
BEPLS Vol 2 (4) March 2013 77 | P a g e  ©2013 AELS, INDIA 

 

 

 

 

Role of Some of Mineral Nutrients in Biological Nitrogen 

Fixation 
 

Weria Weisany1*, Yaghoub Raei2, Kaveh Haji Allahverdipoor3 

1 Ph.D student in Agro Ecology, Department of Plant Ecophysiology, Faculty of Agriculture, Tabriz 
University and 

1 Member of Young Researchers and Elite Club, Islamic Azad University, Sanandaj Branch, Iran. 

* Corresponding author:  E-mail: Weria.Wisany@gmail.com 
2Department of Plant Ecophysiology, Faculty of Agriculture, Tabriz University, Tabriz, Iran 

3Department of Agronomy and Plant Breeding, Faculty of agriculture, University of Kurdistan, Sanandaj, 

Iran 

 
ABSTRACT 

Atmospheric nitrogen fixation probably contributes at most about 10% of the total annual yield of fixed nitrogen. The 
most important source of fixed nitrogen derives from the activity of certain soil bacteria that absorb atmospheric N2 gas 
and convert it into ammonium. The process of biological nitrogen fixation offers an economical attractive and ecological 
advantage by of reducing external nitrogen input and improving the quality and quantity of internal resources. Mineral 
nutrients may influence N2 fixation in legumes and nonlegumes at various stages of the symbiotic process: infection and 
nodule development, nodule function, and host plant growth. Here, review the basic concepts of mineral nutrition, as well 
as the importance of mineral nutrients specifically for biological nitrogen fixation in the legume-rhizobia symbiosis.  
For healthy and vigorous growth, intact plants need to take up from the soil: relatively large amounts of some inorganic 
elements: ions of nitrogen (N), potassium (K), calcium (Ca), phosphorus (P) and sulphur (S); and, small quantities of 
other elements: iron (Fe), nickel (Ni), chlorine (Cl), manganese (Mn), zinc (Zn), boron (B), copper (Cu), and molybdenum 
(Mo). The enhancing effect of low levels of combined nitrogen on N2 fixation in legumes is related to the lag phase 
between root infection and the onset of N2 fixation. 
Phosphorus (P) is second only to nitrogen as an essential mineral fertilizer for crop production. At any given time, a 
substantial component of soil P is in the form of poorly soluble mineral phosphates. A high phosphorus supply is needed 
for nodulation. When legumes dependent on symbiotic nitrogen receive an inadequate supply of phosphorus, they may 
therefore also suffer from nitrogen deficiency. Potassium and sulphur are not usually limiting nutrients for nodulated 
legumes, although a K+ supplement for osmoadaptation has to be considered for growth in saline soils. Among mineral 
nutrients, B and Ca are undoubtedly the nutrients with a major effect on legume symbiosis. Both nodulation and nitrogen 
fixation depend on B and Ca2+, with calcium more necessary for early symbiotic events and B for nodule maturation. 
Copper plays a role in proteins that are required for N2 fixation in rhizobia. Cu deficiency decreased nitrogen fixation in 
subterranean clover. Iron is required for several key enzymes of the nitrogenase complex as well as for the electron 
carrier ferredoxin and for some hydrogenases. A particular high iron requirement exists in legumes for the heme 
component of hemoglobin. As molybdenum is a metal component of nitrogenase, all N2-fixing systems have a specific 
high molybdenum requirement. Molybdenum deficiency-induced nitrogen deficiency in legumes relying on N2 fixation is 
widespread, particularly in acid mineral soils of the humid and sub humid tropics. A specific role for nickel in nitrogen-
fixing bacteria is now well established with the determination that a nickel-dependent hydrogenase is active in many 
rhizobial bacteria. Cobalt is required for the synthesis of leghemoglobin and, thus, for the growth of legumes relying on 
symbiotically fixed nitrogen, is an essential mineral nutrient. It has been established that Rhizobium and other N2-fixing 
microorganisms have an absolute cobalt requirement whether or not they are growing within nodules and regardless of 
whether they are dependent on a nitrogen supply from N2 fixation or from mineral nitrogen. There for, in sustainable 
agriculture systems, the redaction of chemical fertilizers application is one of the most important principles, and 
nitrogen fixation by legumes is a natural fertilizing alternative to conventional chemical fertilizers. Thus, it is necessary 
to review of the effects of mineral nutrients on the rate of nitrogen fixation. 
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INTRODUCTION 

Chemical (metallic or non-metallic) natures, the form taken up by plants, biochemical functions and 

quantitative differences in functional requirements, the mineral nutrients have been divided into 

two or more categories. The distinction based on quantitative differences in functional 

requirements-macronutrient and micronutrient elements [51] is widely followed. These essential 

mineral elements include six macronutrients of N, K, P, S, Mg and Ca, which are present in relatively 

large amounts in plant tissues (mg g−1 of dry tissue). In addition, micronutrients play important roles 

as constituents of organic structures, constituents or activators of enzymes (Cu, Fe, Mn, Mo, Ni, and 

Zn), electron carriers or in osmoregulation. They also function in the regulation of metabolism (Cl, 

Cu, Fe, Mn, and Zn), reproduction and protection of plant against abiotic and biotic stresses [69].  

The major source of fixed-N to the biosphere is biological N2-fixation by microorganisms known 

collectively as diazotrophs; they provide about 60% of the total annual input. No eukaryote is known 

to have this capability [17]. The most commonly "fixed" forms of nitrogen are ammonium (NH4
+) and 

nitrate (NO3
-) ions. Nitrogen fixation is the process, which, as a component of the biogeochemical 

Nitrogen Cycle, drives the conversion of atmospheric N2 into ammonium ions. 

Several key abiotic factors limit legume productivity and nitrogen fixation in world agriculture. 

These may be summarised as extremes of temperature, water availability and nutrient availability, 

and toxic soil factors such as sodicity and pH. Mineral nutrients may influence N2 fixation in legumes 

and nonlegumes at various levels of the symbiotic interactions: infection and nodule development, 

nodule function, and host plant growth [61]. Robson [65] summarized the nature of the interaction 

between nutrient supply and combined nitrogen on legume growth as a means for estimating 

symbiotic sensitivity to their supply or concentration. He concluded that Co and Mo are required in 

high amounts for symbiotic nitrogen fixation for host-plant growth than Cu, Ca and P. Although there 

is currently experimental evidence for specific requirements for 11 nutrients (B, Ca, Co, Cu, Fe, K, Mo, 

Ni, P, Se and Zn) for symbiotic development in some species of legume, only four of these elements 

(Ca, P, Fe and Mo) appear to cause significant limitations on the productivity of symbiotic legumes in 

some agricultural soils [61].  

Lynd and Ansman [52] found redactions in nodule number of peanut when K was applied alone, but 

not when P and Ca were added. A stimulatory effect of the rate of 60mg kg -1 of NH4NO3 on 

nodulation also has been reported in presence of P [35].  

We begin this review with an introduction to the mineral nutrients essential for the legume- 

Rhizobium symbiosis. It is important to separate effects of nutrient deficiencies on the host plant 

from effects on the symbiotic system. Nutrient constraints to nodule development and function will 

be reviewed with an emphasis on the mineral nutrition of symbiotic rhizobia present in the root and 

nodule. 

Essential mineral nutrients  

The essential mineral nutrients for symbiotic legume nitrogen fixation are those required for the 

normal establishment and functioning of the symbiosis. Based on this definition, adapted from 

Arnon and Stout [8], the following chemical elements are known to be essential for the legume-

Rhizobium symbiosis: C, H, O, N, P, S, K, Ca, Mg, Fe, Mn, Cu, Zn, Mo, B, C1, Ni and Co. Each essential 

nutrient has specific physiological and biochemical roles and there are minimal nutrient 

concentrations required within both legumes and rhizobia to sustain metabolic function at rates 

which do not limit growth [38].  

 

EFFECT OF MACRONUTRIENTS ON NITROGEN FIXATION 

Nitrogen  

Presence of mineral N in the soil inhibits both nodule formation and nitrogenase activity [74]. Anne-

Sophie Voisin et al. [6] reported that mineral N in the soil inhibited symbiotic nitrogen fixation but it 

was relative to start of nodulation and N2 fixation at early vegetative growth at low concentration. 

The inhibitory effects of mineral N on nodulation and N2 fixation of soybean are clear at high 

concentrations (>5 mM), but far less at lower concentrations. However, nitrogen fertilization affects 

nodulation of bean plants and therefore the usually-recommended rates of 40-60 kg N ha-1 suppress 

N2 fixation [67,36]. Although there are a few reports on positive effects of low nitrate concentrations 

on N2 fixation in legume species such as soybean [75,39,40], Olsson et al. [62] showed that plants 

reduce carbon allocation to arbuscular mycorrhizae when grown in high compared to low nitrogen 

agar media.  

Weisany et al 



BEPLS Vol 2 (4) March 2013 79 | P a g e  ©2013 AELS, INDIA 

Phosphorus  

Phosphorus is used in numerous molecular and biochemical plant processes, particularly in energy 

acquisition, storage and utilization [33]. The deficiency of phosphorous supply and availability 

remains a severe limitation on nitrogen fixation and symbiotic interactions. This requirement might 

be higher than for root or shoot growth of the host plant. There are marked differences in rhizobial 

and plant requirements for P [10,63] with the slow- growing more tolerant to low P than the fast-

growing rhizobia [10]. Nodules themselves are strong sinks for P [41] and nodulation and N2 fixation 

are strongly influenced by P availability [49,71,68]. When legumes-dependent on symbiotic nitrogen 

receive an inadequate supply of phosphorus, they may suffer nitrogen deficiency. The phosphorus 

content per unit dry weight is usually considerably higher in the nodules than in the roots and 

shoots, particularly at low external phosphorus supply [1]. Nitrogen fixing plants have an increased 

requirement for P over those receiving direct nitrogen fertilization, probability due to need for 

nodule development and signal transduction, and to P-lipids in the large number of bacterioids [37]. 

Also, capability of developing nodules to compete with other vegetative sinks (root and shoot 

meristems) for phosphorus at limited external supply may be different between legume species 

[44,66].  

Potassium  

Potassium is not an integral constituent of any metabolite but serves to activate numerous enzymes, 

serves as a counter ion and is the major cationic inorganic cellular osmoticum [33]. The growth rate 

of internodes is affected [27], (and some dicotyledonous species may form rosettes [12]. With the 

advance of K deficiency, old leaves show the first symptoms as under such conditions K is trans 

located from older to younger leaves and growing tips via the phloem A qualitative requirement for 

K has been demonstrated for some rhizobia [70,79]. Vincent [79] suggested that R. trifolii and R. 

meliloti show restricted growth when K is omitted from a defined medium and a linear response in 

cell yield up to 0.006 mM was obtained in batch culture. 

Calcium  

Calcium is a macronutrient for plants, yet it is actively excluded from plant cytoplasm Calcium has 

several distinct functions within higher plants. Inhibition of nodulation is a major limiting factor in 

N2 fixation of many legume species grown in acid mineral soils. Increase in soil pH by Hming is 

therefore very effective in increasing nodule number, for example in common bean [20] or alfalfa 

[64]. Various factors are responsible for poor nodulation in acid mineral soils, high concentrations of 

protons and of monomeric aluminium [5] and in particular, low calcium concentrations. With regard 

to legume plants under N2-fixing symbiosis, subclover plant chlorosis under Ca deficiency due to 

impaired N2 fixation has been described [9]. Calcium deficiency, decreased nitrogen fixation in 

nodules of T. subterraneum [9], G.  Max [14] and M. Sativa [53], also affects attachment of rhizobia to 

root hairs [72] and nodulation and nodule development [5]. Lastly, a calcium-spiking phenomenon is 

initiated in root-hair cells of legumes by nodulation actors and rhizobia [81].  

Since that report, there have been others on the role of calcium redistribution in the infection 

process [32,56], including the demonstration that Nod factors can induce such changes even in 

tissue culture cells [22,80]. There is no doubt that the identification of the Nod factor receptor and 

the unraveling of the downstream signal transduction pathway will be a major challenge for 

rhizobiologists in their quest to understand the developmental pathway that culminates in the 

formation of the root nodule. 

Sulfur  

Sulfur is an essential element for growth and physiological functioning of plants. The sulfur-

containing amino acids cysteine and methionine play a significant role in the structure, 

conformation, and function of proteins and enzymes in vegetative plant tissue [76].  

Although synthetic media for the growth of rhizobia commonly contain S [11,70], until recently little 

attempt has been made to define S requirements quantitatively [55]. O'Hara et al.  [58,59,60] 

examined the S nutrition of two strains of B. japonicum and two strains of Brady rhizobium sp. using 

batch and chemostat cultures. High levels of contaminating S present in media components had to be 

removed before S limitation occurred in batch culture. Growth of the four Brady rhizobia strains 

became limited in chemostat culture when the concentrations of S in the inflowing media was less 

than 20#M. Under S-deficiency cells derepressed an active S-uptake system and the enzyme alkaline 

sulfatase [38].  
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EFFECT OF MICRONUTRIENTS ON NITROGEN FIXATION 

Boron  

Boron (B) is one of the eight essential micronutrients, also called trace elements, required for the 

normal growth of most plants. Boron distribution in nitrogen-fixing pea plants. Yamagishi and 

Yamamoto [86] reported strong alterations in N2 fixation in soybean plants with a low B supply. 

Bolanos et al. [15] made a study of the boron effect on Rhizobium-legume cell-surface interaction 

and nodule development in pea. In boron-deficient plants, the number of Rhizobia infecting the host 

cells and the number of infection threads were reduced and the infection threads developed 

morphological aberrations. The cell walls of root nodules of boron-deficient plants showing 

structural aberrations are reported to lack the covalently bound hydroxyproline/proline rich 

proteins [16], which contribute to an O2, barrier, preventing inactivation of nitrogenase and 

associated decrease in N, fixation. 

Copper  

Apart from its role in respiratory proteins that are required for N2 fixation in rhizobia [28], copper 

also plays a role in a protein that is expressed coordinately with the nifgenes and may affect the 

efficacy of bacteroid function. Several rhizobial strains, particularly R. leguminosarum bv. phaseoli, 

make the pigment melanin. The genes for melanin production are on the same large Sym plasmid as 

the nod and nifgenes [46]. The meIA gene, specifying the copper-containing enzyme tyrosinase is 

expressed at high levels in bacteroids, this being under the control of the regulatory R. 
leguminosarum nifA gene [42]. Lastly, there is increasing interest in the phenomenon whereby 

bacteria enter a state that is 'viable but non-culturable'. There is a recent report that shows that, for 

reasons that are not clear, adding Cu to Agrobacterium or R. leguminosarum cells sends them to this 

state [3]. Cu deficiency decreased nitrogen fixation in subterranean clover [73].  

Zinc  

Zinc is a micronutrient needed in small amounts by crop plants, but its importance in crop 

production has increased in recent years. Weisany et al. [82] reported that zinc application on plants 

exposed to salinity stress caused a noticeable enhancement of photosynthesis (Pn), water use 

efficiency, mesophyll efficiency and quantum yield compared with plants exposed to salinity stress 

alone. Also Weisany et al. [83] reported that lipid peroxidation and hydrogen peroxide concentration 

under salinity treatments significantly reduced as a result of zinc application 

In addition to the possible role of zinc in the function of the Ros/MucR transcriptional regulators, 

there is a description of protein engineering by Chauhan and O'Brian [23], which relates to Zn and B. 
japonicum. In this bacterium, the enzyme S-aminolaevulinic acid dehydratase (the product of hemB) 

normally has Mg2+ as a cofactor. In contrast, the corresponding enzyme in plants contains Zn2+. By 

site-directed mutagenesis of B. japonicum hemB, they substituted the N-terminal amino acids of the 

B. japonicum enzyme, and showed that this caused the engineered protein to bind Zn2+ and not Mg2+. 

This did not affect symbiotic N2 fixation, despite the known requirement for a functional hemB for N2 

fixation to occur [23]. Thus, the plant can supply the extra load of Zn2+ that would be required by this 

novel inoculant strain. 

Iron  

Iron is required for several key enzymes of the nitrogenase complex as well as for the electron 

carrier ferredoxin and for some hydrogenases. A particular high iron requirement exists in legumes 

for the heme component of hemoglobin. Therefore, in legumes iron is required in a greater amount 

for nodule formation than for host plant growth, for example in lupins [77] and peanut. A reduction 

in specific rates of nitrogenase activity has been observed in Fe limited peanut nodules [57], 

indicating a possible direct limitation by Fe deficiency on nodule function. Leghaemoglobin is an 

oxygen-binding protein. The single most abundant protein that the plant host makes in the nodule is 

leghaemoglobin, an iron protein. In the bacteria, nitrogenase and nitrogenase reductase contain FeS 

clusters and the former has the cofactor FeMoCo at the active site for N2 reduction. Further, 

bacteroids have a very high respiratory demand, requiring abundant cytochromes and other 

electron donors, each with their own Fe centers [28]. Although iron deficiency did not significantly 

affect shoot growth, it severely depressed nodule mass and particularly leghemoglobin content, 

number of bacteroids and nitrogenase activity, compared with those plants five days after a foliar 

spray of iron. In contrast to peanut, in lupin (Lupinus angustifolius) iron is not retranslocated into the 

nodules after a foliar spray, and direct iron supply at the infection sites at the roots required for 

effective nodulation [77]. In laboratory conditions, the lack of Fe has dramatic effects on nodule 
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development. In lupin and peanut, nodule development is much more susceptible to a shortage of Fe 

than are other parameters such as plant shoot and root weights [57].  

Manganese  

Manganese plays a role in the synthesis of polyamines, which play important roles in plant growth 

and development, also in detoxification of active oxygen species [34]. In one of the earliest steps of 

the infection process, the binding of rhizobia to young root hairs is enhanced when R. leguminosarum 

is starved of Mn [48]. Whether this is because Mn affects the amounts and the type of rhizobial 

exopolysaccharide [7] remains to be seen. 

Molybdenum  

Molybdenum is a micronutrient specifically for plants that form root nodules with nitrogen-fixing 

bacteria, though plants that do not form nodules also use trace amounts of it in a protein involved 

with nitrogen metabolism and uptake [84]. Its relevance to N2 fixation is clear, given that the Mo in 

'FeMoCo' cofactor is at the heart of the nitrogen reduction process - at least for most nitrogenases. 

The Mo–Fe protein contains two atoms of molybdenum and has oxidation–reduction centers of two 

distinct types: two iron–molybdenum cofactors called FeMoco and four Fe-S (4Fe-4S) centers. The 

Fe–Mo cofactor (FeMoco) of nitrogenase constitutes the active site of the molybdenum-containing 

nitrogenase protein in N2-fixing organisms [4]. Although at low supply, molybdenum is 

preferentially transported into the nodules [19], molybdenum deficiency-induced nitrogen 

deficiency in legumes relying on N2 fixation is widespread, particularly in acid mineral soils of the 

humid and subhumid tropics. There are reports that foliar applications of Mo to grain legumes in 

field conditions increase levels of N2 fixation and nodule mass, resulting in higher overall N content 

and seed yield [87,78]. It is also reported that a B. japonicum strain deficient in molybdenum 
transport showed impaired nitrogen fixation activity when inoculated to soybean roots (Delgado et 
al. 2006). In laboratory conditions, several different legumes that were severely starved of Mo 

showed more dramatic signs of deficiency [30].  

Nickel  

Clear evidence that nickel application benefited the growth of nitrogen-fixing species of plant was 

demonstrated by Bertrand and DeWolf [13], who reported that soil-nickel application to field-grown 

soybean (Glycine max Merr.) resulted in a significant increase in nodule weight and seed yield. In 

some legumes, small amounts of Ni are essential for root nodule growth and hydrogenase activation. 

The efficiency of nitrogen fixation immediately depends on hydrogenase activity because the 

oxidation of hydrogen by the latter provides ATP required for N reduction to ammonia. Also is now 

well established with the determination that a nickel-dependent hydrogenase is active in many 

rhizobial bacteria [20]. On the contrary, when soybean plants grown in soil culture were irrigated, 

once in two weeks, with the nutrient solution containing 1mM NiCl2, at day 52 the hydrogenase 

activity of Rhizobium japonicum nodules exceeded that of the control plants by about 45%, although 

the promoting effect disappeared by day 100, apparently as a result of increasing Ni toxicity [26].  

Cobalt  

Cobalt is essential for nitrogen-fixing microorganisms, including the cyanobacteria. Cobalt has been 

shown to be essential for symbiotic nitrogen fixation by legumes [2,31] and non legumes [43,45]. For 

example, soybeans grown with only atmospheric nitrogen and no mineral nitrogen have rapid 

nitrogen fixation and growth with 1.0 or 0.1µg Co ml_1, but have minimal growth without cobalt 

additions [2]. Role of cobalt in N2 fixation is essentially attributed to its role as a cofactor of 

cobalamine (Vitamin b6) which functions as a coenzyme involved in N2 fixation and nodule growth 

[31,50,47]. Wilson and Nicholas [85] produced evidence of cobalt requirement for nodule forming 

legumes and wheat. Cowles et al. [25] showed cobalt to be essential for rhizobial growth. Cobalt is 

also required as a part of a bacterial enzyme complex. Given that these elements play important 

structural roles in the proteins, they are critical nutrients for the nitrogen-fixing bacteria. Cobalt 

deficiency effects nodule development and function at different levels and to different degrees. 

Observations of B deficient beans and peas showed that under severe deficiency nodulation was 

totally inhibited [54] while under less severe B deficiency nodule development was affected [18].  

 

CONCLUSIONS  

Mineral nutrients perform several functions. They participate in various metabolic processes in the 

plant such as proteins, nucleic acids, cell walls synthesis, maintenance of osmotic concentration of 

cell sap, electron transport systems, component of the chlorophyll molecule, enzymatic activity and 
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act as major constituents of macromolecules, co-enzymes and nitrogen-fixing. This review 

recognizes the role of some mineral nutrients in biological nitrogen fixation as a nonpolluting and 

more affordable way to improve soil fertility compared to other ways, such as chemical fertilizer-N 

and sewage sludge, with their high levels of toxic metals. Biological nitrogen fixation is one of the 

most important biological processes on this planet, and a continued improvement in the 

understanding of the role of mineral nutrients in biological nitrogen fixation will be necessary to 

sustain a food supply to its inhabitants.  

Mineral nutrients can influence on nitrogen fixation in leguminous, for example; the presence of 

mineral nitrogen in the soil inhibits both nodule formation and nitrogenase activity [74]. The 

deficiency of phosphorous supply and availability remains a severe limitation on nitrogen fixation 

and symbiotic interactions. Calcium plays a key role in symbiotic interactions at the molecular level. 

Boron affects Rhizobium-legume cell-surface interaction and nodule development in pea [15]. 

Copper deficiency decreased nitrogen fixation in subterranean clover [73]. The nitrogen fixing 

enzyme, nitrogenase is composed of molybdenum and iron and without adequate quantities of these 

elements, nitrogen fixation can’t occur. In some legumes, small amounts of Nickel are essential for 

root nodule growth and hydrogenase activation. Cobalt is essential for nitrogen-fixing 

microorganisms, including the cyanobacteria. 
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