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Abstract
Silicon (Si) being considered as a non-essential element for plant growth and development finds its role in providing several 
benefits to the plant, especially under stress conditions. Thus, Si can be regarded as “multi-talented” quasi-essential ele-
ment. It is the most abundant element present in the earth’s crust after oxygen predominantly as a silicon dioxide  (SiO2), a 
form plants cannot utilize. Plants take up Si into their root from the soil in the plant-available forms (PAF) such as silicic 
acid or mono silicic acid [Si(OH)4 or  H4SiO4]. Nevertheless, besides being abundantly available, the PAF of Si in the soil 
is mostly a limiting factor. To improve Si-uptake and derived benefits therein in plants, understanding the molecular basis 
of Si-uptake and transport within the tissues has great importance. Numerous Si-transporters (influx and efflux) have been 
identified in both monocot and dicot plants. A difference in the root anatomy of both monocot and dicot plants leads to a 
difference in the Si-uptake mechanism. In the present review, Si-transporters identified in different species, their evolution 
and the Si-uptake mechanism have been addressed. Further, the role of Si in biotic and abiotic stress tolerance has been 
discussed. The information provided here will help to plan the research in a better way to develop more sustainable cropping 
system by harnessing Si-derived benefits.

Keywords Silicon · Crop plants · Abiotic stress · Biotic stress · Sustainability

Introduction

A major concern across the world is the (environmental) 
stresses that alter growth and development of plants. Both 
biotic and abiotic stresses cause a huge loss in crop yield and 
productivity. Crop yield stability and healthy growth under 
stressful conditions have always been a big challenge for the 
plant/agricultural science researchers. On the other hand, 
plants have evolved several mechanisms to survive under the 

stress conditions; and healthy plants can sustain themselves 
or survive better under the stress. In other words, plant nutri-
tion has an important role to maintain healthy growth as well 
as to enhance the stress tolerance. The role of micronutri-
ents in providing tolerance to plant against various stresses 
has been demonstrated in several studies (Vanderschuren 
et al. 2013; Bradacova et al. 2016). Silicon (Si) is one such 
nutritive element which is gaining increasing attention due 
to its observed properties enhancing plant tolerance against 
biotic as well as abiotic stresses (Ma 2004). Ample amount 
of Si is present in the earth’s crust and it is considered as the 
second most abundant element after oxygen. However, most 
of the Si present in the soil is in the form of silicon dioxide 
 (SiO2) that plants cannot uptake. Besides having abundant 
availability, the plant-available form (hereafter abbreviated, 
PAF) of Si (silicic acid) in the soil is mostly a limiting factor. 
Therefore, to improve Si-uptake and Si-derived benefits in 
plants, understanding the molecular basis of Si-uptake and 
transport within the tissues has great value.

Silicon is considered as a multi-talented micronutrient 
because of its versatile role in providing several benefits for 
plant growth particularly under stress conditions (Zargar 
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et al. 2012). Some of the important roles that Si plays in 
plants are enhancing growth, yield and crop quality, photo-
synthesis, Nitrogen fixation and providing tolerance against 
abiotic and biotic stresses such as extreme temperature, UV 
radiation, metal toxicity, nutrient deficiency, drought, salin-
ity, pathogen and fungus attack (Richmond and Sussman 
2003; Ma 2004; Liang et al. 2007, 2015; Epstein 2009; Zar-
gar et al. 2010, 2012; Cooke and Leishman 2011; Guntzer 
et al. 2012; Van Bockhaven et al. 2013). Earlier, Si was 
thought to be a non-essential element for plant growth (Sachs 
1860; Arnon and Stout 1939) but numerous (over 100) stud-
ies performed during the last couple of decades confirmed 
the Si-derived benefits in several crop plants (Liang et al. 
2015). Since the Si-derived benefits are more obvious under 
stress condition, it is widely considered as a quasi-essential 
element (Liang et al. 2015). Recently, the International Plant 
Nutrition Institute (IPNI) has declared Si as a nutritive ele-
ment for plants (http://www.ipni.net/nutri facts -north ameri 
can). Moreover, the Association of American Plant Food 
Control Officials (AAPFCO) officially announced Si as a 
plant “beneficial substance” (http://www.aapfc o.org/).

Silicon provides strength to the plant by making the plant 
tissues stronger and rigid (Marxen et al. 2015). Soluble Si 
can enhance resistance to diseases by interacting with sev-
eral key compounds of the stress signaling system of the 
plant (Fawe et al. 1998; Rodrigues et al. 2004). Further, its 
accumulation leads to the production of phenolics and phy-
toalexins that provides tolerance against the various plant 
pathogens (Miyake and Takahashi 1982a, b; Datnoff et al. 
1997). Priming of jasmonate-mediated antiherbivore defense 
responses via silicon in rice plant helps in providing defense 
against insects (Ye et al. 2013). As Si might have a role to 
play for attaining crop sustainability, biotechnology com-
panies have developed the Si fluid  (R2SiO) where R is any 
organic group that is used as a spreading agent instead of 
fertilizers (Vasanthi et al. 2012a, b). Recent farming systems 
mainly organic farming takes advantage of Si to overcome 
the problem of pesticide residues in food products (Vasanthi 
et al. 2012). Two review articles published earlier by our 
group gives details about the role of Si in both plants (as 
well as animal) growth and development, and its efficiency 
in providing tolerance against various environmental stresses 
(Zargar et al. 2010, 2012). In this review, we have focused 
on the recent advancements in Si research and its potential 
to attain crop sustainability.

Plant available form of silicon in soil

Silicon is taken up by plants in the PAF such as silicic acid 
or mono silicic acid [Si(OH)4 or  H4SiO4]. The PAF-Si found 
in soil varies considerably ranging from 10 ppm to over 
100 ppm (Liang et al. 2015). Soils with less than 20 ppm of 

Si are considered as Si-poor and are mostly advised to sup-
plement with Si-fertilizers. Among several natural sources, 
Wollastonite is one of the most preferred and affordable 
sources for Si-supplementation. Wollastonite is a naturally 
occurring metasilicate of calcium  (CaSiO3), and contains a 
major portion of calcium (Ca, 34.3%) and Si (24.3%) with 
minor amounts of aluminum (Al), iron (Fe), manganese 
(Mn), magnesium (Mg), potassium (K), and sodium (Na) 
(Virta 2004; Maxim et al. 2008). Wollastonite is also mined 
for the production of ceramics, friction products, metal-
lurgy, paints, and cementing material (Virta 2004). The other 
less preferred natural Si-sources includes minerals such as 
calcite, diopside, garnet, idocrase, and quartz. Additional 
sources used for Si supplementation in crop plants are steel 
slag, potassium silicate, sodium silicate and sugarcane 
bagasse, etc (Pereira et al. 2003; de Camargo et al. 2013; 
Tubana and Heckman 2015).

The monomeric form of silicic acid is the PAF of soil Si 
(Williams and Crerar 1985), whereas the polymeric form 
has a role in improving soil aggregation and water-holding 
capacity due to its property to link soil particles by creating 
silica bridges (Norton et al. 1984). Most of the Si present 
in soil is in an insoluble form and is of no use in agronomy 
and horticulture. Thus, for making the Si available to the 
plant, the soil is subjected to chemical and physical weather-
ing. The weathering process of silicate minerals depends on 
environmental factors such as temperature and pH as well as 
the physicochemical characteristics of the minerals (Heaney 
et al. 1994; White and Brantley 1995; Gérard et al. 2002). 
Moreover, the concentration of Si in plants mainly depends 
on the concentration of silicic acid in soil solution (Ding 
et al. 2005; Henriet et al. 2008; Jones and Handreck 1967), 
and not on the concentration of total Si present in the soil 
(Brenchley and Maskell 1927).

Uptake, transportation, and accumulation 
of Si in plants

Silicon in the form of silicic acid [Si(OH)4] or mono silicic 
acid  [H4SiO4] can cross the plasma membrane of root at 
physiological pH (Raven 2001). The concentration of silicic 
acid in soil solution below pH 9 ranges from 0.1 to 0.6 mM 
(Knight and Kinrade 2001). In the plant leaves, Si concen-
tration varies from 0.1 to 10% on dry weight basis (Epstein 
1999; Ma et al. 2001; Richmond and Sussman 2003). Silicon 
concentration varies significantly within and among plant 
species, and the variation of Si concentration within the spe-
cies is lower than among the species (Broadley et al. 2011). 
The particular ability of the roots to uptake Si is considered 
to be the reason for the differences in Si accumulation in 
different plants (Ma and Yamaji 2006). Higher accumu-
lation of Si was observed in Bryophyta, Lycopsida, and 
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Equisetopsids (Pteridophyta), whereas in Filicopsida (Pteri-
dophyta), Gymnospermae and most Angiospermae there is 
a low Si concentration (Ma et al. 2001; Ma and Takahashi 
2002; Hodson et al. 2005). However, a few taxa in Angio-
spermae namely Cyperaceae, Poaceae, and Balsaminaceae 
have > 4% Si accumulation, the Cucurbitales, Urticales and 
Commelinaceae have 2–4% Si accumulation, whereas Sola-
naceae (tomato), Fabaceace (faba bean) are Si excluder spe-
cies (Ma and Takahashi 2002; Hodson et al. 2005). Based 
on the water uptake relation in higher plants, Si adsorption 
at the lateral roots is categorized in three possible ways: 
active (where Si-uptake is faster than water uptake), passive 
(where Si-uptake is similar to water uptake) and rejective 
(where Si-uptake is slower than water uptake) (Takahashi 
et al. 1990; Cornelis et al. 2011). Active transport of Si leads 
to a significant decrease in its concentration in the uptake 
solution while the Si concentration remains unchanged in 
uptake solution in passive transport. Passive transport of Si 
from soil via diffusion across the plasma membrane or via 
proteinaceous channels is an energy independent process 
present in all plant species, despite the Si accumulation 
ability of the plants (Raven 2003). Root uptakes silicic acid 
present in the soil via the apoplastic and symplastic route. 
The symplastic route of Si-uptake by roots depends on the 
presence of NIPs (Nod26-like intrinsic proteins) a class of 
the aquaporin (AQP) gene family. The Si-transporter AQPs 
have been identified in several monocot and dicot plant spe-
cies (Ma et al. 2006; Chiba et al. 2009; Mitani et al. 2009a, 
b; Deshmukh et al. 2013). The Si-transporter AQPs have 
also been reported in the primitive plant species such as 
horsetail, which is known as the king of silicon accumulator 
(Grégoire et al. 2012; Vivancos et al. 2016).

Rice roots can uptake 90% of the Si present in the soil 
and translocate it to the shoots (Ma and Takahashi 2002). 
Research performed using rice mutants for Si-uptake have 
identified two different types of Si-transporters namely 
OsLsi1 (Si-transporter AQPs, influx) and OsLsi2 (efflux 
Si-transporters) (Ma et al. 2006, 2007). The influx Si-trans-
porter AQPs, OsLsi1and OsLsi6 (OsLsi1 homolog) promotes 
passive transport of Si between the apoplast and plant cell 
across the plasma membrane. The OsLsi1 gene belonging 
to the NIP-III subfamily of aquaporin facilitates Si influx 
from soil solution into the root cells (Ma et al. 2006). After 
uptake of Si by the root symplast through influx transporters 
(OsLsi1), efflux transporters (OsLsi2) facilitate Si release 
into the apoplast (xylem loading) from where the Si is 
translocated upwards to the shoots via transpiration stream. 
Hence, the OsLsi2 gene (efflux Si-transporter) belonging to 
a putative anion-channel transporter is involved in Si trans-
port out of the root cells towards the stele (Ma et al. 2007; 
Yamaji and Ma 2011). Lsi2 is an active efflux transporter of 
Si which is driven by proton gradient and can transport solu-
ble Si against the concentration gradient (Ma et al. 2011). It 

is proposed that Si-uptake occurs in the mature roots than 
in the root tips as the expression level of OsLsi1 gene was 
reported lower in the apical root region than the basal root 
region (Yamaji and Ma 2007). Plasma membranes of both 
the exodermal and endodermal root cells have Lsi1 transport 
protein at the distal side; and casparian strips present in the 
endodermis prevent apoplastic transport into the root stele 
(Yamaji and Ma 2007). Cellular localization and expression 
pattern of the OsLsi2 gene is same as that of the OsLsi1 
gene with the only difference that theLsi2 transport protein 
is located at the proximal side of both exo and endoder-
mal cells. To prevent Si deposition in the xylem, Si must be 
transported out from the xylem (xylem unloading), and the 
unloading of Si from the xylem into xylem parenchyma cells 
is mostly facilitated by OsLsi6, an influx transporter. There-
fore, Lsi6 helps in the transport of Si out from the shoots to 
prevent deposition of Si in rice shoots (Yamaji et al. 2008). 
Lsi6 is expressed in root tips, leaf sheaths, and blades, and 
is localized on the adaxial side of xylem parenchyma cells in 
the leaf sheaths and leaf blades in rice (Yamaji et al. 2008). 
Furthermore, an increase in Si deposition in the silicified 
epidermal cells of leaf blades and sheaths and increase 
excretion of Si in guttation fluid was reported in rice on 
knockout of Lsi6 (Ma et al. 2011). In rice, Si uptake by the 
roots to the panicle is mediated by inter-vascular transfer 
of Si between two different vascular bundles. In the rice 
plant, efflux Si-transporter (Lsi3) is expressed in the first 
node indicating that it is responsible for reloading Si to dif-
fuse into the vascular bundles (Yamaji et al. 2011). A similar 
type of mechanism has been observed in other plants such 
as barley and maize (Mitani et al. 2009a, b). Subsequently, 
several homologs of Si-transporter AQPs and OsLSi2 have 
been identified in several monocots, dicots and primitive 
plant species (Table 1).

Differences in monocot and dicot silicon uptake 
mechanism

Monocots such as rice can accumulate Si up to 10% of the 
plant mass while most of the dicots accumulate very less. 
The high accumulation in rice can be attributed to efficient 
Si-transporters as well as specialized silica cells. Dicots 
do not have silica-cells, and also several dicot families are 
known to have lost the Si-transporter AQPs (Deshmukh 
et al. 2015). In dicots, the first gene encoding an influx 
Si-transporter was identified as Pumpkin Lsi1 (CmLsi1) 
(Mitani et al. 2011). More than half of the Si, taken up by 
the roots is translocated to the shoots in cucumber making it 
an intermediate Si accumulator crop (Nikolic et al. 2007). Si 
transportation in dicots involves concentration-independent 
(passive) and metabolically active process which is inhibited 
by low temperature and metabolic inhibitors (Liang et al. 
2005a, b). The CmLsi1 transporter is localized in all root 
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cells and does not show polar localization as observed in 
rice (Ma et al. 2006; Chiba et al. 2009; Mitani et al. 2009). 
The difference in the localization of the transporters present 
in roots accounts for the anatomical difference of rice root 
and other species including cucumber (Chiba et al. 2009; 
Mitani et al. 2009; Mitani et al. 2011b). The CmLsi2-1 and 
CmLsi2-2 (Si efflux transporters) have been isolated from 
two pumpkin cultivars used for the bloom or bloomless 
cucumber rootstocks (Mitani et al. 2011a). These transport-
ers show an efflux transport activity for Si and are expressed 
in both roots and shoots (Mitani et al. 2011b). Little informa-
tion is available on Si transport in dicots except for cucum-
ber (Lux et al. 2003). Similarly, GmNIP2-1 and GmNIP2-2 
(putative influx Si-transporter genes) belonging to NIP2 
subfamily of AQPs have been identified, characterized and 
cloned from soybean (Deshmukh et al. 2013). There is a 
need to study the mechanism of Si transport in dicot species, 
as very less information is available on the mechanism of 
Si transport in dicots compared to monocots. The difference 
in the mechanism of Si uptake in monocot and dicot spe-
cies makes the monocot species more tolerant against frost 
stress and certain metabolic inhibitors as the later involves 
concentration independent process for Si uptake. Thus, hav-
ing the complete knowledge of the difference between two 
uptake mechanisms might be useful in generating genetically 
modified species with improved Si uptake and assimilation 
properties.

Availability of the well annotated genome sequences 
for over 100 plant species have provided the opportunity 

to identify Si-transporters and correlated it with the Si-
uptake capability. In above context, the extensive research 
by Deshmukh et al. (2015) with 25 plant genomes and 25 
transcriptomes have highlighted the loss of Si-transporter 
AQPs from all the Brassicaceae members. These findings 
well corroborated with the very low Si observed in Bras-
sicaceae members, such as Arabidopsis. Recently, the loss 
of Si-transporter AQPs and inability of Si-uptake have been 
reported with Arabidopsis lyrata, Capsella grandiflora, C. 
rubella, Eutrema salsugineum, B. oleracea, B.rapa, B.napus 
(Canola), and Flax (Shivaraj et al. 2017; Sonah et al. 2017). 
Another notable example is the Solanaceae family which 
was found to be poor accumulators besides having homologs 
of Si-transporter AQPs. The poor accumulation of Si by 
Solanaceae such as tomato and potato have been associated 
with altered spacing between the two conserved NPA motifs 
(Deshmukh et al. 2015). There is no report for loss of Si-
transporter AQPs and the poor accumulators in monocot 
such as Poales. These reports suggest that the Si-uptake is 
primarily regulated by Si-transporter AQPs, which might be 
responsible for the variations among species.

Role of silicon in biotic and abiotic stress 
tolerance

Silicon, previously considered as a non-essential element 
for the plant in early nineteenth century, has been con-
firmed to have a greater impact on overall plant growth and 

Table 1  Silicon (Si) transporters 
identified from various crop 
plants [this table includes 
the transporters reviewed in 
Zargar et al. (2010), and other 
transporters identified after 
2010]

S. no. Type of transporter Transporters Crop References

1 Influx (NIPIIIs) OsLsi1 Rice Ma et al. (2006)
2 OsLsi6 Rice Yamaji et al. (2008), 

Yamaji and Ma (2009)
3 ZmLsi1 Maize Mitani et al. (2009)
4 ZmLsi6 Maize Mitani et al. (2009)
5 HvLsi1 Barley Chiba et al. (2009)
6 HvLsi6 Barley Yamaji et al. (2012)
7 CmLsi1 Pumpkin Mitani et al. (2011)
8 TaLsi1 Wheat Montpetit et al. (2012)
9 CSiT-1 Cucumber Wang et al. (2014)
10 GmNIP2-1 GmNIP2-2 Soybean Deshmukh et al. (2013)
11 EaNIP4, EaNIP5 Horsetail Grégoire et al. (2012)
12 Efflux OsLsi2 Rice Ma et al. (2006)
13 ZmLsi2 Maize Mitani et al. (2009a, b)
14 HvLsi2 Barley Mitani et al. (2009a, b)
15 CmLsi2-1 Pumpkin Mitani-Ueno et al. (2011)
16 CmLsi2-2 Pumpkin Mitani-Ueno et al. (2011)
17 GmNIP2-2 Soybean Deshmukh et al. (2013)
18 CSiT-2 Cucumber Wang et al. (2014)
19 EaLsi2 Horsetail Vivancos et al. (2016)
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development. There is no doubt that most of the plants can 
complete their life cycle without the requirement of Si but it 
is also true that the presence of Si in soil or media provides 
tolerance to plants against various biotic and abiotic stresses. 
In the last 20 years, numerous researches have been carried 
out in different crops such as rice, wheat, maize, tomato, and 
soybean which concluded that the presence of Si helps in 
reducing the biotic and abiotic pressures (Kim et al. 2014a, 
b; Shi et al. 2014; Yin et al. 2014; Sahebi et al. 2015; Xie 
et al. 2015). Recently, the perception about the membrane 
transport of Si and its mitigatory role in biotic stress has 
gained much attention (Van Bockhaven et al. 2013; Ma and 
Yamaji 2015; Exley 2015; Liang et al. 2015). However, there 
is limited knowledge regarding the mechanism(s) underly-
ing the role of Si in abiotic stress resistance (Liang et al. 
2015). In the following section, an insight into the role of Si 
in providing resistance to various biotic and abiotic stresses 
is provided.

Biotic stress

Silicon is known to provide protection against several fungal 
as well as bacterial pathogens. Broadly, two mechanisms for 
the Si-enhanced resistance to diseases and pests have been 
proposed. One is that the Si is being deposited beneath the 
leaf cuticle or on the tissue surface as a physical barrier, 
and mechanically inhibits the fungal or insect pest penetra-
tion, thereby reducing infections (Samuels et al. 1991). The 
silicified epidermal cell walls of rice plants were closely 
associated with the reduced blast severity in susceptible and 
partially resistant cultivars (Kim et al. 2002). Si treatment 
may also increase the prevalence of papillae which could 
have increased pathogen resistance against B. graminis f.sp. 
tritici (Belanger et al. 2003). It was demonstrated that Si-
treated rice plants infected by the sheath blight pathogen 
Rhizoctoniasolani had much more silica cells and papillae 
(Zhang et al. 2006). Si-supplementation in rice was found 
to suppress the sheath blight, leaf and neck blast, leaf scald, 
grain discoloration, bacterial leaf blight and stem rot infec-
tion (Datnoff and Rodrigues 2005).Si treatment suppresses 
anthracnose disease of tomato (Somapala et al. 2016) and 
sweet pepper (Jayawardana et al. 2014), increases the firm-
ness and cuticle thickness of fruits. In the mango plant, 
accumulation of absorbed Si in the epidermal tissue forms 
a physical barrier preventing the entry of P. syringae pv. 
Syringae (Gutierrez-Barranquero et al. 2012). Furthermore, 
energy-dispersive X-ray (EDX) and X-ray mapping has 
revealed that Si deposition at the internode and root band is 
likely the reason for enhanced resistance of silicon-treated 
sugarcane to penetration and feeding by African sugarcane 
borer (Eldana saccharina) (Keeping et al. 2009). Higher 
Si content in sugarcane plant can inhibit shoot borer attack 
by increasing the hardness of cane (Rao 1967) and reduce 

nematode infection in cucumber plants (Silva et al. 2010). 
Furthermore, Si has been observed to suppress root rot and 
powdery mildew in cucumber and wheat, leaf spot in Ber-
muda grass (Cynodon dactylon), rust in cowpea and ring 
spot in sugarcane (Fawe et al. 2001; Belanger et al. 2003). 
Sorghum grown in Si-added nutrient solution was observed 
to reduce severity of anthracnose (Colletotrichum sublin-
eolum) (Resende et al. 2013). In coffee, promising results 
have been reported for rust (Hemileia vastatrix), leaf spot 
(Cercospora coffeicola), and phoma/ascochyta leaf spot 
(Phomatarda) (Pozza et al. 2004; Botelho et al. 2005; Reis 
et al. 2008; Carre-Missio et al. 2012, 2014). Other crops 
such as bean, strawberry, soybean, tomato and rose also 
showed promising results in reducing disease intensity with 
Si application. The reduction in disease intensity is not lim-
ited to fungal diseases, but studies have reported the Si effi-
cacy in controlling bacterial wilt (Ralstonia solanacearum) 
of tomato (Ghareeb et al. 2011).

The second mechanism is that Si functions as a signal 
to induce the production of natural defense compounds 
including the elevated production of lignin, phenolic com-
pounds and phytoalexins (Epstein 1999; Ma and Yamaji 
2006). One of the pioneering studies by Fawe et al. (1998) 
reported increased level of the flavonoid phytoalexinin 
cucumber plants infected by powdery mildew with the Si-
supplementation (Podosphaera xanthii). In the rice plant, 
increased production of momilactones A and B (diterpenoid 
phytoalexins) following Si treatment induces resistance to 
blast disease (Rodrigues et al. 2004). Si produces a broad, 
quick response in the plant following the pathogenic attack 
by releasing natural defense compounds to deter the develop-
ment of the pathogen (Fauteux et al. 2005). Si application 
significantly enhanced the activities of pathogenesis-related 
proteins (PRPs) such as catalase (CAT), peroxidase (POD), 
polyphenol oxidase (PPO), and β-1,3-glucanase of aspara-
gus plants inoculated with Phomopsis asparagi, and leads 
to the suppression of Phomopsis stem blight development 
(Lu et al. 2008). Various studies conducted on many crops 
viz., wheat (Yang et al. 2003), cucumber (Liang et al. 2005) 
and rice (Cai et al. 2008) have also revealed that Si treat-
ment reduces disease severity by increasing the activities of 
protective enzymes such as POD, PPO and phenylalanine 
ammonia-lyase (PAL) in their leaves. Higher levels of PPO 
and ascorbate peroxidase (APX) in melon plants supplied 
with silicon decreased the severity of bacterial blotch caused 
by A. citrulli (Conceiçao et al. 2014). Si application also 
enhanced the activities of β-1,3-glucanase, exochitinase and 
endochitinase in rice plants leading to decreased intensity 
of X. oryzae pv. Oryza (Xue et al. 2010). In sweet pepper, 
calcium silicate can enhance concentrations of total pro-
tein, CAT, APX and chitinase which ultimately decrease 
the severity of R. solanacearum (Alveset al. 2015). Supply 
of potassium silicate in pea seedlings increases chitinase 
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and β-1,3-glucanase activity against fungal pathogen 
Mycosphaerella pinodes causing blight disease (Dann and 
Muir 2002).

Numerous studies have demonstrated that a higher Si 
content in the soil and growth medium can help show bet-
ter resistance against the infection of pests. Decreased feed-
ing, growth longevity, fecundity and population growth 
of white backed plant hopper (Sogatella frucifera) have 
been observed with Si-supplementation (Salim and Saxena 
1992). Moreover, foliar application of Si as calcium silicate 
to crop species viz., wheat, cotton, sugarcane and cucum-
ber increased the mortality of white fly nymphs which lead 
to significant yield loss in these crops plants (Correa et al. 
2005). Swain and Prasad (1988) found that the roots of rice 
plants containing high Si content resist the infection of root-
knot nematodes. Si nutrition can also reduce the attack of 
green leaf hopper, plant hopper and stem maggot on rice 
plants (Malhotra et al. 2016). Furthermore, a low preference 
for the silicified tissues by the leaf eating caterpillars has 
been observed (Malhotra et al. 2016). Si-transporters from 
high accumulator plants could be transferred to plants lack-
ing Si-transporters via different techniques to provide pro-
tection against diseases. Recently in Arabidopsis, it has been 
suggested that Si can provide protection to plants against 
disease via salicylic acid (SA)-independent pathway. Thus, it 
was recommended to better understand the SA-independent 
plant defense mechanism so that new or improved crops can 
be designed to cope up with changing the environment (Viv-
ancos et al. 2016).

Abiotic stress tolerance

Due to abiotic stresses, crop losses of more than 50% occur 
worldwide (Wang et al. 2003; Allahmoradi et al. 2011). 
Physiological processes such as photosynthesis, respiration, 
translocation, ion uptake, transpiration rate, stomatal behav-
ior and conductance, seed germination, mineral nutrition and 
water relation are affected by abiotic stresses such as drought 
(Saud et al. 2014), salinity (Hayat et al. 2010) and heavy 
metal (Singh et al. 2015). Improvement in the physiologi-
cal processes, plant growth, and development under various 
stresses with Si supplementation is a well-documented fact.

Drought

Si application during drought stress provides tolerance to 
plant via different mechanisms. Application of Si under 
drought stress might up regulates aquaporin gene (PIP; 
Plasma membrane Intrinsic Protein) and mitigates ROS-
induced aquaporin activity inhibition in plants. Under 
drought stress, Si supply affected the osmo-regulation by 
increasing the accumulation of soluble sugars and/or amino 
acids in the xylem sap which increases osmotic driving force 

or by activating the  K+ translocation to xylem sap by via 
SKOR (Stelar  K+ Outward Rectifer) gene. Si application can 
improves the root hydraulic conductance by modifying the 
root growth and increase root/shoot ratio along with elevat-
ing aquaporin activity and osmotic driving force. Higher 
root hydraulic conductance results in increasing the uptake 
and transport of water which helps to maintain a higher 
photosynthetic rate and improve plant resistance to water 
deficiency (Luyckx et al. 2017; Chen et al. 2018).Si applica-
tion can also reduce drought stress via increasing uptake of 
mineral nutrients by plants, altering gas exchange attributes 
in plants (Rizwan et al. 2015). Under drought stress, exog-
enous application of Si has improved seed germination, bio-
chemical processes and protects the seedling from oxidative 
stress by enhancing antioxidant defense. In the maize plant, 
calcium silicate application in the soil increases seed ger-
mination under drought stress (Zargar and Agnihotri 2013). 
Silicon application increases the photosynthetic rate, leaf 
and root water and osmotic potential, water use efficiency 
(WUE), while decreases transpiration rate, membrane per-
meability under water-deficit conditions in different crop 
species viz., Kentucky bluegrass (Poa pratensis L.) (Saud 
et al. 2014), maize (Amin et al. 2014), wheat (Gong and 
Chen 2012; Maghsoudi et al. 2016), rice plants (Agarie et al. 
1998; Ming et al. 2012), tomato (Silva et al. 2012; Shi et al. 
2014), melon (Neocleous 2015), oil palm (Putra and Pur-
wanto 2015) and Fennel (Asgharipour and Mosapour 2016), 
white lupin plants (Abdalla 2011a, b). However, in some 
plants such as soybean, rice, and pepper (Capsicum annuum 
L.) Si supply increases both transpiration rate and net pho-
tosynthetic rate under drought stress (Rizwan et al. 2015). 
One of the major effects of drought stress is the disturbed 
uptake of essential nutrients by plants (Emam et al. 2014). 
In this regard, Si application in soil has been reported to 
increase the uptake of macronutrients (P, K, Ca and Mg) and 
micronutrients (Fe, Cu and Mn) in crop under water deficit 
stress (Gunes et al. 2008). An increase in level of K and 
total P in rice straw of Si-treated plants compared to control 
under drought conditions has been reported (Emam et al. 
2014). The regulation of gas exchange attributes of plants 
by Si under drought stress has also been revealed in many 
studies (Gao et al. 2006; Zhang et al. 2013; Putra and Pur-
wanto 2015). Si supply has been widely reported to decrease 
oxidative damage through enhancing the antioxidant enzyme 
(SOD, APX, CAT and POD) activities under drought stress 
in wheat plants (Tale Ahmad and Haddad 2011), sunflower 
(Gunes et al. 2008), tomato (Shi et al. 2014), and chickpea 
(Gunes et al. 2007). Si pretreatment was demonstrated to 
up-regulated the expression of both ring domain contain-
ing protein OsRDCP1 gene and drought-specific genes, 
OsCMO coding rice choline monooxygenase and dehydrin 
OsRAB16b, in drought-stressed rice plants as compared to 
control (Khattab et al. 2014).
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Salinity

Si utilizes different mechanisms to reduce salt stress in 
plants. The key mechanisms involved in Si-mediated tol-
erance to salt stress are a reduction in ion toxicity and 
maintenance of plant water balance, increase in min-
eral uptake and assimilation, regulation of biosynthesis 
of compatible solutes and phytohormones, reduction in 
oxidative stress, modification of gas exchange attributes, 
and modification of gene expression. Reduction in  Na+ 
uptake and accumulation by plants is one of the most 
important mechanisms of plant resistance to salt stress. Si 
supply has been widely reported to decrease  Na+ uptake 
by plants under salt stress and increased  K+/Na+ ratio 
(Ali et al. 2009; Gurmani et al. 2013; Chen et al. 2014; 
Garg and Bhandari 2015). The salt stress leads to severe 
nutritional imbalances in plants (Gupta and Huang 2014) 
reported that Si application increased Ca and Mg con-
tents in roots and leaf of tomato under salt stress (Li et al. 
2015) and increases K, P, Ca and Mg in Egyptian clover 
(Abdalla 2011). Si supply also increased photosynthetic 
rate, stomatal conductance, transpiration rate, water use 
efficiency and number and size of stomata, leaf water sta-
tus, root hydraulic conductance in numerous crops such 
as cucumber (Amirossadat et al. 2012), faba bean (Kar-
doni et al. 2013), sorghum leaves (Yin et al. 2013), wheat 
(Chen et al. 2014; Bybordi 2014), rice (Mahdieh et al. 
2015), tomato seedlings (Li et al. 2015), okra (Abbas 
et al. 2015) sweet pepper (Manivannan et al. 2016) and 
maize (Rohanipoor et al. 2013; Xie et al. 2015). Si appli-
cation reduces the oxidative damage by increasing anti-
oxidant enzyme activities (SOD, CAT and POD, GSH 
and APX), by maintaining the optimal membrane fluidity, 
plasma membrane  H+-ATPase and reduced ROS genera-
tion in many plant species under saline conditions (Al-
aghabary et al. 2005; Liang et al. 2007; Wang et al. 2011; 
Kim et al. 2014b; Li et al. 2015; Muneer and Jeong 2015). 
Si application can also enhance salt tolerance in plants 
by adjusting the levels of solutes such as proline, glycine 
betaine and total free amino acids in both shoots and roots 
of okra (Abbas et al. 2015) and phytohormones such as 
gibberellin (GA) level and decreased ABA content in salt 
stress soybean plant (Lee et al. 2010). Si up-regulated 
the AQP gene expression as well as increased the water 
uptake in salt stressed cucumber plants (Zhu et al. 2015). 
In addition, Si application was observed to activated 
the genes related to salt stress responses (leDREB-1, 
leDREB-2 and leDREB-3), Si transport (leLsi-1, leLsi-2 
and leLsi-3), and antioxidants (leAPX, leSOD and leCAT 
), in salt-stressed tomato responsible for salt tolerance 
(Muneer and Jeong 2015).

Heavy metal

Si-mediated metal detoxification mechanisms have been 
extensively studied in many plant species which includes 
immobilization of toxic metal in soil/growth media, co-
precipitation of metals with Si, like co-precipitation of Si 
with Cd in the stem of rice lower the heavy metal concen-
tration in leaves (Gu et al. 2011), stimulation of enzymatic 
and non-enzymatic antioxidants, chelation, compartmenta-
tion of metals into metabolically inactive parts such as Si 
decreased Cd accumulation in rice shoots by compartmen-
talization of Cd in the root cell walls (Zhang et al. 2008), 
modification of gene expression and structural alterations in 
different parts of plants (Jia-Wen et al. 2013). Si application 
can immobilize toxic metals in the soil either by increasing 
soil pH or changing metal speciation in soil solution through 
the formation of silicate complexes (Adrees et al. 2015). 
The role of Si in mitigating Al and Mn toxicity has been 
widely reported in many crop species viz., cowpea, cucum-
ber, soybean, beans, barley, maize, rice, tomato, pumpkin 
and sorghum (Sahebi et al. 2015). Si supply reduces lipid 
peroxidation (LPO) intensity whereas increases enzymatic 
(superoxide dismutase (SOD), APX, and glutathione reduc-
tase) and non-enzymatic (ascorbate and glutathione) antioxi-
dants activities in cucumber (Shi et al. 2005; Maksimovic 
et al. 2012), cowpea (Iwasaki et al. 2002) under Mn Stress, 
alleviated oxidative stress caused by arsenic (As) by reduc-
ing the As accumulation and enhancing the antioxidant sys-
tem in Triguna (rice cultivar) (Tripathi et al. 2013). Si treat-
ment increased germination percentage (GP), germination 
rate (GR) and relative water content (RWC) of faba bean 
plants as compared to Si-untreated plants under Cd and Pb 
stresses (Abu-Muriefah 2015) and decreases absorption of 
metal ions and reduces the transformation of toxic metals 
between the roots and shoots in case of rice seedlings that 
are grown under Cd stress (Shi et al. 2005). Si application 
was demonstrated to significantly up-regulate the expression 
of genes responsible for Si transport (OsLSi1 and OsLSi2), 
and down-regulated the expression of genes encoding heavy 
metal transporters (OsHMA2 and OsHMA3) in rice plants 
(Kim et al. 2014a, b). Si was also revealed to increase epi-
dermis, xylem diameter mesophyll and the transverse area 
of collenchymas and mid vein under Cd and Zn stress (da 
Cunha and do Nascimento 2009). It has been observed that 
Si treatments accelerated casparian bands, suberin lamellae 
and root vascular tissues development in maize under Cd 
stress (Vaculík et al. 2012; Lukacova et al. 2013). Si appli-
cation increases SPAD (Soil–Plant Analyses Development) 
value, net photosynthetic rate, water use efficiency, stomatal 
conductance, transpiration rate and chlorophyll fluorescence 
efficiency in barley under Cr (chromium) toxicity (Ali et al. 
2013), in maize plant under Zn stress (Paula et al. 2015), in 
sorghum, increases root hydraulic conductance by regulating 
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the aquaporin activity under K deficiency (Chen et al. 2016).
Silicon application enhances gas exchange characteristics 
in barley under Cr stress (Ali et al. 2013), in peanut under 
Al (aluminum) stress (Shen et al. 2014), in cotton under 
Pb (lead) stress (Bharwana et al. 2013) and in rice under 
Zn stress (Song et al. 2014). Si application in hydroponic 
solution increased the uptake and translocation of micronu-
trients (Zn and Mn) and macronutrients (Ca, Mg, P and K) 
by wheat plants under Cr, Cu (copper) and Cd (cadmium) 
stresses (Rizwan et al. 2012; Tripathi et al. 2015; Keller et al. 
2015). Furthermore, Si application significantly suppressed 
Zn uptake and accumulation in the roots and leaves of maize 
and cotton (Bokor et al. 2014; Anwaar et al. 2014).

Si application also plays a protective role against the 
UV-B radiation by enhancing the growth, photosynthesis 
and antioxidant parameters in soybean seedlings (Shen et al. 
2010). Si increases tolerance of wheat seedlings against UV 
stress by enhancing the level of antioxidant compounds (Yao 
et al. 2011). Malcovska et al. (2014) reported that the oxi-
dative status of Si-treated maize plants was only slightly 
affected compared to non Si-treated plants under UV radia-
tion stress. Detailed studies of Si-mediated abiotic stress 
tolerance in plants are given in Table 2.

Role of silicon as nano‑silicon particles 
in alleviating stresses

Under a variety of stress conditions, plants generate natural 
mineralized nano-materials for proper growth and develop-
ment (Wang et al. 2001). With the advancement in science, 
the priming of seeds with nano-particles has revolutionized 
the agricultural field. Nano-particles have unique phys-
icochemical properties which attract scientist worldwide 
(Monica and Cremonini 2009). Seeds coated with silicon 
can help in providing tolerance to different stresses in the 
plant (Hameed et al. 2013). Absorption of nano silicon 
dioxide  (nSiO2) in the maize seed resulted in a significant 
increase in organic compounds such as proteins, chlorophyll 
and phenols and plant dry weight (Suriyaprabha et al. 2012). 
The  nSiO2 has a great impact on the seed germination rate 
in tomato as it helps in increasing percent seed germina-
tion, mean germination time, seed germination index, seed 
vigor index, seedling fresh weight and dry weight (Siddiqui 
and Al-Whaibi 2014). Addition of  nSiO2 in the nutrient 
media can improve the seed germination and seedling early 
growth of lentil plant under salinity stress (Sabaghnia and 
Janmohammadi 2014). In basil (Ocimum basilicum),  nSiO2 
alleviated the effects of salinity stress and increased leaf dry 
and fresh weights, chlorophyll content and proline content 
(Kalteh et al. 2014). The application of  nSiO2 on Vicia faba 
can improve germination characters when exposed to salin-
ity stress. Thus, it can be concluded that  nSiO2 application 

in Vicia faba can increase the relative water content, plant 
height, fresh and dry weights under salinity stress condi-
tions (Abdul Qados and Moftah 2015). Nano-silicon can 
also be used to alleviate seed germination and plant growth 
inhibition due to the salt stress and improves photosyn-
thetic quantum in tomato (Almutairi 2016). On application 
of nano-silicon in tomato under salt stress, four salt stress 
genes, AREB, TAS14, NCED3 and CRK1 showed upregula-
tion in their expression whereas six genes, RBOH1, APX2, 
MAPK2, ERF5, MAPK3 and DDF2 showed down regulation 
(Almutairi 2016). Nano particles  (nSiO2 and nMo) are com-
monly used as engineered oxide nano particles. Nano par-
ticles have both beneficial and toxic effect on plants. Effect 
of  nSiO2 and nMo particles was studied on rice germination 
(Adhikari et al. 2013). Uptake of both nano-particles was 
observed in the rice seedlings. Nano-Mo particle caused the 
arrest of root growth and elongation in rice whereas  nSiO2 
had no toxic effect on rice. However,  nSiO2 enhanced the 
root length and volume, dry matter weight of shoot and root 
of rice (Adhikari et al. 2013). Application of specific nano-
particles on plants directly, might have both positive and 
negative effects on the plant growth and development. Potas-
sium silicate solitary in combination with salicylic acid can 
provide tolerance to plants against salinity stress (Hussein 
and Abou-Baker 2014). Direct and indirect role of  nSiO2 in 
ensuring better plant growth and productivity under different 
stresses makes this nanoparticle an alternative for harmful 
fertilizers for sustainable agricultural practices.

New insights into silicon research: omics 
to unravel different stress mechanism

The dynamic role of Si in biotic and abiotic stress can be bet-
ter understood with the transcriptomics and proteomic stud-
ies. At present, there is no direct and convincing evidence to 
explain precise molecular mechanism involved in Si-derived 
stress tolerance. Very few studies involving transcriptomics 
and proteomics approaches have been conducted to study 
the effect of Si on plants under different stress conditions. 
Most of the transcriptomics and proteomics studies were car-
ried out in last few years. From transcriptomics, Si has been 
revealed to up-regulate the aquaporin gene expression as 
well as increase the water uptake in salt stressed cucumber 
plants (Zhu et al. 2015). Similarly, Si has also been reported 
to up-regulate the expression of several SbPIP aquaporin 
genes in salt-stressed sorghum. In addition, Si application 
was observed to activate the genes related to salt stress 
responses (leDREB-1, leDREB-2 and leDREB-3), Si trans-
port (leLsi-1, leLsi-2 and leLsi-3), and antioxidants (leAPX, 
leSOD and leCAT ), in salt-stressed tomato responsible for 
salt tolerance (Muneer and Jeong 2015). Si application in the 
rice plant can provide resistance against blast fungus (Liu 
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Table 2  Role as well as the mechanisms used by Si in combating different biotic and abiotic stresses in crop plants

S. no. Biotic/abiotic stress Crop Mechanisms References

A. Disease
 1 Powdery mildew Black gram Increased expression of defense-related proteins Parthasarathy and Jaiganesh (2016)
 2 Bacterial wilt Tomato Increased activities of defense-related enzymes viz., 

peroxidase, phenylalanine ammonia lyase
Kurabachew et al. (2013)

 3 Bacterial wilt Sweet pepper Increased the concentrations of total protein, catalase, 
ascorbate peroxidase, and chitinase

Alves et al. (2015)

 4 Leaf blast Rice Increased activities of chitinase, β-1,3 glucanase, per-
oxidase and phenylalanine ammonia-lyase

Souza et al. (2015)

 5 Anthracnose Tomato Increased thickness of cuticle and fruit firmness Somapala et al. (2016)
 6 Anthracnose Sweet pepper Increases the firmness and cuticle thickness of fruits Jayawardana et al. (2014)

B. Insect pest
 7 Rice leaf folder Rice Reduced food quality and food conversion efficiencies Han et al. (2015)
 8 Brown plant hopper Rice Reduction in honeydew extraction He et al. (2015)
 9 Leaf miner Tomato Detachment of the midgut epithelium from the basal 

membrane, which leads to the reduction of digestive 
capacity in insects

dos Santos et al. (2015)

 10 Fall armyworm Rice Affects feeding preference as well as S. frugiperda 
larval survival

 Nascimento et al. (2014)

 11 Sugarcane borer Rice Reduced feeding injury, and increased exposure to 
adverse environmental conditions and natural enemies 
arising from reduced boring success

Sidhu et al. (2013)

 12 Diatraeasaccharalis Sugarcane Promotes cuticle thickening and the accumulation of 
crystals on the leaf stomata

Vilela et al. (2014)

 13 Stalk borer Sugarcane Reduced percent stalks bored and stalk length bored Keeping et al. (2013)
 14 Euschistusheros Soybean Increased non-preference and antibiosis resistances de Souza et al. (2016)

C. Heavy metal
 15 Cu Wheat Cu form complex with organic acids and and reduced 

the Cu translocation to shoots
Keller et al. (2015)

 16 Cr Barley Increased plant height, number of tillers, root length and 
leaf size of barley plants

Ali et al. (2013)

 17 Pb Cotton Increased the activities of antioxidant enzymes and 
preventing membrane oxidative damage of plant tissue

Bharwana et al. (2013)

 18 Cd Rapeseed Mediated extensive development of suberin lamellae in 
endoderm closer to the root tips

Vatehova et al. (2012)

Abiotic stress
 19 Drought Pistachio Enhanced photochemical efficiency and photosynthetic 

gas exchange; activation of the antioxidant defence 
capacity

Habibi and Hajiboland (2013)

 20 Rice Enhanced expression of transcription factors, DREB2A, 
NAC5, as well as ring domain containing OsRDCP1 
gene and some drought specific genes, such as 
OsCMO coding rice choline monooxygenase and 
dehydrinOsRAB16b

Khattab et al. (2014)

 21 Wheat Increased RWC and water potential; increased net 
photosynthetic rate, stomatal conductance and leaf 
transpiration rate

Gong and Chen (2012)

 22 Kentucky bluegrass Improving plant water relations and morpho-physiolog-
ical functions

Saud et al. (2014)

 23 Sorghum Increased RWC, transpiration rate, and improved vari-
ous physiological processes

Yin et al. (2014)
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et al. 2014). In 2014, Liu and co-workers used proteomic 
approach viz., two-dimensional gel electrophoresis (2-DE) 
and liquid chromatography–mass spectrometry (LC-MS/
MS) to unravel the role of Si in providing resistance to the 
rice plant against rice blast fungus. Si application to blast 
fungus inoculated rice plants results in alteration of pro-
teins involved in energy/metabolism, photosynthesis, redox 
homeostasis, cellular processes and pathogen response (Liu 
et al. 2014). Over-expression of the Lsi1 gene could trigger 
a cold stress response in the rice plant. Azeem et al. (2016) 
used quantitative proteomic approach (tandem mass tag) to 
study the Lsi1 gene regulation in rice under cold stress. The 
cold-responsive proteins identified were involved in vari-
ous processes such as photosynthesis, metabolism, signal 
transduction, redox homeostasis, cell wall organization, 
N-assimilation, protein processing and secondary metabo-
lism (Azeem et al. 2016). Similarly, Si-mediated detoxifica-
tion of Cd metal in suspension cells of rice was investigated 
using a combination of isobaric tags for relative and absolute 
quantification (iTRAQ), fluorescent staining, and inductively 
coupled plasma mass spectroscopy (ICP-MS). Under metal 
stress, Si application maintains the cell in the normal physi-
ological state thus improving protein use efficiency of the 
cell (Ma et al. 2016). Under short-term Cd stress, there is 
a reduction in the expression of glycosidase, cell surface 
non-specific lipid-transfer proteins (nsLTPs) whereas long-
term Cd stress showed lower expression of glutathione 

S-transferases (GST) (Ma et al. 2016). The expression level 
of Si transport responsive genes (OsLSi1 and OsLSi2) under 
heavy metal stress showed up-regulation of mRNA expres-
sion on the application of Si in rice (Kim et al. 2014b). Si 
application may modify root morphology to modulate heavy 
metal stress in the rice plant (Kim et al. 2014b). Si under 
salinity stress alleviates chloroplast and their metabolism 
damage in tomato plant (Muneer et al. 2014). Si supplemen-
tation under salinity stress can make tomato plant salt toler-
ant by improving photosynthetic metabolism and chloroplast 
proteome expression (Muneer et al. 2014).

Conclusion

Si—a multi-talented element has a much more advantageous 
role in combating both biotic and abiotic stresses than pre-
viously thought and understood. With the latest available 
literature it can be concluded that Si could be considered as 
a regular fertilizer particularly for high accumulator species 
like most of the cereals and monocots. In addition, recent 
findings have also highlighted the beneficial effects of Si 
in some of the dicot plant species. However, to increase 
applicability and broaden the coverage of plant species that 
can pursue benefits derived from Si, better understanding 
of underlying molecular mechanisms is critical. Presently, 
several models and mechanisms have been proposed to 

Table 2  (continued)

S. no. Biotic/abiotic stress Crop Mechanisms References

 24 Salinity Okra Decreased the  Na+ and  Cl− in the shoots and roots; 
increased RWC; increased antioxidant enzyme activi-
ties

Abbas et al. (2015)

 25 Spartina densiflora Reduced sodium uptake; increased net photosynthetic 
rate and water use efficiency (WUE)

Mateos-Naranjo et al. (2013)

 26 Rice Reduced the sodium accumulation, electrolytic leakage 
and lipid peroxidation; influenced the phytohormonal 
responses

Kim et al. (2014a)

 27 Rice Suppression of  Na+ accumulation in shoots; reduced 
 Na+ concentrations in the leaf blades and sheaths, 
increased net assimilation rate and stomatal conduct-
ance

Gurmani et al. (2013)

 28 Canola Reduced toxic ions  (Na+ and  Cl−) accumulation, 
increased antioxidant enzyme activity; reduction in 
hydrogen peroxide and lipid peroxidation

Farshidi et al. (2012)

 29 Wheat Decreased  Na+ and increased  K+ concentrations in 
shoots; maintained membrane permeability; improved 
plant water contents in shoots

Tahir et al. (2012)

 30 Lettuce Modulation of oxidative stress Milne et al. (2012)
 31 Sorghum Increased polyamines and decreased ethylene Yin et al. (2015)
 32 Tomato Increased expression of genes related to salt stress 

responses (leDREB-1, leDREB-2 and leDREB-3), Si 
transport (leLsi-1, leLsi-2 and leLsi-3), and antioxi-
dants (leAPX, leSOD and leCAT )

Muneer and Jeong (2015)
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explain how Si provides increased protection to plants under 
stressed conditions. But none of the proposed mechanisms 
describes the exact pathways or biochemical reactions where 
Si plays a key role. Thus, there is a need to utilize advance 
approach such as omics to unravel these pathways. Despite 
all these unanswered questions, present knowledge allows 
us to explore the Si-derived benefits either by supplementa-
tion or by developing novel cultivars with better Si uptake. 
Genetic modification of root traits of dicot would be helpful 
in developing dicots with better uptake and higher accumu-
lation of Si. The improved Si-derived benefits in plants will 
be helpful to develop a more sustainable cropping system 
in the future.
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