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Role of spin-orbit interaction in the ultrafast demagnetization of small iron clusters
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The ultrafast demagnetization of small iron clusters initiated by an intense optical excitation is studied from

the time-dependent spin density functional theory (TDSDFT). In particular we investigate the effect of the

spin-orbit interaction on the onset of the demagnetization process. It is found that demagnetization occurs

locally, in the vicinity of the atomic sites, and the initial rate of spin loss, coherent with the laser field, is

proportional to the square of the ionic spin-orbit coupling strength λ. A simplified quantum spin model comprising

spin-orbit interaction and a time-dependent magnetic field is found to be the minimal model able to reproduce our

ab initio results. The model predicts the λ2 dependence of the onset rate of demagnetization when it is solved

either analytically for the small t regime, or numerically integrated in the time domain. Our findings are supported

by additional TDSDFT simulations of clusters made of Co and Ni.

DOI: 10.1103/PhysRevB.94.014423

I. INTRODUCTION

Achieving control over the magnetization dynamics at the
femtosecond timescale is a desirable asset for new magnetic
data storage technologies. The ultrafast optical demagnetiza-
tion (UOD) phenomenon, discovered by Beaurepaire et al. [1],
in which an intense femtosecond laser pulse induces an abrupt
and dramatic loss of magnetization in a metallic film, initiated
what is now the highly active field of femtomagnetism.
Typical UOD experiments are based on the pump-probe
method, where a femtosecond laser pulse in the optical range
(pump) is beamed onto the magnetic sample and then a
delayed short electromagnetic pulse (probe) is used to detect
the magnetic response through possible linear or nonlinear
magneto-optical effects [2]. By varying the time delay between
the pump and the probe the magnetization dynamics can be
reconstructed in the time domain over a typical range spanning
from a few femtoseconds to a few picoseconds. The rapid
demagnetization process that develops over this time can be
characterized by two distinct stages: (i) a coherent stage in
the first few tens of fs when the light interacts with the
electrons and (ii) a relaxation stage when hot electrons and
spins interact with each other and with the lattice so as to
thermalize. Although the role of the particular microscopic
spin-flip mechanisms is often unclear and dependent on the
details of the magnet investigated, the thermalization process
is in general tractable through empirical three-temperature
models [1,3], which establish rate equations between the spin,
electron, and phonon systems. In contrast, theory for the
coherent stage is rather unsettled and spans a range of different
views (not necessarily mutually exclusive), from relativistic
accounts of the direct photon-spin coupling [4] to semiclassical
transport models [5].

Experimental works, focused on the coherent regime,
have described a strong dependence of the rate of UOD on
the material and, particularly, its spin-orbit coupling (SOC)
properties. For instance, it has been reported [6] that materials
exhibiting stronger SOC demagnetize significantly faster than
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lighter ones. The SOC has been identified as a key component
enabling UOD also in earlier theoretical works based on model
Hamiltonian [7]. Very recently time-dependent spin-density
functional theory (TDSDFT) calculations [8] have provided
another confirmation of its essential role for the ultrafast
laser-induced loss of spin in bulk transition metals. In this
paper we seek to gain further understanding of the microscopic
mechanisms responsible for the very initiation of the UOD. We
employ the most practically-applicable first-principles theo-
retical framework, the TD(S)DFT [9,10], which allows us to
simulate the UOD process for real multiatomic clusters directly
in the time domain and for experimentally-relevant times. We
demonstrate that the very onset of the demagnetization is trig-
gered by the electronic charge response to the electric field of
the pulse. The charge and spin currents generated give rise to an
effective magnetic field which, in combination with the SOC,
facilitates spin flips and a global spin decay. We also establish
that the initial, coherent demagnetization rate is proportional
to the square of the ionic SOC strength for a number of similar
clusters made of other transition-metal atoms.

In particular, we focus on an iron cluster—Fe6. Its ground

state (GS) geometry, as predicted by LSDA calculations

[11,12], is a compressed D2h distorted octahedron [see inset

of Fig. 1(a)] with bond lengths in the range 2.29–2.53 Å,

and this is the geometry we adhere to. The corresponding GS

spin of Fe6 in LSDA is 2S = 20 �. It is well known that open

d-shell systems are problematic to local approximations of

the exchange and correlation (XC) functional. Here, however,

our intention is to study the generality of the spin dynamics

so that possible quantitative features are not important at this

time. We consider Fe6 in its GS geometry as in Ref. [12] [see

Fig. 1(a)] and adopt the adiabatic temporal extension [13] of

the local spin-density approximation (ALSDA), parametrized

by Perdew and Wang [14] and implemented in the Octopus

code [15].
The paper is organized as follows. In Sec. II we discuss

the equations of motion for the spin density, which stem
from the TDSDFT implementation that we use. Section III
contains our main TDDFT results, which are then interpreted
and understood through a minimal spin model introduced
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FIG. 1. (a) Typical electric field pulses used to excite the

Fe6 cluster (cartooned as inset) and their corresponding fluences
cε0

2

∫

E2
x (t)dt . Time evolution of the total TDSDFT energy (b), total

spin (c), and total KS angular momentum (d) of the cluster when

subjected to each of the pulses in panel (a) with corresponding color

code on all panels.

in Sec. IV. Finally, in Sec. V we quantify and compare
the demagnetization of similar six-atom clusters of the same
geometry but different materials (Ni and Co) as a function of
their DFT-computed effective atomic SOC. We then conclude
in Sec. VI. The paper is also completed by an Appendix,
where we discuss in some detail aspects related to the angular
momentum conservation.

II. EQUATIONS OF MOTION FOR SPIN

In all our calculations spin dynamics is initiated by a single
intense electric field pulse (we neglect the magnetic field
component). We solve the time-dependent Kohn-Sham (KS)
equations

i�
∂

∂t
ψj (�r,t) = HKS(�r,t)ψj (�r,t) , (1)

where HKS(�r,t) is a 2 × 2 matrix in spin space to account
for noncollinearity, ψj are two-dimensional spinors, and we
consider the time-dependent KS Hamiltonian with electric
field �E(t) introduced in the length gauge

HKS(�r,t) = −�
2∇2

2m
+ vs(�r,t) − 2μB

�

�̂S · �Bxc(�r,t) (2)

vs(�r,t) =
∑

�RI

VPP(|�r − �RI |) +
∫

d3r ′ n(�r ′)

|�r − �r ′|

+ vxc(�r,t) + �r · �E(t). (3)

We substitute the ionic potentials, centered at each site �RI , with
soft norm-conserving fully relativistic pseudopotentials that
reproduce correctly the semicore and valence wave functions

beyond a certain core radius [16–18]1

VPP(r) =
∑

l

l
∑

m=−l

(

V̄ ion
l (r) + 1

4
V SO

l (r) + αV SO
l (r) �̂L · �̂S

)

× |l,m〉 〈l,m| . (4)

Here, �̂S is the spin operator, �̂LI is the angular momentum
operator associated to the atomic center “I”, while the scalar
part of the pseudopotential V̄ ion

l (r) includes the effect of the
mass shift and the Darwin term. V SO

l (r) defines the range of
the SOC term,2 and α is just an added tunable parameter which
is equal to 1 in the correct formulation. Within the ALSDA, at
every time t the XC potentials are calculated as

vxc(�r,t)= δELDA
xc

δn

∣

∣

∣

∣ n(�r,t)
�s(�r,t)

, �Bxc(�r,t)= �

2μB

δELDA
xc

δ�s

∣

∣

∣

∣ n(�r,t)
�s(�r,t)

(5)

from the instantaneous electron charge n(�r,t) = ∑

j∈occ.

ψ∗
j (�r,t)ψj (�r,t) and spin density �s(�r,t) = �

2

∑

j∈occ.

ψ∗
j (�r,t)�Sψj (�r,t). For the XC magnetic field the zero-torque

theorem holds [19], i.e.,
∫

d3r �Bxc(�r) × �s(�r) = 0, where the

integral is taken over the entire space. In other words, �Bxc

cannot produce a global spin torque over the system. The
Heisenberg equation of motion for the spin operator leads to
a spin continuity equation in the form

d�s(�r,t)
dt

= −∇ · JKS(�r,t) + 2
μB

�
�s(�r,t) × �Bxc(�r,t) + �ŴSO(�r,t)

(6)
where

�ŴSO(�r,t) =
∑

�RI

∑

α,β

∑

m,m′,l

ǫnjkV
SO
l (|�r − �RI |)

·
〈

�KS
α

∣

∣l,m′, �RI

〉

Ŝk
α,β

· 〈l,m′, �RI | L̂j

I |l,m, �RI 〉
〈

l,m, �RI

∣

∣�KS
β

〉

. (7)

In the first term in Eq. (6), the expectation

value of the KS spin-current operator J
ij

KS(�r,t) =
Tr[Ŝi

∑

k(ψ∗
k ∂jψk − ψk∂jψ

∗
k )] is a rank-two tensor. The

second term is the torque exerted locally by �Bxc(�r,t), which

vanishes within the adiabatic LSDA [ �BALDA
xc (�r) ‖ �s(�r)].

The first term, however, can be rewritten in a form
2μB

�
�s × �Bkin, where the kinetic magnetic field [20] is defined

as �Bkin = 1
2en

∑

k ∇k(n∇k�s). An effective local magnetic field

can thus be defined as �Beff(�r,t) = �Bkin(�r,t) + �Bxc(�r,t). This

1Our fully-relativistic norm-conserving pseudopotentials have been

generated with the multi-reference pseudopotential method as imple-

mented in the APE code [18]. This includes, in addition to valence

states, also the semicore ones (3s and 3p), since semicore states play

an important role in describing the chemical bond and the magnetic

properties of transition metal clusters [22].
2For values of the radius greater than the range of the SOC

component the ionic pseudopotential reduces to a purely local object.
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FIG. 2. Contour plots of the time-averaged and z-averaged observables evaluated only within spheres of radius 0.85 Å around each atom:

(a) variation of the spin density Sz(�r) with respect to the ground state, (b) difference of the latter and its counterpart in the case of no SOC,

(c) the effective magnetic field Bz
eff(�r) in the ground state (t = 0), and (d) the variation of Bz

eff(t) with respect to the ground state. See text for

details.

field is not necessary locally parallel to �s(�r,t) and produces a
local torque.

The last term in Eq. (6) �ŴSO(�r,t) is the only source of global
spin dissipation in the temporal evolution of the spin density as
a result of the SOC. Note that in this description the global spin
change is only determined by the orbital-dependent scattering
properties of the atomic pseudopotential as a result of the
SOC. It is, therefore, not directly dependent on the KS orbital
momentum distribution defined with respect to the center of
mass of the cluster at (0,0,0) as

�LKS (�r,t) = �r × �jKS (�r,t), (8)

where �jKS = �
∑

k(ψ∗
k ∇ψk − ψk∇ψ∗

k )/2i is the KS probabil-
ity current. Later in this paper we will revisit Eq. (6) and use it
as a base for a simplified quantum model for the spin operator.

III. DEMAGNETIZING Fe6 FROM TDSDFT

Figure 1 shows representative results from the full time-
dependent simulations of the dynamics of the Fe6 cluster. For
a range of pulse shapes and amplitudes the magnetic response
is a decay in the global spin expectation value, Sz

tot(t) =
∫

d3rsz(�r,t). Pulses (with fluences comparable to those used in
pump-probe experiments) excite the cluster, and the rate of the
spin decay triggered by the excitation typically correlates with
the total variation of the TDSDFT energy before and after the

pulse (the larger the energy deposited in the cluster, the larger
the induced spin-decay rate). Note that after the pulse the total
energy is conserved, Fig. 1(b). The total orbital momentum,
Fig. 1(c), defined as Lz

tot(t) =
∫

d3rLz
KS(�r,t), shows large

oscillations and a very different behavior from that of the spin.
We note that the total angular momentum in our description
is not a constant of motion as the orbital momentum does not
commute with the noncentral ionic potential of the cluster. In
other words, the frozen nuclei constitute a sink for the orbital
momentum (see Appendix). The global nonconservation of
orbital momentum leads to global nonconservation of spin
through the ŴSO torque in Eq. (6).

The spatial distribution of the calculated demagnetization is
visualized in Fig. 2, where we plot the time and space averaged
(along the direction of the symmetry axis of the cluster, z)
planar distributions of the temporal variations (with respect
to the GS) of the spin-density and the effective magnetic
field.3 It is notable that the negative variation of sz(�r) is

3The definitions of the quantities plotted in Fig. 2 are: �Sz(x,y) =
1
T

∑

i

∫

T
dt

∫ zi,2

zi,1
dz [sz(x,y,z,t) − sz(x,y,z,0)]/(zi,2 − zi,1) and

�Bz
eff(x,y) = 1

T

∑

i

∫

T
dt

∫ zi,2

zi,1
dz [Bz

eff(x,y,z,t) − Bz
eff(x,y,z,0)]/

(zi,2 − zi,1), where T is the total simulation time and zi,1,zi,2

are functions of (x,y) and belong to one of the nonoverlapping

atom-centered spheres 
i .
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FIG. 3. (a) Evolution of global spin expectation value for different

values of α = 0,1,2,4 in Eq. (4). (b) Same as in panel (a) but having

the GS spin subtracted and �Sz
tot values multiplied by η = (αmax/α)2.

Panels (c) and (d) show the corresponding trajectories of the averaged

over the nonoverlapping atom-centered spheres Bz
eff(t) [see Eq (9)].

predominantly localized around the atomic centers [panel (a)].
Furthermore, the difference in the averaged spin-variation
distribution between analogous simulations with and without
SOC [panel (b)], which approximately represents the global
spin loss in the presence of the SOC, is also localized.4 In
particular it is more pronounced along the direction of the
bond with the apex atoms (which is also the shortest bond
length in the system in the direction of the laser field). The
effective magnetic field is very inhomogeneous in the GS. Its
temporal variation, however, shows a spatial correlation with
the variation of the spin density. The regions of decrease of
spin density exhibit an increase in Bz

eff(�r) (note that in the same
regions Bz

eff(�r) is mostly negative in the GS). Hence, regions
of pronounced spin decay are associated with decrease in the
absolute value of Bz

eff(�r).
As suggested by Eq. (6), the SOC is expected to have a

major role in the spin-decay process. In order to extract such
effect we have introduced an artificial scaling factor α in front
of the SOC term of Eq. (4). Depicted in Fig. 3 is the effect on
the global spin-variation trajectory of the variation of α from 0
to 4. The rate of spin loss, both pulse-coherent and post-pulse,
is strongly affected by the SOC strength with the limit of α = 0
(no SOC) resulting in global spin conservation. In panel (b)
we have plotted the same spin trajectories after removing their
GS offset and scaling them by a factor of 1/α2. The overlap of
the curves demonstrates that in the initial coherent stage the
spin-decay rate scales as the square of the SOC strength.

We now compare the global spin trajectories to those of the
Bz

eff in the vicinity of the atomic centers. We define a measure
of the local variation of the latter as

〈

Bz
eff(t)

〉

=
∑

i

1

V
i

∫


i

Bz
eff(�r,t)d3r , (9)

4The apparent spatial symmetry breaking is due to the finiteness of

the time domain simulation.

where 
i are nonoverlapping atom-centered spheres of radius
0.85 Å for all the quantities plotted in Figs. 3(c) and 3(d).
Although such defined 〈Bz

eff(t)〉 appears noisy due to spatial
grid effects, it does show a coherent response to the external
field pulse and during this stage it is practically independent of
the SOC strength.5 After the pulse dies out the decrease in the
absolute value of 〈Bz

eff(t)〉 correlates to the global spin decay
in panel (a), and that is especially notable for higher α. This is
related to the fact that practically all the spin loss takes place
in the same atomic vicinity regions where 〈Bz

eff(t)〉 is defined.

IV. MINIMAL SPIN MODEL FOR DEMAGNETIZATION

The insights drawn from the first-principles spin dynamics
results for Fe6 presented in Fig. 3 suggest that the SOC is
key in the demagnetization process, which in turn takes place
in the vicinity of the atomic sites, i.e., where the SOC is the
strongest. Furthermore, we have observed that in the same
regions the local magnetic field 〈Bz

eff(t)〉 also decays rapidly
in time, coherently with the laser field in the beginning of
the simulation. As a minimal model for understanding the
demagnetization process we propose the following spatially-
homogeneous and time-dependent spin Hamiltonian

Ĥ (t) = λL̂ · Ŝ + �B(t) · Ŝ , (10)

where λ defines the SOC strength and �B(t) is a time-dependent
magnetic field. This model effectively mimics the local spin
dynamics at a given point in space resulting from the TDSDFT
description formulated in Eq. (6). The basis set used to
expand the wave function, solution of the corresponding time-
dependent Schrödinger equation, is given by the eigenstates
of L̂z and Ŝz, {|lz,sz〉}. For instance, considering l = 1 for the
orbital quantum number we can write

|�(t)〉 =
1

∑

lz=−1

1/2
∑

sz=−1/2

clz,sz |lz,sz〉 , (11)

and solve numerically the six-dimensional Schrödinger equa-
tion to obtain the evolution of the spin observables in time.
Such numerical integration in the case of an absence of
SOC (λ = 0) returns, as can be expected, no observable spin
dynamics (Sz = const) regardless of whether or not the initial

state is collinear to �B(t). This is because the spin and orbital
angular momenta in this case are decoupled.

In contrast when λ 
= 0, an initial state with lz 
= ±l and
a steplike variation of �B(t) [similarly to 〈Bz

eff(t)〉 in Fig. 3]

produce a sharp change in the expectation value of Ŝz (see
Fig. 4). In particular, for an initial spin-up state (Sz = 1/2)
we find a decrease of Sz after the drop of the magnetic
field, while an initially down spin-state shows an increase
in Sz. In other words, a change of the local magnetic field,
combined with the SOC, leads to a decrease in the modulus
of the expectation value of the spin. This remains valid even
if initially the spin state is collinear with the field (assumed
along the quantization axis) as long as lz 
= ±l (noncollinear

5SOC is a small energy scale compared to the deposited by the pulse

kinetic energies (Fig. 1), and the kinetic magnetic field variation is

mostly due to charge motion.
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FIG. 4. Trajectories for Sz corresponding to the model Hamilto-

nian of Eq. (10) in the case of (a) having an initial state with spin

up or spin down or (b) different values of the SOC by a factor α,

such that λ → αλ in Eq. (10), for an initial spin up. (c) Similarly to

Fig. 2(b), the latter trajectories rescaled by 1/α2. The shaded area

is a reference for the temporal profile of �B = [0,0,B(t)]. The initial

orbital momentum state is a linear combination of lz = 0,1,2 states.

orbital momentum).6 Interestingly, this massively simplified
local spin model reproduces the λ2 dependence of the coherent
demagnetization rate observed in the TDSDFT calculations
[Fig. 3(b)].

In Fig. 4(b) we show the results of the numerical integration of
our six-dimensional spin-orbital model for different values of
the SOC strength, rescaled by a factor α. It is demonstrated in
panel (c) that the demagnetization curves during the variation
of the magnetic pulse become steeper by a factor α2 as the
rescaled trajectories Sz/α2 coincide for some time interval.
This property can also be demonstrated analytically by
deriving the lowest order terms in the perturbative expansion of
the solution |�(t)〉 in powers of t . For simplicity we consider
the dynamics of the two coupled states |lz = 1,sz = −1/2〉
and |lz = 0,sz = 1/2〉

|�(0)〉 = c1|1,−1/2〉 + c2|0,1/2〉, (12)

under the time-dependent Hamiltonian Ĥ (t) which has a
matrix form

H (t) = H0 + V (t) =
(

− λ
2

λ√
2

λ√
2

0

)

+
(

−B(t)
2

0

0 B(t)
2

)

,

where we have decomposed Ĥ (t) into a time-independent Ĥ0

and a time-dependent part V̂ (t). In the interaction picture the
operator V̂ (t) and the spin Ŝz operator are represented as

VI (t) = eiH0tV (t)e−iH0t = 1

9

(

−B(t)
2

− 4B(t) cos
(

3
2
λt

) √
2B(t)(1 + e

3
2
iλt ) − 2

√
2B(t)e− 3

2
iλt

√
2B(t)(1 + e− 3

2
iλt ) − 2

√
2B(t)e

3
2
iλt B(t)

2
+ 4B(t) cos

(

3
2
λt

)

)

,

Sz(t) = �

2
eiH0tσ ze−iH0t = �

18

(

1 + 8 cos
(

3
2
λt

)

−2
√

2 + 4
√

2e− 3
2
iλt − 2

√
2e

3
2
iλt

−2
√

2 + 4
√

2e
3
2
iλt − 2

√
2e− 3

2
iλt −1 − 8 cos

(

3
2
λt

)

)

,

where σ z is the corresponding Pauli matrix.
In the limit of t → 0, the equation for the time-dependent

wave function in the interaction picture

|�I (t)〉 = |�0〉 − i

�

∫ t

0

dt ′VI (t ′)|�I (t ′)〉 (13)

can be expanded in powers of t as

|�I (t)〉 = |�0〉 − i

2�

d

dt
VI (t)

∣

∣

∣

∣

t=0

t2|�0〉 + O(t3). (14)

Restricting ourselves with terms of the order of t2, the
variation of expectation value of Ŝz between |�I (t)〉 and the
ground state |�0〉 then reads

〈Ŝz(t)〉 − 〈Ŝz〉0 = λ2t2

2�

(

−
√

2

2
c1c2 − c2

1 + c2
2

)

, (15)

i.e., it scales predominantly as λ2 for small times t following
the initiation of the B-field variation. Note that in this
approximation the early demagnetization does not depend on
the strength of the field.

6Note that this requirement is not a particular restriction for the

model. For instance, the valence states in the open d shell of the

magnetic transition-metal atoms satisfy it.

V. MATERIAL-SPECIFIC DEMAGNETIZATION

OF SIMILAR CLUSTERS

As a final quantitative verification of the λ2 dependence
of the demagnetization speed, we look at the laser-induced
response of clusters completely identical to Fe6 in terms of
geometry but composed of Co and Ni (note that we keep the
same frozen geometry of Fe6 as in Ref. [21], although this is
not the GS for Ni6 and Co6, in order to exclude the structural
factor from the comparison). We quantify their ionic SOC
strength through the following definition

λeff =
∑

l∈occ.

nl

ntot

∫

V SO
l (�r)R2

l (�r)d3r , (16)

where nl are the KS state occupations with l spanning
the valence states (in this case 3s,3p,3d and 4s), ntot =
∑

l∈occ. nl , Rl(�r) are the radial pseudoatomic wave functions

and V SO
l (�r) = 2l

2l+1
[V

l+1/2
PP (�r) − V

l−1/2
PP (�r)] is the same object

as in Eq. (4). Those are all obtained from LSDA calculations
of isolated atoms. By fitting the first few femtoseconds of
the demagnetization curve to a quadratic time decay Sz(t) ∝
A(t − t0)2 with t0 in the rise of the laser pulse (around 1.5 fs)
we extract the demagnetization rate A of each cluster. Such
extracted demagnetization rates for the three different clusters
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FIG. 5. (a) TDSDFT trajectories of the variation of Sz
tot(t) with

respect to the GS spin for three different clusters: Fe6, Ni6, and Co6, all

sharing the same Fe6 geometry [12]. (b) Closer view into the coherent

part of the trajectories where a parabolic decay [y = A(t − t0)2 + A0]

is fitted for each trajectory (dashed curves). (c) The fitting coefficients

A from panel (b) versus the effective atomic SOC from Eq. (16) for

each material.

show a systematic dependence on their ionic SOC strength λ2
eff

[see Fig. 5(c)].

VI. CONCLUSION

In conclusion, TDSDFT calculations at the level of ALSDA,
combined with fully relativistic pseudopotentials, display
ultrafast demagnetization effect for a range of laser-excited
transition-metal clusters with fixed geometry. The global
demagnetization effect scales quadratically with time in the
first instants, with rates ranging between 4 and 10 �/fs2, and
strongly depends on the SOC strength. The phenomenon is
then explained in terms of the resulting laser-induced coherent
drop of the effective magnetic field. The latter, combined with
the SOC which is the strongest in the vicinity of the atomic
centers, leads to a local decrease of the expectation value of Ŝz.
The external electric pulse is therefore only indirectly involved
in the demagnetization process, which could instead be directly
ascribed to the large variations of the effective magnetic field
due to excited spin-polarized currents. Furthermore, the onset
demagnetization rate shows a strong dependence on the ionic
SOC properties of the material, scaling quadratically with the
SOC strength. Because of the localized nature of this ultrafast
demagnetization mechanism, we believe our findings are valid
beyond the cluster systems and may provide a formal backing
to experimental observations like the comparison of Ni and
CoPt3 demagnetization rates in Ref. [6].
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APPENDIX

In this Appendix we look in more detail into the problem
of the nonconservation of the total angular momentum (TAM)
in our time-dependent simulations. In fact, it might appear
counterintuitive that the TAM of the electrons coupled to a
system of frozen nuclei is not a constant of motion. Recently
it has been demonstrated that the TAM of the quantum system
made of an atomic spin (localized) coupled to an elastic
medium (phonons) is conserved [21]. One may then be tempted
to attribute also the dissipation of the electronic TAM (which
also has an orbital component) to the single mechanism of the
interaction with a phonon bath. As this is not available here
one may then conclude that the TAM must be conserved.

The total orbital momentum of the system of electrons, laser
pulse and lattice,

�L = �Lel + �Llaser + �Llattice , (A1)

is not an observable that is straightforward to evaluate from a
microscopical theory and within our TDSDFT framework it is
not a constant of motion.

The Noether theorem guarantees the conservation of �L in
the case of a global rotational symmetry of the interactions in
the system. This is not the case for the electron subsystem in the
cluster considered here. But even if our electron Hamiltonian
was spherically symmetric (e.g., a single Fe atom), the orbital
momentum in Eq. (A1) would still not be a constant of
motion. As the laser field is treated classically within the
dipole approximation, it is not evolved dynamically but it
is characterized only by a time-dependent and homogeneous
electric field with zero Poynting vector. Hence, during the laser
pulse the orbital momentum of Eq. (A1) is not conserved.
As we consider the frozen-nuclei approximation, �Llattice = 0
during the evolution (since their velocity is zero they do not
contribute to the orbital momentum).

In the TDSDFT simulations the laser pulse and the atomic
nuclei constitute external sources of torque on the electronic
component of the orbital momentum �Lel which we define as the
KS orbital momentum �Lel = �LKS from Eq. (8). The evolution
of �LKS obeys the following equation of motion

d

dt
�Lel = − q

2c

∫

d3r �A(t) × �jKS(�r,t)

+μB

∑

j

∫

d3r(�r × ∇)Bj
xc(�r,t)mj (�r,t)

−
∫

d3r �r × ∇vKS(�r,t)ρ(�r,t)

−
∫

d3r �ŴSO(�r,t) , (A2)

which can be derived from basic quantum-mechanical princi-
ples given the KS Hamiltonian in Eq. (2).

The first of the four terms on the right hand side describes
the variation of orbital momentum due to the action of the
external electric field. The second one is a torque due to
the scattering of the electrons with the field of the localized
magnetic moments, while the third one describes the effect
due to the scattering of the electrons with the field of the
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nuclei. The last two terms can also be expressed in terms of
the commutator between the orbital momentum operator �Lel

and the ionic pseudopotential

V̂PP(�r) =
∑

�RI

∑

l,m1,m2

V l
ion(|r − RI |)|l,m1,I 〉〈l,m2,I |. (A3)

At time t = 0 the GS density matrix commutes with the ionic
pseudopotential V̂PP(�r), and the average GS orbital momentum
can be obtained integrating Eq. (8). During and after the
laser excitation the set of spherical harmonics {|l,m,I 〉},
centered on each of the atoms I , are not eigenfunctions of
the Hamiltonian and the ionic potential becomes a source
of scattering for the orbital momentum. As a result of the
excitation the center of mass of the electron system acquires
a finite orbital momentum in the reference frame of the
frozen nuclei. The TAM of the electrons in not conserved
but must oscillate on some large timescale after the decay
of the external excitation. As a classical analog for such
nonconservation of the angular momentum one could think
of the case of a satellite orbiting a pair of heavy stationary
planets (mass points)—the TAM of the satellite on a closed
“8”-shaped orbit passing through the center of gravity of the
binary system is oscillating around zero (the TAM in each
loop around one of the planets clearly points in the opposite
direction).

The fourth term in Eq. (A2) is the variation due to the
spin-orbit coupling effect, which is opposite and equal to �ŴSO

from Eq. (7). In the special case of a potential with central
symmetry, �Bxc(�r) and vKS(�r) depend only on the distance from
the center of symmetry of the system, hence �r × ∇Bxc(r) = 0
and �r × ∇vKS(r) = 0. For the long-time dynamics after the

laser pulse is extinguished, �A(t) = 0, and the equation reduces
to

d

dt
�Lel = −

∫

d3r �ŴSO(�r,t) . (A4)

In this case the SOC is the only source of variation for the

orbital momentum and the total angular momentum �Lel + �S
is a constant of motion. For instance, we find no significant
demagnetization in the case of a single Fe atom under the
same excitation. Hence we conclude that the presence of
the symmetry-breaking lattice is essential for the laser-driven
decay of the spin and the mechanism goes through the
generated effective (kinetic) magnetic field as described in
Sec. IV.

In general, when the second and third term in Eq. (A2)
are not zero for the excited cluster, because of the lack
of central symmetry, they constitute a source/drain for the

orbital momentum. As a result �Lel + �S is not conserved, as
we have observed in our TDSDFT simulations, and for the
ferromagnetic clusters Sz initially decreases following the
excitation.
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