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Abstract

A single nucleotide polymorphism is the simplest form of genetic variation among individuals and can induce
minor changes in phenotypic, physiological and biochemical characteristics. This polymorphism induces various
mutations that alter the sequence of a gene which can lead to observed changes in amino acids. Several assays
have been developed for identification and validation of these markers. Each method has its own advantages and
disadvantages but genotyping by sequencing is the most common and most widely used assay. These markers are
also associated with several desirable traits like yield, fibre quality, boll size and genes respond to biotic and abiotic
stresses in cotton. Changes in yield related traits are of interest to plant breeders. Numerous quantitative trait loci
with novel functions have been identified in cotton by using these markers. This information can be used for crop
improvement through molecular breeding approaches. In this review, we discuss the identification of these markers
and their effects on gene function of economically important traits in cotton.
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Background
Plant breeders are interested in genetic variations because
these variations are the basis of phenotypic diversity.
Many traits in plants arose due to genetic variations
caused by mutation and/or recombination; those traits
that were useful were ‘fixed’ by natural as well as artificial
selection. With advances in technology, various methods
have been developed by scientists to detect and analyze
the minor genetic variations whose effects cannot be seen
in the phenotypes (Jang et al. 2015). A base pair is the
smallest unit of inheritance in an individual and when two
or more individuals differ from each other based on a nu-
cleotide then it is called a single nucleotide polymorphism
(SNP). The identification of these minor variations was
the initial challenging to plant scientists. The advent of
next generation DNA sequencing technologies has solved
this puzzle by being able to detect new functional SNPs
associated with diverse traits. This whole genome se-
quence data serves as a reference for the identification of
polymorphism due to SNPs among the individuals of the

same species (Xie et al. 2010). A lot of re-sequenced data
is also available to identify the sequence diversity within
crop plants. This data revealed whether changes in the
genome within a species arose due to one or multiple fac-
tors (DePristo et al. 2011). Indeed the function of several
genes has also been modified due to changes in a nucleo-
tide which led to differences at the phenotypic level within
plants of a species (Chung et al. 2013; Shi et al. 2015).
Plant scientists have also reported several functional SNPs
associated with phenotypic changes in various accessions
of crop plants (Jang et al. 2015; Arruda et al. 2016). Sev-
eral assays have been reported for genotyping in plants
and most of these assays depend upon various molecular
markers (Lateef 2015). SNP markers are the most abun-
dant and robust ones for high throughput genotyping of
plants. These markers can be found in all regions of a gen-
ome and a single gene may contain multiple SNPs
(Rafalski 2002; Alkan et al. 2011). They play a significant
role in determining phenotypic differences in plants, ani-
mals, humans and microbes (Moen et al. 2008; De Souza
et al. 2010).
Identification of the location of a particular gene,

measurement of distance among genes and their ar-
rangement on the chromosome is called genetic
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mapping (Semagn et al. 2006). Genetic maps play an im-
portant role for the identification of quantitative trait
loci (QTLs) (Ganal et al. 2009; Poland et al. 2012). The
co-dominant, abundant and cost-effective nature of
identifying SNPs made them ideal for construction of
genetic maps in plant species. Genetic maps based on
SNPs have been developed in several crop species such
as cotton (Byers et al. 2012), rice (Xie et al. 2010), maize
(Buckler et al. 2009), soybean (Akond et al. 2013) and
Brassica (Li et al. 2009). Likewise, genome wide associ-
ation study (GWAS) using SNP markers is a useful tool
to develop genome wide haplotypes (Yano et al. 2016)
and to detect natural diversity in cotton (Huang et al.
2017) and other crops (Aranzana et al. 2005; Yu and
Buckler 2006; Poland and Rife 2012; Pasam et al. 2012).
Identifying patterns among SNPs is a good method to
study the evolution of a species at the genomic level to
understand the history of a population as well as genetic
variation among individuals and the role of selection
pressure in inducing variation (Morin et al. 2004). SNPs
also provide information about evolution of the modern
genome by comparing the sequences of various species
(Lu et al. 2013). Phylogenetic analysis of diploid cotton
species using SNP markers revealed that A1 and A2 ge-
nomes are 98% similar (Shaheen et al. 2016).

Detection of SNPs in plants
Several techniques have been reported for the detection of
SNPs in crop plants. Genotyping by sequencing (GBS) has
been widely used for the identification of SNPs because of
its low cost, rare chances of error and lower DNA purifi-
cation requirement (Davey et al. 2011). The first step to
identify SNPs from GBS is the isolation of genomic DNA.
After quantification, the DNA is digested with a restric-
tion enzyme. The choice of restriction enzyme is very im-
portant. Two restriction enzymes can be used for double
digestion. Methylation sensitive restriction enzymes can
also be used for analysis of methylated DNA. Digested
DNA is then ligated with adaptors tagged by specific end
sequences for polymerase chain reaction (PCR) amplifica-
tion and sequencing. Various bioinformatic analyses are
carried out on sequencing data in order to identify SNPs.
These SNPs are further experimentally verified for their
functional annotation (Elshire et al. 2011). A disadvantage
of GBS is that some important regions of the genome may
be missing from genomic libraries because the selected re-
striction enzymes did not cut in those regions. Another
drawback of GBS is potential errors during sequencing
(Kim et al. 2016).
The restriction-site associated DNA sequencing

(RAD-seq) technique is used for discovery of SNPs when
a reference genome is not available (Andrews et al.
2016). With this technique, a P1 barcoded adapter is li-
gated to short DNA fragments generated after DNA

digestion with restriction enzymes. Adapter-ligated frag-
ments of different samples are combined and DNA is
sheared. Then, P2 adapter primers are ligated to the
DNA for amplification of these fragments and to pro-
duce sequencing libraries (Bergey et al. 2013). This tech-
nique is independent of a reference genome and
relatively inexpensive. The degree of genome coverage
can also be adjusted (Reitzel et al. 2013). This method
requires high quality DNA and loss of sheared restric-
tion sites may occur due to sequence polymorphism
(Suchan et al. 2016). Another technique developed for
large scale SNP based genotyping is specific locus ampli-
fied fragment sequencing (SLAF-seq). In this method,
DNA sample is first digested with MseI and then
digested with AluI. The resulting fragments are ampli-
fied by PCR, adapters are added and fragments are puri-
fied to obtain sequence libraries (Sun et al. 2013). This
low cost method is useful for sequence based genotyping
of large populations but it does not cover the whole gen-
ome (Ma et al. 2015). Chromatin immunoprecipitation
followed by sequencing (ChIP-seq) is a sequencing tool
that is used to investigate gene expression, i.e., transcrip-
tion factors (Johnson et al. 2007). This tool has been
characterized as robust because it profiles protein-DNA
interaction in vivo on a genome-wide scale. It has en-
abled breakthroughs in transcriptional regulatory net-
works in Saccharomyces cerevisiae and human DNA
regulatory sequences (Song et al. 2016). This protocol
has great potential but is challenging to perform in
plants due to necessary vigorous disruption of cell walls,
presence of phenolic compounds and polysaccharides,
and limited selection of quality antibodies that give a
strong signal.

Reporting of SNPs/QTLs in cotton
Fibre quality and yield traits
Cotton is an important fibre and oilseed crop in tropical,
sub-tropical and temperate regions of the world. It is
widely grown on an area of 33.4 million hectares with
production of 121.4 million bales annually (Johnson et
al. 2018). Among 50 species of cotton, the allotetraploid
species Gossypium hirsutum (also known as upland cot-
ton) is the most widely grown (Sekmen et al. 2014). Cot-
ton fibres and linters are the ultimate product of this
crop that determine its price in an international market
(Bradow et al. 1997). Staple length, strength, fineness
and uniformity ratio are main parameters which are
used to estimate fibre quality. Yield of seed cotton is a
complex attribute that depends upon various parameters
like boll weight, number of bolls per plant and lint per-
centage (Tang et al. 1996). Several SNPs and SNP-QTLs
have been reported for yield and fibre related traits. Po-
tential SNPs reported in cotton for all traits discussed
here are summarized in Table 1. The cotton 63 K SNP
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array was used to identify 71 QTLs for fibre quality
traits strongly linked with SNP markers. These QTLs are
comprised of seven pleiotropic QTL clusters, 19
e-QTLs, five hotspots and nine novel QTLs (Li et al.
2016). The linkage mapping, chromosomal localization
and phylogenomic characterization of six MYB genes
were carried out in four tetraploid cotton species via
SNP markers. These MYB genes are actively involved in
fibre development. The amplicon cloning and sequencing
method of genotyping was used to detect 108 SNPs for
these genes. It was determined that all six MYB genes
evolved independently and exhibited significant variation
in the D genome as compared with the A genome (An et
al. 2008). Keerio and colleagues used 107 introgression
lines derived from an interspecific cross of G. hirsutum
and G. tomentosum for QTL mapping. They used the
SLAF-seq method to obtain SNP markers. In this study,
74 QTLs and five clusters were found that were related to
various fibre quality parameters (Keerio et al. 2018). Islam
and co-workers have detected and validated 5 617 SNPs in
upland cotton using GBS (Islam et al. 2015). These re-
searchers have also reported 6 071 SNPs and 86 QTLs for
the GhRBB1_A07 gene. The experiment revealed the po-
tential role of this gene in determining quality of cotton fi-
bres. To identify this gene, they used a multi-parent
advanced generation inter-cross (MAGIC) population
which was developed through random mating of diverse
G. hirsutum parents (Islam et al. 2016a).
More recently, 110 QTLs and five key genes namely

Gh_D12G0410, Gh_D12G0969, Gh_D12G0093, Gh_
D12G0435 and Gh_D03G0889 were found to be in-
volved in fibre development in intraspecific crosses of G.
hirsutum. These QTLs were detected though the GBS
approach (Diouf et al. 2018). Another research group de-
tected 28 QTLs related to fibre quality and agronomic
parameters in a recombinant inbred mapping population
using the GBS approach. They found seven QTLs for
fibre strength while one QTL was detected for lint yield
(Gore et al. 2014). Liu et al. used 231 recombinant in-
bred lines (RILs) and the Cotton SNP 80 K array to iden-
tify 122 QTLs for yield related traits and 134 QTLs for
fibre quality parameters. Of these QTLs, 57 were de-
tected in multiple environments and, therefore, were
named as stable QTLs. The same group has also found
348 quantitative trait nucleotides (QTNs) with 74 stable
QTNs for yield and fibre related traits (2018). The re-
search group of Su has recognized 12 SNPs and 2 highly
stable QTLs for lint percentage through a GWAS of 355
accessions. They used the SLAF-seq method for geno-
typing these cotton lines. These SNPs could provide a
source to improve lint yield though molecular breeding
(Su et al. 2016a). In another study, researchers have dis-
covered 37 QTLs on chromosome 25 in a RIL popula-
tion of upland cotton using the SLAF-seq method.

These QTLs were related to various fibre quality attri-
butes (Zhang et al. 2015). In a separate report, Zhang
found 63 QTLs for fibre strength, and these QTL were
highly stable in nature. The researchers have used the
Cotton SNP 63 K array for genotyping. This chip contains
SNPs from several cotton species including G. hirsutum,
G. barbadense, G. tometosum, G. mustelinum, G. armour-
ianum and G. longicalyx (Hulse-Kemp et al. 2015; Zhang
et al. 2017). SNPs were also used to construct a genetic
linkage map through the SLAF-seq approach and identify
QTLs for boll weight. One hundred forty-six QTLs were
found in 11 environments, and 16 of these QTLs were
classified as stable QTLs because they were detected in
more than three environments (Zhang et al. 2016b). Rese-
quencing of 419 upland cotton accessions lead to the dis-
covery of 3 665 030 SNPs. These accessions were
phenotyped for 13 fibre related traits in 12 different envi-
ronments. GWAS revealed the association of 7 383 unique
SNPs and 4 820 candidate genes for these traits (Ma et al.
2018).

Biotic and abiotic stress tolerance
The cotton plant faces various stresses during its life
cycle that limit the productivity of the crop around the
world. A single base pair difference between genotypes
may be the underlying reason for a differential response
to environmental stresses. Many studies have been con-
ducted to evaluate whether genomic information can be
used to identify SNPs and QTLs related to biotic and
abiotic stress tolerance. The GBS method has been
exploited to construct a high density genetic map with
10 888 SNPs from segregating populations of an inter-
specific cross (G. hirsutum × G. tomentosum) to detect
QTLs related to drought tolerance. Thirty-four thousand
four hundred two (34 402) and 32 032 genes were also
mined within the Dt and At sub-genomes, respectively,
to understand the genetics of drought tolerance (Mag-
wanga et al. 2018). Abdelraheem et al. mapped QTLs for
drought and salt tolerance using an RIL population de-
rived from a cross of two diverse parental lines. A total
of 165 QTLs were discovered though the GBS approach
in this study, with 15 QTLs associated with tolerance to
salinity and drought stresses common to two environ-
ments, i.e., greenhouse and field conditions (2018). Like-
wise, a high-density linkage map was also constructed
using a segregating population of an intra-specific cross
between salt tolerant and salt susceptible genotypes. A
total of 66 QTLs and 5 178 SNP markers were identified
thorough GBS for 10 salinity tolerance related traits in
three different environments. Out of these QTLs, 14
were designated as stable due to their presence in more
than one environment. Nine and five stable QTLs were
located in the Dt and At sub-genomes, respectively, and
12 key genes were found to be involved in conferring
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salinity resistance at the seedling stage (Diouf et al.
2017). In another experiment, Wang et al. used salt tol-
erant and susceptible genotypes for mining SNPs using
the Cotton 63 K SNP array. A total of 7 087 SNPs were
mined, out of which 1 282 were highly related to salinity
tolerance in cotton (2016). Beside salinity and drought,
another major abiotic stress is high temperature, but the
SNPs related to this stress are yet to be explored in cot-
ton. Previously, 21 SNPs were reported for the mito-
chondrial small heat shock protein gene (MT-sHSP).
These SNPs were identified through PCR amplification
and sequencing of this gene derived from several cotton
species (Shaheen et al. 2009).
Among biotic stresses, Verticillium wilt is one of

the major threats to cotton production in the USA,
China and Turkey (Baytar et al. 2017). This disease
causes significant reduction in yield, and the pathogen
can survive for several years in the soil (Zhang et al.
2016a). GWAS revealed 17 SNPs related to Verticil-
lium wilt resistance through the SLAF-seq method of
genotyping. These SNPs were stable in three different
environments. QTL analysis also revealed that CG02
(a disease resistance protein belonging to the
TIR-NBS-LRR class) seems to be responsible for re-
sistance to Verticillium dahlia (Li et al. 2017b). Like-
wise, Zhao et al. used the Cotton SNP 63 K array to
detect SNPs and QTLs related to this disease in two
different environments. The results revealed the pres-
ence of 21 171 SNPs across 120 accessions of G. hir-
sutum. Three clustered QTLs, two major QTLs, 12
functional genes and six mRNAs conferring resistance
against Verticillium were also detected (2017). In an-
other research report, genomic analysis of many ac-
cessions through GBS revealed three trait loci
involved in Verticillium wilt resistance. A candidate
gene (Gh_D06G0687) was also reported that con-
ferred resistance to this pathogen by encoding an
NB-ARC domain (Fang et al. 2017). Cotton blue dis-
ease is one of the major diseases of cotton in Brazil,
and it is transmitted through aphids (Silva et al.
2008). Haplotype mapping of a large segregating
population through amplicon cloning and sequencing
using specific SSR primers revealed that resistance
was conferred by four SNPs (Fang et al. 2010). An-
other four SNP markers were discovered through
haplotype mapping that were highly associated with
resistance to bacterial blight disease (Xanthomonas
axonopodis pv. Malvacearum) (Xiao et al. 2010).
Aside from these diseases, the productivity of cotton
is also affected by cotton leaf curl virus, root rot and
cotton mosaic virus. Moreover, a huge number of pest
insects are associated with this crop, but no SNPs
linked to these biotic stresses have been reported in
the literature to our knowledge. Therefore, it is

important for molecular plant breeders to explore
SNPs related to these biological threats in order to
understand the basis of genetic resistance.

Earliness
Early maturity is an important feature which is essen-
tial if growing more than one crop per year or to es-
cape from late season environmental stresses. An
early maturing genotype also requires less irrigation
as well as less fertilizer and chemical inputs (Bednarz
and Nichols 2005; Cober et al. 2010; Akter et al.
2019). One study was conducted to detect SNPs re-
lated to early maturity in upland cotton using 137
RILs. Sequence based genotyping revealed that 6 295
SNPs and 247 QTLs were associated with six mor-
phological traits related to earliness. These QTLs
were deemed highly stable due to their identification
in six consecutive years, i.e., 2010 to 2015 (Jia et al.
2016). In another project, the SLAF-seq genotyping
strategy was used to identify SNPs related to six earli-
ness linked traits from 355G. hirsutum accessions
grown in four different environments. A total of 81
675 SNPs and 11 highly favorable SNP alleles were
discovered. GWAS also revealed a potential candidate
gene (CotAD_01947) that was associated with early
maturity (Su et al. 2016c). More recently, a GWAS
was conducted to identify SNPs and genes associated
with four earliness related traits. A total of 49 650
SNPs were discovered using the cotton SNP 80 K
array, and 29 SNPs were highly associated with early
maturity. In addition, two potential candidate genes
(Gh_D01G0340 and Gh_D01G0341) were also related
to earliness (Li et al. 2018b). Likewise, the GBS
method has been used to construct a high-density
genetic linkage map to discover QTLs related to this
trait. The linkage map was comprised of 3 978 SNPs,
and 47 QTLs were detected. These QTLs were associ-
ated with six earliness qualities. A study of an early
maturing cultivar revealed two highly expressed po-
tential candidate genes (i.e., Gh_D03G0885 and
Gh_D03G0922) (Li et al. 2017a).

Plant architecture and other important traits
A combination of traits are desirable to increase
productivity of the cotton crop. Plant architecture is
an important factor that determines suitability of cot-
ton genotypes for mechanical picking and as well as
to improve yield (Song and Zhang 2009). This com-
plex multigenic trait has been given less importance
in cotton as comparing with wheat and rice where
deployment of dwarfing genes led to the Green Revo-
lution. To investigate the genetic basis of plant archi-
tecture, a GWAS experiment was conducted with 121
upland cotton genotypes. The researchers identified 2
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620 639 SNPs, 11 QTLs and 5 candidate genes for
two plant architecture traits, i.e., fruit spur branch
number and plant height. The cotton accessions were
genotyped with the whole genome resequencing ap-
proach and phenotyped in multiple environments
(Wen et al. 2019). In another study, 93 250 SNPs for
five plant architecture traits were found in 355 Chin-
ese upland cotton accessions using the SLAF-Seq
method. GWAS revealed 22 highly associated SNPs
and 21 candidate genes for these traits (Su et al.
2018). Molecular analysis of the short fruiting branch
gene was carried out in an F2 population between
two parents, one with short fruiting branches and the
other with long fruiting branches. One SNP locus
(SNP_GH1570) was found to be highly associated
with short fruiting branches when using derived
cleaved amplified polymorphic sequences (dCAPS). It
was concluded that this SNP maker was useful for se-
lection of cotton plants with short fruiting branches
(Zhang et al. 2018a). A separate study revealed the
presence of 17 QTLs associated with plant height,
height of fruiting branch node and number of vegeta-
tive shoots. These QTLs were located on nine differ-
ent chromosomes and were detected through the GBS
method (Qi et al. 2017).
A nulliplex-branch mutant was developed to explore

the position of flowers on the cotton plant. This mutant
line exhibits flowers which arise directly from leaf axils
on the main stem, without a fruiting branch, i.e., mono-
podial and sympodial branches. This trait is desirable so
planting densities can be increased without using chemi-
cals to regulate plant growth (Du et al. 1996). To dis-
cover the molecular basis of the nulliplex-branch
mutant, a genetic map was constructed from a G. hirsu-
tum by G. barbadense interspecific population. The map
was comprised of 11 805 SNP markers which were iden-
tified through next generation sequencing. The analysis
revealed that 42 SNPs were associated with gb_nb1, a re-
cessive gene that controls the nulliplex-branch trait
(Chen et al. 2015). Virescent leaves in cotton are charac-
terized by their yellowish appearance at early stages of
plant growth. This abnormality is due to a recessive
gene, v1. Sequence analysis of wild and mutant alleles
showed the differences in four SNPs at sequence posi-
tions 426, 450, 709 and 1 082. It was further revealed
that the SNP at position 1 082 caused a point mutation
that resulted in synthesis of arginine instead of lysine in
mutant polypeptides (Zhang et al. 2018b). In another
study, genetic diversity for leaf transcriptomes was iden-
tified in G. barbadense. Through a cDNA library se-
quencing technique, researchers have found more than
10 000 SNPs associated with various traits in three Egyp-
tian cotton cultivars (Kottapalli et al. 2016). Likewise,
many SNP markers were also identified using the GBS

approach. These SNPs were considered as a source of
variation for various agronomic and biochemical traits
in cotton (Logan-Young et al. 2015).

Conclusions
The study of SNPs opens new horizons for plant biotech-
nologists to improve various features of a crop plant; a
single SNP has the potential to alter the expression of a
gene by inducing changes in its amino acid sequence.
SNPs identified in coding regions of genes have gained
more attention from molecular plant breeders as compar-
ing with those found in non-coding regions. Various as-
says have been exploited using these markers to detect
genetic variability in the genomes of field crops. Plant re-
searchers have utilized these markers successfully in cot-
ton and other crops for improvement and development of
tolerance to biotic and abiotic stresses, fibre quality and
yield in order to enhance profitability for farmers.
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