incubated overnight at room temper-
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ature with the primary antibody (sheep anti-�-MSH, 1:60,000) diluted in
the same blocking solution as described above. On the next day, sections
were washed, incubated with a biotinylated secondary donkey antish-
eep antibody for 1 h (1:1000, in blocking solution without sodium azide),
and then treated with ABC solution for 1 h; finally, the signal was
developed by DAB solution, giving a brown precipitate. For P-STAT3
IHC, the tissue needed to be pretreated with 1% NaOH and 1% H2O2
in H2O for 20 min, 0.3% glycine for 10 min, and 0.03% sodium dodecyl
sulfate for 10 min. After that, sections were blocked for 1 h with 3%
normal goat serum in PBS/0.25% Triton X-100/0.2% sodium azide,
P-STAT3 antibody was added (rabbit anti-P-STAT3, 1:3000 in blocking
solution), and finally incubated overnight at 4 C. On the next day, the
procedure was performed as described for �-MSH IHC, except that the
secondary antibody was a biotinylated antirabbit antibody (1:1000 in
blocking solution without sodium azide). For double IHC, both proce-
dures were performed consecutively as described above (first �-MSH,
and then P-STAT3), except that P-STAT3 DAB stain was performed by
addition of 0.1% cobalt chloride and 0.1% nickel sulfate resulting in a
dark blue precipitate. Pictures were taken as described above with a
digital camera and a brightfield microscope.

Cell counting and quantification

For cell counting, one of five series was used from leptin-treated rats.
All sections containing POMC cell bodies in the mediobasal hypothal-
amus were organized systematically in a rostral-to-caudal manner ac-
cording to the rat brain atlas (45) and then counted for �-MSH-positive
cells, P-STAT3-positive cells, and double-labeled cells. To estimate the
total cell number in this brain region, we multiplied all numbers by five
to account for the five series. This was done in a total of three animals.

Statistical analysis

One-way ANOVA (between subjects) and Fisher’s projected least
significant difference test for post hoc analysis have been used for sta-
tistical analysis of cell counting and quantification results.

Results
Leptin activates the proximal rat and human pomc
promoters in transfected cells

It has been shown earlier that leptin can increase hypo-
thalamic POMC mRNA levels in the leptin-sensitive ob/ob
mice, as well as in normal mice and rats (24, 26, 27). Because
the long form of the leptin receptor (ObRb) is expressed in
POMC neurons (46), we speculated that this effect of leptin
is mediated by activation of receptor-dependent intracellular
signaling pathways, leading to increased transcription of the
pomc promoter. To investigate this possibility, we generated
reporter plasmids containing proximal sequences of the rat
(�704 to �64) and human (�761 to �6) pomc promoters
located upstream of the luciferase reporter gene in the pro-
moterless pGL2-Basic vector. Regulation of luciferase activ-
ities was first studied in the human embryonic kidney cell
line, 293T, because these cells have previously proven capa-
ble of activating intracellular signaling in response to leptin
when transfected with ObRb-expression vectors and of stim-
ulating the TRH-promoter (47). Cells were transiently co-
transfected with ObRb expression vectors together with pomc
promoter constructs. Approximately 16 h after transfection,
cells were left untreated or treated with 40 nm leptin for 6 h.
Measurements of luciferase activities in cell lysates demon-
strated stimulation of the rat and the human pomc promoters
by approximately 3-fold and approximately 6-fold, respec-
tively, whereas the promoterless vector showed no response
(Fig. 1A). We also demonstrated a leptin-dependent stimu-
lation of both promoters in the pituitary-derived AtT-20 cell

line (Fig. 1B), but the responses were significantly less (�2-
fold) compared with those obtained in 293T cells. We do not
know the cause of this difference in responsiveness between
the two cell lines, but speculate that this relates to limiting
levels of positive signaling factors or higher levels of negative
signaling components in the AtT-20 cells. We conclude, how-
ever, that leptin has the capacity to directly stimulate prox-
imal pomc promoter activities in cells expressing ObRb.

STAT3 is required for maximal activation of the pomc
promoter by leptin in 293T cells

ObRb belongs to the cytokine receptor superfamily (29, 30)
and stimulates the JAK-STAT3 signaling pathway in vitro
and in vivo (23, 28, 35, 41). We therefore investigated the
potential role of the STAT3 transcription factor in regulation
of the pomc proximal promoter by leptin in the transfection
system. The human pomc promoter-luciferase construct
(�761/�6) was cotransfected with ObRb plasmids, together
with either WT or DN STAT3 (Y705F) expression vectors, and
the cells were treated for 6 h as described above. As shown

FIG. 1. Leptin activates rat and human proximal pomc promoters in
transfected cells. Human embryonic kidney cells (293T) (A) or AtT-20
cells (B) were transiently transfected with mammalian expression
vectors encoding the murine long form of the leptin receptor (ObRb),
together with the promoterless pGL-2-Basic luciferase-vector, rat-
POMC promoter (�704/�64), or human-POMC (hPOMC) promoter
(�761/�6) plasmids. After transfection, cells were left untreated
(white bars) or were treated with 40 nM leptin for 6 h (black bars). A
CMV-lacZ control vector was also cotransfected into the cells to nor-
malize luciferase activities. Transfections and treatments were done
in triplicate. Shown is one representative experiment. Data are
means � SEM.
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in Fig. 2A (left), expression of DN STAT3 strongly attenuates
(70%) the leptin response. To directly show activation of
STAT3 phosphorylation on tyrosine 705 in response to leptin
in the same cell system and inhibition of this effect by DN
STAT3, we applied fluorescence ICC using an antibody spe-
cific to the phosphorylated form of STAT3 (Fig. 2A, right). As
shown, leptin treatment of cells expressing ObRb and WT
STAT3 for 20 min resulted in strong fluorescence in both the
cytoplasm and the nucleus of numerous cells. In contrast, a
dramatic reduction in STAT3 phosphorylation was observed
in leptin-treated cells expressing DN STAT3. These results
demonstrate that functional STAT3 proteins are required for
maximal activation of the pomc promoter by leptin in this
system.

Y1138 of ObRb is required for maximal activation of the
human pomc promoter in 293T cells

The intracellular domain of the long form of the murine
leptin receptor, ObRb, contains three tyrosine residues of
which the C-terminal Y1138 is known to mediate leptin-
dependent binding and activation of STAT3 (32, 36, 37). To
support the finding that STAT3 is critical for regulation of
pomc promoter activity by leptin, we therefore tested the
significance of Y1138 for this effect. Cells were transfected
with the human pomc promoter plasmid, together with either

the WT or mutated (Y1138S) ObRb plasmid, and treated or
not treated with leptin for 6 h before measurement of lucif-
erase activities. As shown in Fig. 2B (left), cells expressing
leptin receptors lacking Y1138 showed a marked reduction
(�60%) in promoter activity in response to leptin, compared
with cells expressing the WT ObRb. As expected, this was
accompanied by a significant reduction in the number of cells
exhibiting activation of STAT3 phosphorylation by mutant
ObRb, as demonstrated by ICC (Fig. 2B, right), although a few
cells partly responded to leptin. This latter result may sug-
gest that other tyrosine residues of ObRb have some capacity
to activate STAT3, and it is consistent with the observed
residual activation of the pomc promoter by the Y1138S re-
ceptor. Combined, however, these results show that Y1138 of
ObRb is required for full stimulation of STAT3 phosphory-
lation and of pomc-promoter activities in response to leptin.

An element of the proximal pomc promoter is required for
STAT3-dependent regulation of pomc transcription by
leptin in transfected cells

To begin to identify promoter elements responsible for the
regulation of the pomc promoter by leptin, we generated a
number of progressive deletions of the promoter. As shown
in Fig. 3A, the human promoter construct containing 91 base
pairs upstream of the transcriptional start site (�91/�6)

FIG. 2. Y1138 of the leptin receptor and
STAT3 are required for maximal activation of
the pomc promoter by leptin in 293T cells. A,
Left, 293T cells were transfected with ObRb
and the human pomc promoter constructs.
Vectors encoding WT STAT3 or DN Y705F-
STAT3 were also cotransfected into the cells.
Transfections and treatments were performed
in triplicate. Shown is one representative ex-
periment. Data are means � SEM. Black bars
depict luciferase activities in lysates from lep-
tin-treated cells (6 h, 40 nM). Right, Cells were
grown on lab-tech slides, transfected with
ObRb together with WT STAT3 or DN STAT3
plasmids, and subsequently treated or not
treated with 40 nM leptin for 20 min. Cells
were subjected to fluorescence ICC with anti-
pY-705-STAT3-antiserum (green). Blue color
shows diamidinophenolindole nuclear counter
staining. Shown are representative fields of
each transfection and treatment after captur-
ing with a digital camera mounted on a fluo-
rescence microscope. B, Left, 293T cells were
transfected with ObRb or ObRb lacking ty-
rosine 1138 (Y1138S) vectors, together with
the human pomc promoter construct. Trans-
fections and treatments (6 h, 40 nM) were per-
formed in triplicate. Shown are luciferase ac-
tivities. Right, Cells were transfected as
above, treated with 40 nM leptin for 20 min,
and subjected to fluorescence ICC, except that
WT STAT3 vectors were included and pomc-
luc plasmids were omitted in the transfec-
tions. Representative fields of each transfec-
tion and treatment are shown.
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exhibited full responsiveness to leptin, whereas deletion of
further 30 bases (�61) resulted in a near-complete loss of
activation. Figure 3B shows fold-responses to leptin in cells
coexpressing STAT3 or an empty control vector. Coexpres-
sion of WT STAT3 enhanced the leptin responsiveness of the
�91/�6 construct from approximately 5-fold to approxi-
mately 30-fold, but the �61/�6 construct was almost non-
responsive to leptin under both of these conditions. These
results clearly demonstrate that removal of the promoter
sequence between �91 and �61 results in complete loss of
STAT3-mediated activation of the human pomc promoter by
leptin.

We examined the human promoter region encompassing
the 30-bp sequence for possible STAT DNA-binding ele-
ments [TT(N)5AA; Refs. 48 and 49). One putative site in the
3�-5� orientation was identified at bases �73 to �65. This
sequence (TGCCGGGAA) is not a canonical STAT-DNA
binding element, but is highly conserved and identical
among the rat and murine pomc promoters (TGCCAGGAA).

However, with EMSA, we could not detect STAT3 binding
to human, rat, or mouse DNA probes, using nuclear extracts
from leptin-treated 293T cells, transiently expressing ObRb
and STAT3 proteins (data not shown). In parallel experi-
ments using the same nuclear extracts, we did however dem-
onstrate strong leptin-dependent binding of STAT3 to an
oligonucleotide probe containing a known STAT inducible
element (SIE–m67; Ref. 50), thus proving the functionality of
the assay. Combined, these data show that the �91 to �61
region of the human pomc promoter is required for STAT3-
dependent activation by leptin in 293T cells, and suggests
that promoter regulation may be mediated via a more com-
plex and indirect STAT3-dependent mechanism that has yet
to be identified.

Leptin-dependent STAT3 phosphorylation in the rat brain

To further support our evidence for a role of STAT3 in pomc
gene regulation by leptin, we next wanted to determine
whether STAT3 is phosphorylated in hypothalamic POMC
neurons in leptin-treated rats. For this purpose, we first de-
veloped immunohistochemical methods to detect phosphor-
ylated STAT3 in brain sections from rats. Sprague Dawley
rats were given a single ip injection of recombinant leptin (1.0
mg/kg body weight) or vehicle (PBS) and killed 45 min later.
Coronal brain sections (25-�m thick) were subjected to IHC
using the same phospho-specific-STAT3 (Y705) antiserum as
described in Fig. 2. Overall, we found very few P-STAT3-
positive cells in the hypothalamus from PBS-treated animals
(Fig. 4, A and D). In striking contrast, dense populations of
cells with nuclear staining were seen throughout the ARC
and in subregions of the ventromedial nucleus of hypothal-
amus (VMH) and the dorsomedial (DMH) region, similar to
findings reported by Hubschle et al. (38). Representative pho-
tomicrographs of sections from two levels of the mediobasal
hypothalamus of a leptin-treated rat are shown in Fig. 4, B
and E. Matched brain sections were used to identify exact
locations of individual hypothalamic nuclei by applying the
Nissl-stain (Fig. 4, C and F). Combined, these results dem-
onstrate rapid induction of STAT3 phosphorylation in re-
gions of the hypothalamus known to express high levels of
the leptin receptor (12).

Other regions of the hypothalamus containing numerous
cells demonstrating leptin-dependent STAT3 phosphoryla-
tion are the paraventricular nucleus (PVN; Fig. 5, A–C) and
the lateral hypothalamic area (LHA; Fig. 5, D–F). Strong
staining in processes of cells in the LHA could also be iden-
tified. Outside the hypothalamus, a distinct population of
cells in regions of the periaquaductal gray (PAG) and the
dorsal raphae (DR; Fig. 5, G–I) were activated in response to
leptin administration. Finally, we also found a dense group
of cells that were positive for P-STAT3 in the caudal brain
stem, more specifically, in regions of the nucleus of the sol-
itary tract (NTS) and possibly parts of the dorsal motor
nucleus of the vagus nerve (Fig. 5, J–L). These results suggest
that leptin is acting directly at these regions and imply that
neurons located at these sites are important for the biological
effects of leptin.

FIG. 3. Identification of a 30-bp element of the human pomc promoter
that is required for leptin and STAT3 responsiveness in 293T cells. A,
Cells were transfected with ObRb plasmids together with progressive
deletion plasmids of the human pomc promoter. Data are means �
SEM. Black bars depict luciferase activities in leptin-treated cells (6 h,
40 nM), and white bars represent vehicle-treated cells. B, Cells were
transfected as above, except that WT STAT3 vectors were cotrans-
fected or not. Data are depicted as fold activation without coexpres-
sion (white bars) or with coexpression of STAT3 (black bars). Data are
means � SEM.
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Leptin induces STAT3 phosphorylation in POMC neurons
in rats

The major site within the brain containing POMC neurons
resides in the ARC of the hypothalamus (51–54). To directly
determine whether STAT3 is phosphorylated in these cells in
response to leptin and thus support our transfection results,
we developed a double-IHC method for detecting P-STAT3
and the POMC-derived melanocortin peptide, �-MSH, as
presented in Fig. 6. Brown represents staining for �-MSH, and
blue represents P-STAT3. A representative, low-magnifica-
tion microphotograph of a section from a PBS-treated rat is
shown in Fig. 6A. Consistent with earlier reports, we found
cell bodies containing �-MSH in the ARC of the hypothal-
amus. As expected, �-MSH was detected in the cytoplasm of
these cells, as shown in a high-magnification microphoto-
graph from the same section (Fig. 6B). Cells positive for
P-STAT3 were not found in this section, consistent with the
lack of STAT3 phosphorylation in the mediobasal hypothal-
amus from PBS-injected animals (Fig. 4). Dense concentra-
tions of nerve fibers containing �-MSH could be seen in the
ARC, DMH, LHA, and many extrahypothalamic brain re-
gions (data not shown), as previously reported (55). In con-
trast to brain sections from the control animals, sections from
rats killed 45 min after leptin injection demonstrated numer-
ous POMC neurons in the ARC that were positive for nuclear
P-STAT3 immunoreactivity. An example of a field contain-
ing several double-labeled cells is shown in Fig. 6C. As ex-
pected, cells positive for P-STAT3 (blue), but negative for
�-MSH, were also identified, some of which may be agouti-
related-protein and NPY neurons. Together, these data show
for the first time induction of STAT3 phosphorylation by
leptin in POMC neurons located in the mediobasal hypo-

thalamus, consistent with reports showing expression of lep-
tin receptors in these cells (46) and thus supporting our data
from above suggesting a role of STAT3 in regulation of pomc
gene expression by leptin.

Leptin-responsive POMC neurons are concentrated in the
rostral region of the mediobasal hypothalamus

It has been reported that POMC neurons located in the rostral
part of the ARC are more responsive to leptin when measuring
POMC mRNA by in situ hybridization, compared with those in
the more caudal region (24, 27). We therefore counted double-
labeled cells throughout the mediobasal hypothalamus in a
systematic and rostral-to-caudal manner in three leptin-treated
rats. The results from analysis of one rat are presented in Fig.
7. In a representative section from the rostral and caudal re-
gions, we found that 76% and 28% of the �-MSH-positive cell
bodies, respectively, were also positive for P-STAT3 (Fig. 7A).
Results from all sections containing POMC neurons of the an-
imal are depicted in Fig. 7B. Altogether, 1134 cells were counted
positive for �-MSH, and 408 (37%) of these were colocalized
with P-STAT3. Because we only counted one of five series, a
total of approximately 5670 POMC cells and approximately
2040 doubles are predicted in the rat brain. Furthermore, in the
most rostral sections, 70–90% were double labeled, whereas
only 20–30% were counted in the caudal sections (Fig. 7C). Very
similar results were obtained from analysis and counting of
sections from two other leptin-treated rats. Combined, these
immunohistochemical studies show for the first time that
STAT3 is rapidly phosphorylated in POMC neurons in vivo in
response to exogenous leptin administration. In addition, our
data suggest that only a subset (�37%) of POMC neurons is

FIG. 4. Leptin rapidly stimulates STAT3
phosphorylation in the mediobasal hypo-
thalamus. Rats were given a single ip
injection of recombinant leptin (1.0 mg/kg;
B and E) or vehicle (PBS; A and D) and
killed 45 min later. Coronal brain sections
were obtained and subjected to IHC using
anti-pY-STAT3 antiserum (A, B, D, and E)
or to Nissl staining (C and F) as described
in Materials and Methods. Shown are mi-
crophotographs of two matched series of
sections from the hypothalamus (A–C,
bregma �2.30) and (D–F, bregma �3.30).
3v, Third ventricle. Scale bars, 200 �m.
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leptin-responsive and that these cells are concentrated in the
rostral part of the mediobasal hypothalamus.

Discussion

Powerful genetic and pharmacological data demonstrate
that the central melanocortin system is critical for the normal
regulation of energy homeostasis and strongly implicates
hypothalamic POMC neurons as key mediators of leptin
action to affect body weight and regulate neuroendocrine
function (56). It is known that these cells express leptin re-
ceptors (46), and several studies have shown regulation of
POMC mRNA levels by leptin in rodents (24, 26, 27), but the
mechanism underlying this effect is unknown. Here, we
present strong evidence suggesting a critical role of the
STAT3 transcription factor to stimulate hypothalamic pomc
gene transcription when activated by leptin receptors ex-
pressed in POMC neurons.

Using a heterologous transfection system in mammalian
cells, we have determined that the STAT3-binding site, ty-
rosine 1138, of the leptin receptor and tyrosine residue 705
of STAT3 are obligate components of an intracellular
signaling pathway to maximally induce transcriptional ac-
tivation of the proximal pomc promoter by leptin. We did,
however, detect some residual promoter activation in leptin-
treated cells expressing DN STAT3 proteins lacking Y705 and

in cells expressing leptin receptors lacking Y1138. This may
suggest that leptin-regulated pathways other than STAT3
signaling are also important for pomc promoter activation.
For example, leptin-dependent activation and the presence
of phosphoinositol-3-kinase (57–59), phosphodiesterase-3B
(59), and the MAPK-ERK pathway (60, 61) have been re-
ported in the mediobasal hypothalamus. But whether these
enzymes and the down-stream pathways are directly acti-
vated in POMC neurons by leptin and whether they play a
role in regulation of the pomc gene is presently unknown and
requires further studies.

Previous studies have identified STAT3-responsive ele-
ments in the proximal pomc promoter (42). Specifically, two
juxtaposed sequences located at position �399 to �379 of the
rat promoter were shown to cooperatively bind STAT3 in
nuclear extracts from pituitary-derived AtT-20 cells treated
with leukemia-inhibitory factor (LIF). Furthermore, muta-
tion of these putative STAT3 binding sites revealed that these
were required for full stimulation of rat pomc promoter ac-
tivities by LIF, suggesting a role of these elements in pitu-
itary-adrenal responses to LIF during inflammation. Because
the LIF-receptor system and the leptin receptor have similar
signaling characteristics, we made progressive deletions of
the promoter to test whether the leptin receptor signaling
acts via these same elements. In contrast to the findings in the

FIG. 5. Activation of STAT3 phosphoryla-
tion by leptin in hypothalamic and extra-
hypothalamic brain regions of the rat. An-
imals were treated, and brain sections
were obtained as described for Fig. 4.
Shown are microphotographs of four
matched series of sections from the PVN
(A–C), LHA (D–F), PAG (G–I), and NTS
(J–L). DMV, Dorsal motor nucleus of the
vagus; 3v, third ventricle; CC, central ca-
nal; AP, area postrema; Aq, aquaduct.
Nissl staining is shown of corresponding
sections and fields to each brain region (C,
F, I, and L). Scale bars, A–F and J–L, 200
�m; G–I, 100 �m.
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pituitary pomc system in response to LIF, we found that a
30-bp sequence located between �91 and �61 of the human
proximal pomc promoter was required for STAT3-dependent
activation by leptin. Surprisingly, we could not detect bind-
ing of STAT3 to this minimal promoter region using EMSA.
This suggests that STAT3 may act indirectly via activation of
other transcription factors that ultimately regulate pomc tran-
scription via the �91/�61 element. Indeed, interactions of
STAT molecules with other transcription factor systems, in-
cluding the glucocorticoid receptor (62), SP1 (63, 64), C/EBP
(63), and c-Fos and JunB (42, 65), have been described, but
further studies are required to determine whether these pro-
teins or other mechanisms are important for the observed
effects. We conclude that STAT3 and proximal promoter
sequences are likely to play key roles in the stimulation of the
hypothalamic pomc promoter by leptin. To directly demon-
strate this in vivo, more complex studies are required. Spe-
cifically, transgenic expression of DN STAT3 proteins in
POMC neurons or conditional deletion of STAT3 in the same
neurons could determine this and thus conclusively connect
our transfection results and in vivo findings.

Several methods have been applied to identify nuclei and
cells in the brain that are leptin-responsive. These include
c-Fos IHC (3, 32), ObRb in situ hybridization histochemistry
(ISHH; Ref. 12), suppressor of cytokine signaling-3 (SOCS-3)

ISHH (44), and STAT3 translocation by IHC (38). Although
results from these studies have clearly increased our under-
standing of leptin action in the brain, some issues remain to
make these techniques optimal tools. For example, c-Fos is
only activated in a subset of leptin-sensitive neurons (3), the
ObRb and SOCS-3 ISHHs are not as sensitive as desired, and
the STAT3 translocation assay may have a relatively high
background due to the presence of STAT3 in the cytoplasm.
We conclude that the P-STAT3 IHC is a particularly useful
and sensitive method to identify leptin-responsive cells in
the brain.

As expected from the previous studies of ObRb mRNA
expression and of SOCS-3 mRNA induction by leptin, we

FIG. 6. Activation of STAT3 phosphorylation by leptin in POMC neu-
rons. Rats were given a single ip injection of recombinant leptin (1.0
mg/kg; C) or PBS (A and B) and killed 45 min later. Coronal brain
sections were subjected to double IHC using anti-�-MSH (brown
staining) and anti-pY-STAT3 (blue staining) antiserum as described
in Materials and Methods. Shown are examples of microphotographs
of fields from sections of the basal hypothalamus of a PBS-treated rat
(A, low magnification; B, high magnification of area indicated in A)
and a leptin-treated rat (C, high magnification). 3v, Third ventricle.
Arrows indicate double-labeled cells. Scale bars, A, 100 �m; B and C,
10 �m.

FIG. 7. Leptin-responsive POMC neurons are concentrated in the
rostral region of the mediobasal hypothalamus. Animals were treated
and brain sections obtained as described for Fig. 4. A, Example of
results from double-labeling analysis and counting of a rostral and a
caudal section from a leptin-treated rat (sections correspond to B).
Triangles and dots represent double- (�-MSH/P-STAT3) and single-
(�-MSH) labeled cells, respectively. B, Total results from counting of
all sections (n � 19) containing �-MSH-positive cells (white bars) and
double-labeled cells (black bars) in a rostral-to-caudal manner from
one series of sections from a leptin-treated rat. C, Percentage of
doubled-labeled cells after grouping and statistical analysis of the
results depicted in B. ARC I, sections 1–4; ARC II, sections 5–9; ARC
III, sections 10–14; and ARC IV, sections 15–19. The statistically
significant differences between the rostral (ARC I) and caudal sec-
tions (ARC II–IV) were confirmed by one-way-ANOVA (between sub-
jects), and Fisher’s projected least significant difference test was used
for post hoc analysis. Similar results were obtained from independent
analysis of sections from two additional leptin-treated animals.
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found that the predominant leptin-responsive nuclei in the
brain are the ARC, VMH, and DMH. Careful mappings of
leptin-sensitive sites in the hypothalamus by Hubschle et al.
(38) showed very similar results using a STAT3-translocation
assay in rats. We also found moderate populations of positive
cells in the PVN, which may constitute hypophysiotrophic
TRH neurons (66), and in regions of the LHA, which may
represent populations of orexin and/or melanin-concentrat-
ing hormone-expressing neurons (67). Double-labeling stud-
ies are required to examine these possibilities. The PVN and
LHA have not consistently been identified with the ISHH
methods, but the LHA was clearly mapped using the STAT3-
translocation assay in the rat and recently using P-STAT3
IHC in the mouse (39). Altogether, this latter study reported
quite similar results in the mouse as we present here in the
rat, but the authors did not mention the PVN or the DMH as
leptin-responsive sites. On the other hand, we did not iden-
tify the parabrachial nucleus in our studies of the rat. The
reason for these differences is unclear, but may in part relate
to the different species studied and/or to the time-points
used. On the basis of the good correlation with previous
ISHH and IHC studies listed above and earlier in vitro re-
ceptor-signaling studies, we conclude that P-STAT3 positive
cells identified in brains of leptin-treated animals are likely
to represent cells that express functional long-form leptin
receptors and are accessible to circulating leptin, thus rep-
resenting direct targets of leptin.

Outside the hypothalamus, we found a moderate number
of P-STAT3 cells in the PAG and DR of leptin-treated rats.
The identity and role of these cells in leptin action are un-
known. Finally, a dense group of cells was observed in the
caudal brain stem, specifically in the NTS, as also reported
by Hosoi et al. (39). The nature of these cells has not been
determined, but they could represent POMC neurons, as a
small population of POMC neurons is known to exist at this
site (68). Because of low expression of �-MSH in these neu-
rons compared with the hypothalamic POMC cells, detection
requires colchicine treatment (68), which we did not perform
in this study, and a possible colocalization could thus not be
determined. Other potential candidates include GLP-1 neu-
rons because leptin receptor mRNA (12) and leptin-depen-
dent induction of c-Fos have been colocalized to these cells
in the NTS (69). Furthermore, our results are consistent with
reports showing inhibitory effects of low doses of leptin on
feeding when injected directly into the NTS (70). Finally, a
recent paper concludes that leptin has the ability to directly
affect the firing rate of NTS neurons that are activated in
response to gastric loadings (71). In conclusion, our data
strongly suggest that leptin acts directly in the caudal brain
stem and imply that leptin may affect afferent satiety signals
that are transmitted via the vagus nerve from the stomach
and gut to the NTS (72). Such effects of leptin may ultimately
lead to regulation of meal size, and future studies will de-
termine the validity of these interesting possibilities.

Using double-labeling IHC, we show here for the first time
activation of STAT3 phosphorylation by leptin in hypotha-
lamic cells known to express leptin receptors, specifically the
POMC neurons. This result strongly supports our transfec-
tion studies suggesting a critical role of the STAT3 pathway
in regulation of pomc-gene expression by leptin. By counting

double-labeled cells in the ARC, we found that 37% of POMC
neurons contained phosphorylated STAT3 in leptin-treated
rats. We cannot, however, exclude the possibility that addi-
tional cells will be activated at earlier or later time-points
compared with the 45 min used in this study. We also
counted all �-MSH-positive cells in sections from two rats
and calculated a total of approximately 5600 POMC neurons
in the basal hypothalamus per brain, slightly higher than the
approximately 3000 cells reported in the mouse (13). We
calculated that approximately 2000 cells of the POMC neu-
rons are P-STAT3 positive after leptin administration, thus
suggesting that only a subpopulation of POMC neurons in
the rat is responsive to leptin.

Studies indicate that regulation of POMC mRNA in re-
sponse to fasting and leptin treatment is mainly confined to
the rostral region of the ARC (27). Furthermore, Elias et al. (3)
have reported that c-Fos immunoreactivity in POMC neu-
rons of leptin-treated rats is concentrated in the rostral part
of the mediobasal hypothalamus. Finally, Thornton et al. (24)
report that the number of detectable POMC neurons is in-
creased in the rostral part of the ARC, but not in the caudal
ARC, after leptin injections in ob/ob mice. To further evaluate
this possibility using P-STAT3 IHC, we determined regional
differences in responsiveness to leptin in POMC neurons by
systematically counting the number and calculating the per-
centage of P-STAT3-positive POMC neurons in different re-
gions of the ARC. Indeed, we found approximately 75% in
the rostral ARC and about a third (�25%) in the caudal
region of the ARC. Our data are thus consistent with pre-
vious studies demonstrating the presence of leptin-respon-
sive POMC neurons throughout the ARC, but at the same
time showing concentration of these cells in the rostral re-
gion. Similar conclusions from studies of leptin-responsive
subpopulations of NPY neurons in the ARC have also been
reported (6). POMC neurons are thus likely to be a hetero-
geneous population of cells in which subsets may serve
different functions. The meaning of these findings and the
specific functions of individual POMC populations in
melanocortin action clearly deserve further examination.

In conclusion, our studies suggest that STAT3 activation is
critical for regulation of hypothalamic pomc gene expression
by leptin and that this occurs by leptin acting directly via
leptin receptors expressed on POMC neurons. Consistent
with a key role of this transcription factor in leptin action,
recent data demonstrate that removal of the STAT3-binding
site (Y1138) of the leptin receptor in mice results in leptin
resistance, extreme obesity, and decreased hypothalamic
POMC mRNA levels (73). Combined, these findings under-
score the importance of transcriptional events in leptin action
and imply that STAT3 is likely to be critical for regulation of
the melanocortin pathway to maintain energy balance by
leptin.
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