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ROLE OF SILICA FUME IN COMPRESSIVE STRENGTH OF CEMENT 
PASTE, MORTAR, AND CONCRETE 

ABSTRACT 

Controversy exists as to why silica fume increases the strength of concrete when it is used 

as a partial replacement for cement. Some evidence supports the view that the increase in strength 

is due to an increase in the strength of the cement paste constituent of concrete. However, con­

tradictory evidence exists that shows no increase in the strength of cement paste, but substantial 

increases in concrete strength, when silica fume is used. The latter evidence is used to support the 

theory that silica fume strengthens concrete by strengthening the bond between cement paste and 

aggregate. 

This study is designed to explain the contradictory evidence and establish the role played by 

silica fume in controlling the strength of concrete and its constituent materials. These goals are ac-

complished using cement pastes, mortars, and concretes with water-cementitious material ratios 

ranging from 0.30 to 0.39. Mixtures incorporate no admixtures, a superplasticizer only, or silica 

fume and a superplasticizer. The research demonstrates that replacement of cement by silica fume 

and the addition of a superplasticizer increases the strength of cement paste. It also demonstrates 

that cement paste specimens, with or without silica fume, can exhibit reduced strength compared to 

other specimens with the same water-cementitious material ratio if the material segregates during 

fabrication, thus explaining some earlier experimental observations. The segregation of cement 

paste is caused by high superplasticizer dosages that do not cause segregation of concrete with the 

same water-cementitious material ratio. Concrete containing silica fume as a partial replacement for 

cement exhibits an increased compressive strength because of the improved strength of its cement 

paste constituent. Changes in the paste-aggregate interface caused by silica fume appear to have 

little effect on the uniaxial compressive strength of concrete. 



INTRODUCTION 

It is well recognized that the use of silica fume as a partial replacement for cement provides 

a significant increase in the strength of concrete. There is, however, controversy as to what causes 

the increase in strength. Some researchers believe that the increase in strength is primarily the 

result of a higher quality cement paste matrix, while others feel sure that the increase in concrete 

strength is the result of a greatly improved bond strength between the cement paste and the 

aggregate. 

There is strong evidence that silica fume increases the homogeneity and decreases the num­

ber of large pores in cement paste (Mehta and Gjorv 1982, Feldman and Huang 1985), both of 

which would lead to a higher strength material. Work by Darwin, Shen, and Harsh (1988) with 

cement paste and mortar, supports the importance of the quality of the paste in controlling concrete 

strength. 

There is also ample evidence that the use of silica fume results in a denser interface between 

cement paste and coarse aggregate (Regourd 1985, Bentur and Cohen 1987, Bentur, Goldman and 

Cohen 1988). Some researchers have offered indirect evidence indicating that the strength increase 

that occurs with the addition of silica fume to concrete is the result of an increase in bond strength 

between hydrated cement paste and aggregate (Huang and Feldman 1985, Rosenberg and Gaidis 

1989, 1990, Goldman and Bentur 1989). Rosenberg and Gaidis (1989) and Goldman and Bentur 

(1989) have gone on record as stating that the enhancement in concrete strength obtained by the 

addition of silica fume is due primarily to the increased bond strength between hydration products 

and coarse aggregate. Goldman and Bentur (1989) feel that the higher bond strength causes the 

aggregate to act as a "reinforcing filler." Clearly, general agreement does not exist on the 

mechanism by which silica fume increases the strength of concrete. 

In light of the ongoing controversy, this report describes work that is aimed at improving 

the understanding of the role played by silica fume in concrete, and attempts to explain some of the 

apparently conflicting results from earlier studies. 
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BACKGROUND 

The role of the cement paste-aggregate interface on the behavior of mortar and concrete is 

central to the current discussion. The topic has been under study for many years. Some ex­

perimental work (Shah and Chandra 1968, Nepper-Christensen and Nielsen 1969) indicates that 

the interface plays a major role in concrete strength. These studies, however, used relatively thick, 

soft coatings on coarse aggregate to reduce bond strength. These coatings essentially isolated the 

aggregate from the surrounding mortar. The effect was similar to inducing a large number of voids 

in the concrete. 

Other studies (Darwin and Slate 1970, Perry and Gillott 1977) established that a major 

reduction in interfacial bond strength between cement paste and coarse aggregate has relatively little 

effect on initial stiffness, and may result in a 10 percent reduction in compressive strength. Finite 

element studies by Maher and Darwin (1977) substantiate these experimental results. 

More recently, Popovics (1987) attempted to increase the compressive strength of concrete 

by increasing interfacial bond strength through the application of various surface treatments to the 

coarse aggregate. He achieved an improvement in compressive strength in a few cases. However, 

in most cases, the surface treattnents caused a reduction in compressive strength. 

Studies by Huang and Feldman (1985), Bentur et al. (1988), Rosenberg and Gaidis 

(1989), and Goldman and Bentur (1989) seem, once again, to emphasize the importance of inter­

facial bond strength for concretes in which silica fume is used as a partial replacement for cement. 

Huang and Feldman (1985) found that mortar without silica fume had a lower strength than cement 

paste with the same water-cement ratio, while mortar with 30 percent of the cement replaced by 

silica fume had a higher strength than a cement-silica fume paste with the same water-cementitious 

material ratio. They concluded that the higher strength mortar must be due to improved bond 

strength between paste and sand and that the improved bond was due to the conversion of calcium 

hydroxide, which normally forms preferentially at the surface of aggregate particles, to calcium 
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silicate hydrate due to the presence of reactive silica. Rosenberg and Gaidis ( 1989), Bentur et a!. 

(1988), and Goldman and Bentur (1989) made similar observations for concrete. These 

investigators observed no increase in the strength of cement paste (at water-cementitious ratios of 

0.24 and 0.33 for Rosenberg and Bentur, respectively) due to the addition of silica fume and 

superplasticizer, but did observe substantial increases in the strength of concrete made with the 

same materials. The researchers reasoned that the increase in the strength of the concrete was due 

to an improved interfacial bond strength between cement paste and aggregate. 

While the reasoning in these cases seems straightforward, there were significant weak­

nesses in each of the experiments. Huang and Feldman (1985) added a superplasticizer to the mor­

tar containing silica fume, but not to the cement paste containing silica fume. Thus, their results 

may be used to conclude that the increase in compressive strength of mortar relative to cement paste 

was due to the addition of the superplasticizer rather than the presence of silica fume. Bentur and 

coworkers (Bentur eta!. 1988, Goldman and Bentur 1989) used different amounts of superplas­

ticizer in the concretes and cement pastes as a function of the percent of cement replaced by silica 

fume. They selected the amount of superplasticizer based on the "maximum that could be incor­

porated" in concrete "without causing separation of the fresh mix." The result was a 55 percent 

increase in superplasticizer for the concretes and pastes with a 15 percent replacement of cement by 

silica fume compared to the materials without silica fume. This substantial increase in superplas­

ticizer for mixtures containing silica fume raises a question: Could the greater amount of superplas­

ticizer have adversely affected the degree of segregation and bleeding in the cement paste specime­

ns, causing a reduction in strength, while not adversely affecting the concrete? This point will be 

directly addressed in this study. 

In contrast to the observations cited above, Darwin et a!. (1988) found that the strengths of 

both cement paste and mortar were increased with a 15 percent replacement of cement by silica 

fume. However, the ratio of the strength of mortar to the strength of cement paste was lower for 

the materials containing silica fume. Using the line of reasoning offered by Huang and Feldman 
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(1985), Rosenberg and Gaidis (1989), and Goldman and Bentur (1989), it might be concluded that 

the bond strength between the cement paste and sand was actually lower when silica fume was 

used. Thus the results appear to be contradictory. Who is correct? Is there an error in reasoning 

somewhere? The current study is designed to answer these questions and explain what appear to 

be conflicting results. 

EXPERIMENTAL WORK 

Cement pastes, mortars, and concretes with water-cementitious material ratios by weight, 

w/c, ranging from 0.30 to 0.39 were used. Mixtures incorporated no admixtures, superplasticizer 

only, or silica fume and superplasticizer, designated as NA, SP and SF, respectively. The goals of 

this study include (1) determining under what conditions silica fume, in conjunction with a super­

plasticizer, increases the strength of cement paste when it is used as a partial replacement for· 

cement and (2) determining the degree of strength improvement in mortar and concrete obtained 

with the addition of silica fume and a superplasticizer. NA and SP pastes and mortars have w/c = 

0.30, 0.33, 0.36, and 0.39. SF pastes and mortars include w/c = 0.33, 0.36, and 0.39. w/c = 

0.30 was not used for SF paste and mortar due to stickiness of the materials. Concretes for each 

combination of cementitious materials have w/c = 0.33 and 0.39. The liquid portion of the super­

plasticizer was counted as part of the mixing water. 

Materials 

Ash Grove Type I portland cement with a C3S content of 45 percent, a CzS content of 29 

percent, a C3A content of 7 percent, and a C4AF content of 9 percent was used. The silica fume 

used in the study was in powder form and contained 95 percent SiOz, 0.39 percent CaO, 0.21 per­

cent MgO, 0.11 percent KzO, 0.15 percent Na20, 0.13 percent Alz03, 0.40 percent Fez03, and 

had 2.46 percent loss on ignition. 

The fine aggregate was Kansas river sand consisting mainly of quartz, with about 10 per-
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cent feldspar; fineness modulus = 2.60; bulk specific gravity (saturated surface dry) = 2.62; ab­

sorption (dry) = 0.5 percent. The sand was passed through a No. 4 sieve. The coarse aggregate 

was a 3f4 in. maximum size crushed limestone with bulk specific gravity (saturated surface dry)= 

2.54; and absorption (dry)= 3.5 percent. The coarse aggregate was passed through a 3f4 in. sieve 

and retained on a No. 8 sieve. 

The superplasticizer was Master Builders Rheobuild I 000, a calcium napthalene sulfonate 

condensate-based superplasticizer. The material has a specific gravity of 1.205 and is 40 percent 

solids by weight. It was used at the rate of 15 fluid ounces per 100 lbs of cementitious material 

(15 oz/cwt) for the SP test specimens and for the majority of the SF test specimens. To evaluate 

the effect of increased amounts of superplasticizer on the strength of SF materials, additional mix­

tures of cement paste and concrete containing silica fume with w/c = 0.33 were made using 25 

oz/cwt, the upper recommended limit, and 30 oz/cwt, 20 percent above the maximum 

recommended dosage. 

Mixtures were proportioned to limit the number of variables in the study. The cement pas­

tes represented the paste constituents of the mortars, and the mortars represented the mortar con­

stituents of the concretes. All mortars contained the same volume fractions of cement paste (56 

percent) and sand ( 44 percent), while all concretes contained the same volume fractions of mortar 

(68 percent) and coarse aggregate (32 percent). Mixture compositions are summarized in Table I. 

These mixture proportions produced concretes with slumps of I inch or less, with the exception of 

the SP concrete with w/c = 0.39 (slump = 71h in.) and the SF concrete with w/c = 0.33 and 30 

oz/cwt of superplasticizer (slump= 51h in.). 

Test Specimens 

As fabricated, the test specimens were 1 in. square by 5 in. long for cement paste and mor­

tar, and 3 in. square by 12 in. long for concrete. The sand and coarse aggregate were oven dried at 

105°C for 24 hours prior to hatching. The aggregates were then cooled to room temperature. 
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Sand and coarse aggregate were soaked in part of the mix water for 2 and 7 minutes, respectively, 

prior to the start of the mixing operations. Batch water was increased to account for the absorption 

of the aggregates. Cement paste and mortar specimens were mixed according to ASTM C 305, 

except that the sand was pre-soaked, the final 20 percent of the water and all of the superplasticizer 

were added after the first mixing period with cement, and the mixing time was doubled to obtain 

better dispersion of the materials. Concrete specimens were batched and mixed by hand following 

the sequence prescribed in ASTM C 305, but doubling the mixing and resting time periods and 

holding 20 percent of the water and the superplasticizer, as done for paste and mortar. 

Specimens were cast vertically in groups of 6. The molds were oiled prior to casting, and 

the joints were sealed with modeling clay to prevent a loss of moisture. The molds were filled in 

three equal lifts. For paste and mortar, each layer was hand rodded 25 times using a 1/4 in. 

diameter steel rod and then consolidated on a vibrating table with a frequency of 60 cycles/sec and 

an amplitude of 0.006 in. Each layer was vibrated for 11/z to 21/z minutes (NA paste and SP mor­

tar 11/z min., SF paste and NA mortar 2 min., SF mortar 21/z min.), depending on workability, 

except for the SP paste specimens, which required no vibration. An extra batch of SP paste (w/c = 

0.33) was vibrated for 2 minutes to check for positive or negative effects of consolidation on the 

strength of this highly fluid paste. As will be seen, no effect was found. Concrete specimens 

were filled in three layers. The concrete specimens with a slump of 1 in. or more with were con­

solidated by rodding, while the other concretes were consolidated using a 3/4 in. internal hand-held 

vibrator (NA concrete liz min., SF concrete 1 min.). After consolidation, the molds were sealed at 

the top. 

During the first 24 hours, the molds were stored in the laboratory in a horizontal position to 

reduce the effects of bleeding. Specimens were then removed from the molds and stored in lime­

saturated water until the time of test. 

Prior to testing, cement paste and mortar specimens were shortened to 3 in. and concrete 

specimens were shortened to 9 in. by removing equal portions from each end using a high-speed 



7 

masonry saw. The 3 to 1 aspect ratio of the specimens greatly reduces the effects of end condi­

tions during testing, which dominate the stresses in the traditional cube specimen and in much of 

the volume of standard concrete cylinders with 2 to 1 aspect ratios. Because of end restraint, cubes 

and the end regions of all specimens are placed in triaxial rather than uniaxial compression. In the 

current study, special care was taken to keep the sawed surfaces square with the length of the 

specimen. 

A layer of high strength gypsum cement (Hydrostone) was placed on the ends of the 

specimens. A smooth piece of glass was used to limit the cap thickness to 0.02 in. The capping 

material was allowed to dry for at least 30 minutes before testing. Each specimen was wrapped in 

plastic to avoid the loss of moisture during testing. 

Specimens were tested in compression using a hydraulic tester at ages of 3, 7, and 28 days, 

using spherically seated upper bearing blocks (ASTM C 39 and C 109). The load-head speed was 

set to produce a stress rate of 35 psi per sec for loads up to one-half of the ultimate. This load­

head speed was maintained for higher stresses, in accordance with ASTM C 39. 

Results 

Average specimen strengths are summarized in Table 2 and Figs. 1 through 5. Each value 

represents the average of two test specimens. Individual test results are presented in Appendix A. 

Figs. 1 and 2 compare the strengths of cement pastes with water-cementitious material ratios ran­

ging from 0.30 to 0.39 at ages of 3, 7 and 28 days. Regardless of water-cementitious material 

ratio, the SF cement paste with a superplasticizer dosage rate of 15 oz/cwt (taken as the standard) 

exhibits the highest strength at all ages, while the SP cement paste exhibits the lowest strength. 

These results are in sharp contrast with those of Goldman and Bentur (1989) and Rosenberg and 

Gaidis (1990) who obtained no additional strength for cement paste due to the replacement of 

cement by silica fume. The strengths of the different mixtures are closest at 3 days. The mixtures 

containing silica fume become increasingly stronger relative to the other two mixtures with 
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increasing time. The SP pastes are weaker than the NA pastes, but the difference in relative 

strength between the two materials is not consistent for different water-cement ratios with 

increasing time. From 7 to 28 days, the absolute difference in strength between NA and SP pastes 

is nearly constant for w/c = 0.30, decreases for w/c = 0.33 and 0.36, and increases for w/c = 

0.39. 

Figs. 3 and 4 compare the strengths of the mortars at ages of 3, 7 and 28 days. The trends 

differ from those observed for cement paste. At 3 days, the SF mortar is the weakest of the three 

mixtures at each w/c, while the SP mortar is the strongest. However, at later ages, the SF mortar 

is the strongest mixture at each w/c. The strengths of the NA and SF mortars are very close, but 

NA mortar is consistently the weaker, except for w/c = 0.39 at 28 days. 

Fig. 5 compares the strengths of the concretes with w/c = 0.33 and 0.39 at 3, 7, and 28 

days. At 3 days, the SP concretes are the strongest, while the SF concretes are the weakest. At 7 

days, the strengths of the three concretes are nearly equal at both w/c's. At 28 days, the SF con­

cretes are the strongest, while the other two concretes are very close in strength. 

Fig. 6 compares the strengths of the SF pastes and concretes made with 25 oz/cwt and 30 

oz/cwt of superplasticizer to the other pastes and concretes with w/c = 0.33. At 28 days, the 25 

oz/cwt SF paste is considerably weaker (12380 psi) than the 15 oz/cwt SF paste (16020 psi) and 

very close in strength to the NA paste (12560 psi). However, the 25 oz/cwt SF concrete is stron­

ger than all other concretes tested (8990 psi). The 30 oz/cwt SF paste is the weakest of the 0.33 

w/c pastes (11150 psi at 28 days), while the 30 oz/cwt SF concrete (8170 psi) is weaker than the 

25 oz/cwt SF concrete, but slightly stronger than the 15 oz/cwt SF concrete (8080 psi). 

Finally, the vibrated and non-vibrated (standard) 0.33 SP pastes have virtually identical 

strengths (11550 psi for the vibrated past versus 11640 psi for the non-vibrated paste at 28 days) 

showing that the consolidation technique had no effect on the strength of this material. 
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DISCUSSION 

The results illustrated in Figs. 1-5 suggest several things about the roles played by super­

plasticizer and silica fume. 

Superplasticizers break up floes of cement particles. This releases water that improves 

workability and provides for better access of water to the cement particles, which results in a 

greater degree of hydration and a higher strength. The lower strength exhibited by the SP pastes 

probably is due to the greater fluidity and accompanying segregation and bleeding that occur in 

these mixtures. The specimens were stored in a horizontal position to reduce the overall effects of 

bleeding. However, due to segregation, the highly fluid SP pastes have an increased water content 

(a difference in evaporatable water alone of 1 percent at 1 day compared to less than 0.1 percent for 

the 15 oz/cwt SF paste), and are thus weaker, on the upper side. This variation of properties 

within the cross section results in a reduced compressive strength for the SP paste specimens. 

Silica fume with 15 oz/cwt of superplasticizer provides a consistently higher strength 

cement paste at all ages, although the difference is smallest at 3 days. There are two reasons for 

the higher strength of these SF pastes. First, because of its small particle size, silica fume can act 

as a filler for the spaces between cement grains. This results in a reduction in the size of the in­

dividual pores and voids in the paste, although the total porosity is not affected (Feldman and 

Huang 1985). Since pores are discontinuities in the cement paste matrix, reduced pore sizes re­

quire a higher stress to initiate a crack; thus the strength is increased. The filler effect is illustrated 

by the work of Detwiler and Mehta (1989). In their tests, carbon black, which is physically similar 

to silica fume but is not pozzolanic, was used to replace silica fume (10 percent of cement by 

weight) in concrete. Their tests show that the concrete containing carbon black obtained a com­

parable strength to that containing silica fume at early ages, even though the total cement content 

was 10 percent below that of plain cement concrete. 

A second reason for the high strength of the SF paste is due to the pozzolanic nature of 
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silica fume, which also explains why the SF pastes become progressively stronger with time 

relative to the NA and SP pastes. The pozzolanic reaction is slower than normal cement hydration, 

but continues over time. As more calcium hydroxide is converted to calcium silicate hydrate, the 

strength of the material will continue to increase. 

In contrast to the SP pastes, which are weaker than the NA pastes (Figs. 1 and 2), the SP 

mortars generally have a higher strength than the NA mortars (Figs. 3 and 4). The higher strength 

of the SP mortar is probably due to the greater early hydration obtained due to better dispersion of 

the cement particles. The addition of sand greatly reduces bleeding which causes the reduced 

strength for the SP pastes. 

The SF mortars consistently exhibit a lower compressive strength at 3 days and higher 

strengths at 7 and 28 days than the NA and SP mortars. The relative rate of strength gain of the SF 

mortars shown in Figs. 3 and 4 matches that seen for the SF pastes and is probably due to the poz­

zolanic effect (Detwiler and Mehta 1989). The consistently lower initial strength of the SF mortars 

and the relatively narrow strength range of the mortars, compared to the pastes, suggests that the 

presence of an aggregate has a more disruptive effect on the strength of SF paste than on NA or SP 

pastes. This observation also applies to the concrete strength results (Fig. 5). 

The results illustrated in Fig. 6 show why Goldman and Bentur (1989) obtained no 

increase in strength in cement paste but got a sizeable increase in strength for concrete when they 

replaced up to 15 percent of the cement with silica fume. In the current study, the SF pastes (w/c = 

0.33) with 25 and 30 fluid ounces of superplasticizer per 100 lb. of cementitious material are 

weaker than the 15 oz/cwt SF paste. Both pastes are also weaker than the NA paste, and the 30 

oz/cwt SF paste is weaker than the SP paste. The lower strength of the SF pastes with increased 

dosages of superplasticizer is due, at least in part, to the greater segregation exhibited by the more 

fluid materials (note a check for evaporatable water showed a difference of 0.5 percent for the 30 

oz/cwt SF paste). On the other hand, the greater amount of superplasticizer enhanced the 

workability of the 25 oz/cwt SF concrete with no adverse affect on segregation and produced the 
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highest strength concrete in this study. The 30 oz/cwt SF concrete, though weaker than the 25 

oz/cwt concrete, produced the next highest 28-day strength. This occurred in spite of the fact that 

the dosage rate was 20 percent above the recommended maximum, likely resulting in some retarda­

tion of hydration. 

Clearly, the strength of both cement paste and concrete can be affected by the dosage of 

superplasticizer. Concrete can handle a much larger dosage than cement paste, largely due to the 

role of aggregates in limiting segregation. As explained earlier, Goldman and Bentur (1989) used 

progressively more superplasticizer as the silica fume content of their concrete was increased. It 

appears that, although the workability of their concrete was enhanced, the pastes became too fluid 

at the high superplasticizer contents, resulting in a reduction in strength similar to that observed in 

this study. Considering the small size of their test specimens, a 25 mm cube, it is unlikely that 

Goldman and Bentur could have observed the effects of segregation. For the balance of the report, 

reference to SF materials is directed to those with the 15 oz/cwt superplasticizer dosage rate. 

Effects of Aggregate 

Fig. 7 illustrates the effects of aggregate on material strength for w/c = 0.33 and 0.39. For 

each w/c, the addition of sand to cement paste to obtain mortar and the addition of coarse aggregate 

to mortar to obtain concrete reduces the strength of the materials. The addition of aggregate 

reduces strength (1) because aggregate is stiffer than cement paste, even for the high strength 

cement pastes used in this study, and (2) because the interfaces between aggregate particles and 

cement paste serve as flaws from which cracks can propagate. Because aggregate is stiffer than 

cement paste, it causes stress concentrations in the paste which can initiate additional cracks. The 

greater the number and size of flaws and crack initiation sites, the lower will be the stress needed to 

cause failure. 

Table 3 and Figs. 8 and 9 compare the ratios of mortar strength to paste strength, f' m/f' P• 

for each water-cement ratio, at 3, 7, and 28 days. Table 3 and Fig. 10 compare ratios of concrete 
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strength to paste strength, f' elf' P at the same ages. In every case, the highest relative mortar and 

concrete strengths belong to the SP materials and the lowest relative strengths belong to the SF 

materials. 

With this as the only evidence and following reasoning used by Goldman and Bentur 

(1989) and Rosenburg and Gaidis (1989), one might conclude that the lowest interfacial strengths 

between cement paste and aggregate existed in the mortar and concrete containing silica fume, 

while the highest interfacial strength was provided when superplasticizer was used as the only ad­

mixture. Of course, this line of reasoning is wrong, because the compressive strength of these 

materials is affected by more than the interfacial strength. The relative values off'mlf'p are probab­

ly affected more by the impact of segregation on f' P than they are by any differences in interfacial 

strength. 

Fig. 11 compares the relative strengths of the concretes to the corresponding mortars. The 

f' elf' m ratios are nearly independent of admixture and w/c. This suggests that changes observed at 

the cement paste-coarse aggregate interface due to the use of silica fume (Regourd 1985, Bentur 

and Cohen 1987, Bentur, Goldman and Cohen 1988) have little effect on the compressive strength 

of concrete. 

The argument can be made that comparisons of relative strengths should not be made based 

on w/c or age, but rather on paste (or mortar) strength. With this in mind, Fig. 12 compares the 

values off' mlf'p and f' elf' P as a function of paste strength, while Fig. 13 compares the values of 

f' el f' m as a function of mortar strength. 

In Fig. 12, the values of f'mlf'p and f'elf'p form a series of bands based on the type of 

cementitious material matrix, with the SF materials being uniformly lower than the NA materials, 

which are in turn lower than the SP materials. Overall, the higher the absolute strength of the pas­

te, whether due to w/c, age, or admixture, the lower the relative strength of the mortar or concrete 

and the greater the apparent detrimental effect of the aggregate on the paste. If paste-aggregate 

bond strength is the dominant factor, the ratios of strength should increase with increasing paste 
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strength because of the stronger interfacial region. 

Fig. 13 shows that the values off' Jf' m form a tight band and are very much less sensitive 

to matrix strength than the values off' m/f' p· There is a slight trend toward decreasing values of 

f' Jf' m with increasing mortar strength. However, at 28 days, the values off' Jf' m increase for the 

NA and SF concretes with increasing mortar strength. The lower sensitivity of f' Jf' m to mortar, 

strength compared to the sensitivity off' mlf' P to paste strength, suggests that coarse aggregate 

reduces mortar strength in generally the same way for all of the concretes. 

Considering the observed negative effects of aggregate on the strength of cement paste, the 

concept of aggregate acting as a reinforcing filler (Goldman and Bentur 1989) appears to be 

without a basis, at least for specimens tested in uniaxial compression. The concept may be valid, 

however, for cubes due to the high triaxial compression obtained because of end restraint. 

A Final Observation 

One final observation concerns the report by Rosenberg and Gaidis (1990) that the addition 

of silica fume resulted in no increase in cement paste strength when silica fume was used to replace 

cement on an equal volume basis. Fig. 14 illustrates the test results for cement paste versus water­

cementitious material ratio with the w/c based on the weight of an equivalent volume of portland 

cement; that is, when silica fume is used, the calculated cementitious material content (on a cement 

volume basis)= We+ (SGJSG,r)W,r, where W =weight and SG =specific gravity. The result 

of this conversion is to shift SF pastes to lower equivalent w/c's. As shown in Fig. 14, the results 

indicate approximately equal strengths are obtained at 3 days for pastes with equal cement volume 

based w/c's. However, at later ages, the SF pastes show a distinctly higher strength. The reason 

Rosenberg and Gaidis (1990) obtained equal strengths for SF and NA pastes may be due to the 

very low w/c, 0.24, which resulted in very early self-desiccation, subsequently limiting the poz­

zolanic effect at later ages. 

As this report draws to a close, we are faced with the question: Why does concrete con-
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taining silica fume as a partial replacement for cement have a higher strength than concrete without 

silica fume? We are faced with two facts: 1. SF cement pastes are stronger than NA pastes, if the 

pastes are not excessively fluid. 2. NA, SP and SF materials exhibit similar values off' Jf' m· 

These observations lead to the conclusions that SF concrete has a higher strength primarily because 

of the higher strength of the paste and changes in the properties of the paste-aggregate interface due 

to the use of silica fume have little effect on the compressive strength of concrete. 

CONCLUSIONS 

The following conclusions are based on the results and analyses presented in this report. 

l. The replacement of cement by silica fume and the addition of a superplasticizer increases the 

strength of cement paste. 

2. Cement paste specimens can exhibit a reduced strength compared to other specimens of the 

same water-cementitious material ratio if the material segregates during fabrication. Segregation 

can be caused by high superplasticizer dosages that do not result in the segregation of concrete 

with the same water-cementitious material ratio. 

3. Concrete containing silica fume as a partial replacement for cement exhibits an increased com­

pressive strength because of the improved strength of its cement paste constituent. 

4. Changes in the paste-aggregate interface caused by silica fume have little effect on the uniaxial 

compressive strength of concrete. 
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TABLE 1 --MIXTURE PROPORTIONS ( lb I cubic yard)* 

NOMINAL ACTUAL WATER CEMENT SILICA SAND COARSE SP ( fl.oz) SP SLUMP TEMP.( F) 

W /C ** W/C** FUME AGG. SOLIDS WT !in l 

NA paste 0.30 0.30 804 2671 76 

0.33 0.33 842 2548 72 

0.36 0.36 878 2436 76 

0.39 0.39 910 2333 74 

SP paste 0.30 0.298 797 2671 409 (15) ... 12.84 72 

0.33 0.328 835 2548 390 (15) 12.25 72 

0.36 0.358 871 2436 373 (15) 11.71 73 

0.39 0.387 904 2333 359 (15) 11.27 74 

SF paste 0.33 0.326 807 2101 372 379 (15) 11.90 76 

0.33 0.325 803 2101 372 631 (25) 11.37 76 

0.33 0.33 817 2101 372 890 (30) 10.90 76 

0.36 0.357 844 2011 372 362 (15) 19.82 76 

0.39 0.387 879 1929 372 347 (15) 27.60 76 

NA mortar 0.30 0.30 430 1433 1963 73 

0.33 0.33 451 1367 1963 73 

0.36 0.36 470 1307 1963 74 

0.39 0.39 488 1263 1963 74 

SP mortar 0.30 0.297 426 1433 1963 215 (15) 6.75 73 

0.33 0.327 447 1367 1963 206 (15) 6.47 73 

0.36 0.357 466 1307 1963 196 (15) 6.16 76 

0.39 0.387 485 1253 1963 188 (15) 5.90 76 

SF mortar 0.33 0.327 433 1125 200 1963 199 (15) 6.25 72 

0.36 0.357 453 1076 191 1963 190 (15) 5.97 72 

0.39 0.387 471 1033 163 1963 182 (15) 5.72 72 

NA cone. 0.33 0.33 305 924 1326 1390 1/4 74 

0.39 0.39 329 844 1326 1390 1/2 74 

SP cone. 0.33 0.327 302 924 1326 1390 139 (15) 4.36 74 

0.39 0.387 327 844 1326 1390 127 (15) 3.99 7112 74 

SF cone. 0.33 0.328 293 759 135 1326 1390 134 (15) 4.21 0 74 

0.33 0.326 291 759 135 1326 1390 223 (25) 7.00 1/4 76 

0.33 0.33 295 759 135 1326 1390 268 (30) 8.42 5 1/2 76 

0.39 0.387 318 696 124 1326 1390 123 (15) 3.86 114 72 

* -~ 2 percent air assumed in concrete 

C* • --- cement plus silica fume 

( ) • • ·--- tl.oz I cwt of cementitious material 
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TABLE 2 ···STRENGTH OF SPECIMENS (psi) 

MATERIAL NOMINAL AGE AGE AGE 

W/C • 3DAYS 7DAYS 28 DAYS 

NA paste 0.30 9850 12300 14410 

0.33 8130 10810 12560 

0.36 7110 9250 11920 

0.39 5730 7400 10320 

SP paste 0.30 (15)- 9490 10920 13180 

0.33 (15) 7510 8620 11640 

0.36 (15) 6270 7350 10730 

0.39 (15) 5690 6750 9330 

SF paste 0.33 (15) 9440 12130 16020 

0.33 (25) 7570 10940 12380 

0.33 (30) 6450 9480 11150 

0.36 (15) 7870 10950 15140 

0.39 (15) 6200 9330 13150 

NA mortar 0.30 8830 10600 12050 

0.33 7500 9250 10990 

0.38 6350 7690 10440 

0.39 5650 6620 9820 

SP mortar 0.30 (15) 9070 10970 12490 

0.33 (15) 7630 9530 11090 

0.36 (15) 6650 8360 10600 

0.39 (15) 6090 7030 9530 

SF mortar 0.33 (15) 6940 10330 12130 

0.36 (15) 6000 8930 11720 

0.39 (15) 4970 7830 11710 

NA cone. 0.33 5040 6300 7600 

0.39 4150 4850 6320 

SP cone. 0.33 (15) 6330 6330 7380 

0.36 (15) 4360 5010 6340 

SF cone. 0.33 (15) 4960 6360 8080 

0.33 (25) 5510 7170 8990 

0.33 (30) 3770 6470 8170 

0.39 (15) 3870 4920 6330 

C • - cement plus silica fume 

( ) • '* - fi.oz I cwt of cemetitious material 
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TABLE 3-- RATIOS OF MORTAR AND CONCRETE STRENGTH TO PASTE 

STRENGTH AND RATIOS OF CONCRETE STRENGTH TO MORTAR STRENGTH 

NOMINAL AGE AGE AGE 

W/C' 3DAYS ?DAYS 28 DAYS 

NA f' I I' 0.30 0.897 0.862 0.836 
m p 

0.33 0.923 0.856 0.866 

0.36 0.894 0.832 0.876 

0.39 0.985 0.894 0.933 

SP I' I f' 0.30 0.956 1.004 0.948 m p 
1.015 1.105 0.953 0.33 

0.36 1.093 1.138 0.988 

0.39 1.072 1.041 1.021 

SF I' I I' 0.33 0.822 0.852 0.757 
m P 

0.36 0.763 0.815 o.n4 
0.39 0.80 0.839 0.815 

NAf'lf' 0.33 0.62 0.583 0.597 
c p 

0.39 0.723 0.655 0.613 

SP I' If' 0.33 0.71 0.734 0.634 
c p 

0.39 0.767 0.742 0.679 

SFf'lf' 0.33 0.587 0.524 0.504 
c p 

0.33 (25) .. 0.652 0.591 0.561 

0.33 (30) 0.447 0.532 0.51 

0.39 0.592 0.527 0.519 

NA I' If' 0.33 0.672 0.681 0.689 m P 
0.39 0.734 0.733 0.857 

SP f' I f' 0.33 0.699 0.664 0.665 
m P 

0.39 0.715 0.713 0.665 

SF I' If' 0.33 0.714 0.616 0.666 
m P 

0.33 (25) 0.794 0.694 0.683 

0.33 (30) 0.543 0.624 0.673 

0.39 0.74 0.628 0.637 

C *--cement plus silica fume 

( ) "'·--· tl.oz I cwt of cementitious material 
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APPENDIX A ••• STRENGTH OF SPECIMENS ( PSI ) 

MATERIAL wtc· 3DAYS AVERAGE ?DAYS AVERAGE 28 DAYS AVERAGE 

NApaste 0.30 9829 9850 12269 12300 14585 14410 

9860 12334 14234 

0.33 8184 8130 11178 10810 12588 12560 

8069 10431 12525 

0.36 7121 7110 9301 9250 12203 11920 

7099 9193 11630 

0.39 5613 5730 7262 7400 10208 10320 

5852 7544 10423 

SP paste 0.3 9846 9490 11228 12920 13563 13180 

9325 10606 12790 

0.33 7270 7510 8527 8620 11585 11640 

7763 8717 11684 

0.36 6093 6270 7315 7350 10566 10730 

6452 7374 10893 

0.39 5736 5690 6633 6750 9136 9330 

5834 6871 9529 

SF paste 0.33 8467 8440 12016 12130 15963 16020 

8418 12241 16070 

0.33(25)- 7692 7570 11095 10940 12224 12380 

7452 10778 12525 

0.33(30) 6374 6450 9533 9480 11022 11150 

6524 9431 11268 

0.36 7900 7870 11031 10950 14893 15140 

7835 10867 16385 

0.39 6099 6200 9400 9330 13068 13150 

6306 9265 13243 

NA mortar 0.30 8750 8930 10659 10600 11890 12050 

8903 10542 12210 

0.33 7708 7500 9400 9250 10977 10880 

7284 9100 10782 

0.36 6206 6350 7452 76920 10343 10440 

8500 7931 10545 

0.39 5701 5650 6517 6620 9744 9620 

5689 6713 9499 

SP mortar 0.30 9077 9070 11174 10970 12385 12490 

9054 10757 12603 

0.33 7637 7630 9417 9530 11200 11090 

7614 9639 10969 

0.36 6781 6860 8249 8360 10478 10600 

6933 8460 10724 

0.39 6138 6090 7107 7030 9505 9530 

6050 6950 9548 

SF mortar 0.33 6920 6940 10526 10330 11919 12130 

6984 10132 12336 

0.36 5930 6000 9140 8930 11717 11720 

6065 8711 11720 

0.39 4900 4970 7850 7830 10896 10710 

5030 7805 10526 
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APPENDIX A (CONTINUED ) 

MATERIAL W/C • 3DAYS AVERAGE ?DAYS AVERAGE 28 DAYS AVERAGE 

NAconc. 0.33 4950 5040 6304 6300 7412 7490 

5130 6286 7571 
0.39 4235 4150 4982 4850 6319 6300 

4056 4711 6285 

SP cone. 0.33 5223 5330 6307 6330 7518 7380 

5441 6355 7232 

0.39 4396 4358 5066 5010 6391 6340 

4319 4952 6284 

SF cone. 0.33 5010 4960 6244 6360 8088 8080 

4906 6471 8064 

0.33 (25) 5527 5510 7165 7170 8877 8990 

5496 7175 9102 

0.33 (30) 3658 3770 6522 6470 8101 8170 

3880 6409 8239 

0.39 3616 3670 4835 4920 6975 6830 

3730 4997 6682 

C • -- cement plus silica fume 
( ) • • -M tl.oz I CNt of cementitious material 




