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Abstract. Exosomes are small, extracellular membrane- 
enclosed vesicles that contain a variety of molecules, including 
proteins, DNA, mRNA and non-coding RNA; these vesicles 
have been defined as new tools for intercellular communica-
tion between cells. Numerous types of cells, including stem 
cells, secrete exosomes into the extracellular environment, 
and are significant communicators in the tumor microenviron-
ment. Stem cells are a unique cell population defined by their 
ability to indefinitely self‑renew, differentiate into a variety of 
cell lines, and form clonal cell populations. Stem cells also 
secrete large amounts of exosomes, which have demonstrated 
great potential in a variety of diseases. Increasing evidence has 
revealed that the mechanism of interaction between stem cells 
and human tumor cells involves the exchange of biological 
material through exosomes. In this review, the latest develop-
ments in the role of stem cell-derived exosomes in cancer are 
highlighted.
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1. Introduction

Exosomes are small, lipid bilayer membrane vesicles of endo-
cytic origin (30‑100 nm in diameter). In recent years, there has 
been increasing interest in the relevance between biological 
and pathophysiological processes and these extracellular 
vesicles (EVs). Increasing evidence suggests that interactions 
between stem cells and human tumor cells involve the exchange 
of biological information via EVs, including exosomes (1). 
Stem cells secrete a large number of exosomes, which act as 
communicators in the tumor microenvironment and which 
play diverse roles in tumorigenesis, tumor angiogenesis and 
tumor metastases. However, the role of stem cell‑derived 
exosomes in the pathophysiological processes of tumors has 
not been clarified until now. In this review, the recent findings 
with regard to the role of stem cell derived‑exosomes in cancer 
are briefly summarized.

2. Biogenesis, contents and secretion of exosomes

Exosomes, which were first described in 1981, are derived 
from the internal vesicles of multivesicular bodies (MVBs) 
and consist of a lipid bilayer membrane surrounding a small 
amount of cytosol (2). Exosomes are secreted by all types 
of cells in culture and are observed in abundance in body 
fluids, including saliva, urine, blood and breast milk (3). In 
the present study, the current knowledge with regard to the 
biogenesis, contents and secretion of exosomes is summarized.

The formation of MVBs during exosome biogenesis is 
similar to the formation of MVBs during lysosome forma-
tion. First, the cell membrane is internalized to produce an 
endosome. Subsequently, the endosome forms inside a large 
number of small vesicles via invagination of portions of the 
endosome membrane. Such endosomes are called MVBs. 
Finally, exosomes are produced and packed with cytoplasmic 
contents, and the membrane of MVBs bulges inward and 
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pinches off to create small membranous vesicles within the 
MVBs. The molecular mechanisms of exosome formation 
have been studied extensively; however, the exact mechanism 
of exosome packaging has not been fully clarified. Endosomal 
sorting complex required for transport (ESCRT)‑dependent 
and ESCRT-independent signals have been suggested to be 
associated with the sorting of exosomes (4). ESCRT consists 
of four complexes and their associated proteins: ESCRT-0 
identifies ubiquitinated proteins in the endosomal membrane, 
ESCRT‑I and ESCRT‑II direct endosomal membrane 
budding, and ESCRT‑III facilitates separation from the 
endosomal membrane (5,6). Numerous studies have revealed 
that the ESCRT‑0 protein hepatocyte growth factor‑regulated 
tyrosine kinase substrate (HRS) is necessary for exosome 
formation (7). ESCRT‑I members, including HeLa‑CIITA, 
MCF‑7 and tumor susceptibility gene 101 (TSG101), are also 
associated with another ESCRT‑independent mechanism 
of exosome biogenesis. Research has demonstrated that 
ALG‑2‑interacting protein X (Alix), an ESCRT‑III‑associated 
protein, promotes exosome biogenesis and, thus, intraluminal 
budding of vesicles in endosomes. Two proteins that are degra-
dation products of the ESCRT‑III complex, namely vacuolar 
protein sorting‑associated protein 4 (VPS4) and charged 
multivesicular body protein 4 (CHMP4), are also involved in 
exosome biogenesis (6). However, certain studies have demon-
strated that ESCRT‑independent signals were also involved 
in exosome biogenesis. These pathways may involve lipids 
including sphingosine-1-phosphate and four spin-enriched 
microdomains or heat shock proteins (6).

After exosomes are formed, they contain >14,000 biomol-
ecules, including proteins, RNAs and DNA (8). In the late 
1990s, the first ‘proteomic’ analyses of the protein composi-
tion of dendritic cell‑derived exosomes were performed (9). 
Biochemically, exosomes contain common marker proteins 
[e.g., tetraspanins, including cluster of differentiation (CD) 
9, CD10, CD26, CD53, CD63, CD81 and CD82], which are 
present in the exosomal membrane. Exosomes also contain 
Alix and TSG101, which are involved in the formation of 
MVBs. Two cytoplasmic heat shock proteins, Hsc70 and 
Hsp90, have also been observed in exosomes (3,10). mRNAs 
and microRNAs (miRNAs/miRs) were definitively identified 
in exosomes for the first time by Valadi et al (11). Thakur et al 
observed that exosomes from cancer cells contained 
double‑stranded DNA that could reflect the mutational status 
of the originated cells (12). It has also been demonstrated 
that RNA carried in exosomes may be delivered to target 
cells and that the expression of genes in target cells is influ-
enced by miRNAs contained in exosomes (13). In addition, 
mRNAs and miRNAs from different cells may be cell-type 
specific.

Exosomes may be secreted via the fusion of MVBs and the 
cell membrane, followed by the release of the contents of the 
MVBs (exosomes) into the extracellular environment. Alterna-
tively, the contents of MVBs are degraded through lysosomes. 
There are numerous studies on the secretion of exosomes, and 
various proteins associated with this process. Rab2b, Rab5a, 
Rab7, Rab9a, Rab11, Rab27a, Rab27b and Rab35, members of 
the Rab family of small guanosine triphosphatase (GTPase) 
proteins, have been demonstrated to accurately regulate the 
secretion of exosomes (14). Soluble NSF‑attachment protein 

receptor complexes are associated with the fusion of exosomes 
and the lipid bilayers (15). The accumulation of intracellular 
Ca2+ and intercellular pH has been observed to regulate the 
secretion of exosomes (16). In addition, heparanase over-
expression promotes the secretion of exosomes (17). When 
exosomes are secreted, some of them are taken up by target 
cells localized near the cell of origin, while other exosomes 
are delivered to more distant sites through the blood or other 
biological fluids.

3. Uptake and functions of exosomes

In recent years, there has been increasing interest in intercel-
lular communication via exosomes. A number of studies have 
attempted to determine the mechanism by which the cargo 
in exosomes is exchanged between exosomes and target 
cells. After exosomes are secreted, they may be taken up by 
the target cell via direct fusion with the plasma membrane, 
a receptor-ligand interaction, or endocytosis by phagocy-
tosis (Fig. 1) (18,19). A number of biological molecules have 
significant roles in this process. Heat shock protein (HSP) 70, 
which is contained in exosomes, mediates the communication 
of cardioprotective signals to the heart and then activates 
a pathway downstream of toll‑like receptor 4 (20). T‑cell 
immunoglobulin- and mucin-domain-containing molecule, 
intercellular adhesion molecule 1 and heparan sulfate proteo-
glycans also influence the uptake of exosomes (16).

After exosomes are taken up by target cells, they play 
a vital role in cells. The primary function of exosomes in 
intercellular communication is the transfer of biologically 
active proteins, lipids and RNAs (21). Several studies have 
demonstrated that exosomes play crucial roles under normal 
and pathophysiological conditions, including lactation, the 
immune response, neuronal function and infectious diseases, 
as well as in the development and progression of liver disease, 
neurodegenerative diseases and cancer (22). Immune stimula-
tion and tolerization are noted to be associated with exosomes; 
a previous study has suggested the potential use of exosomes 
in immunotherapy (23). Placental exosomes are involved in 
suppressive immunity during normal pregnancy (24). In addi-
tion, exosomes from human breast milk may contribute to the 
development of the infant immune system (23). The generation 
and progression of neurodegenerative diseases are also associ-
ated with exosomes. Exosomes transport proteins; thus, they 
may serve as a novel treatment approach or as new biomarkers 
in neurodegenerative diseases (24). In addition, exosomes 
have been promoted as specific therapeutic transporters for 
cardiovascular diseases (24), and are involved in the processes 
of infection biology, modulating the immune response and 
functioning as new acellular vaccines or infection biomarkers 
for infectious diseases (24). Additionally, exosomes are essen-
tial in the pathogenesis, diagnostics and therapeutics of liver 
diseases (24,25).

Increasing evidence has suggested that exosomes have 
significant roles in tumor growth, progression, metastasis 
and drug resistance (16). Tumor‑derived exosomes regulate 
the formation of new blood vessels, which support tumor 
angiogenesis, and exosomes have crucial roles in tumor cell 
proliferation (16). In addition, exosomes induce the forma-
tion of the pre‑metastatic niche, which regulates tumor 
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metastasis (26). Exosome‑mediated mechanisms also clearly 
contribute to tumor cell drug resistance (26). Certain exosomes 
have a significant influence on the ability of tumors to evade 
immune surveillance; however, exosomes from different 
sources may enhance the immune response (26). Except for 

the roles of exosomes in the pathogenesis of cancer, there are 
numerous studies on the use of exosomes as a new tool for 
cancer diagnosis and therapeutics (Table I).

In addition to the abovementioned studies, a number studies 
have examined the functions of exosomes (16,23,24,26); 

Figure 1. Biogenesis, contents, secretion and uptake of exosomes. Exosomes are small extracellular membrane‑enclosed vesicles that contain a variety of 
molecules, including proteins, DNA, mRNA and non‑coding RNA. Exosomes are initially formed by endocytosis to produce MVBs, and small membranous 
vesicles within the MVBs are created to produce exosomes. Exosomes contain RNAs/proteins of interest, including tetraspanins CD9 and CD63, cytosolic 
protein Rab family protein transmembrane molecules MHC I and MHC II, RNA and microRNAs. ESCRT‑dependent and ESCRT‑independent signals have 
been demonstrated to regulate the sorting of exosomes. When MVBs are produced, some of them fuse with the cell membrane and release their vesicles into 
the extracellular space to produce exosomes. Rab family members and soluble NSF‑attachment protein receptor complexes play a key role in the secretion 
of exosomes. After exosomes are secreted, they may be taken up by target cells via direct fusion with the plasma membrane, a receptor‑ligand interaction, or 
endocytosis by phagocytosis. MVB, multivesicular bodies; CD, cluster of differentiation; MHC, major histocompatibility complex; ESCRT, endosomal sorting 
complex required for transport; Alix, ALG‑2‑interacting protein X.

Table I. Functions of exosomes from different sources.

Conditions Outcome Reference

Normal conditions Cell-cell communication 21
 Removal of unnecessary protein from cell 22
 Immune function 23,24,26
Liver diseases Pathogenesis, diagnostics and therapeutics 23,25
Neurodegenerative diseases Transporting proteins, a novel treatment approach or new biomarkers 24
Neurodegenerative diseases New acellular vaccines or infection biomarkers for infectious diseases 24
Infectious diseases New acellular vaccines or infection biomarkers for infectious diseases 24
Cancer Growth 16
 Angiogenesis 16
 Progression 26
 Metastasis 26
 Drug resistance 26
 Manipulation of their microenvironment 26
 Immune response 26
 Diagnosis and therapeutics biomarker 16
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however, which specific class of molecules contained in 
exosomes influences the target cells remains unclear.

4. Stem cells

Stem cells are a class of pluripotent cells that self‑renew and 
differentiate into a variety of cell types. In this review, we 
focus on mesenchymal stem cells (MSCs) and cancer stem 
cells (CSCs).

MSCs, which originate from almost all vascularized organs 
and tissues, exhibit migratory capabilities and regenerative 
potential (27). MSCs may be isolated from various sources, 
including umbilical cord (UC), bone marrow (BM), liver, 
adipose tissue, multiple dental tissues and induced pluripotent 
stem cells (28,29). MSCs express CD44, CD73, CD90 and 
CD105, but not CD45, CD34 and CD14; these cells are charac-
terized by their ability to adhere to plastics under standard cell 
culture conditions (30). MSCs affect the surrounding micro-
environment by secreting factors, including growth factors, 
in an autocrine and paracrine manner. These cells decrease 
inflammation, promote angiogenesis, support tissue repair and 
suppress immunity (31). Since MSCs have the unique ability to 
home to damaged and cancerous tissue, they are of great interest 
in regenerative medicine and cancer therapy (32). MSCs also 
have a significant role in tumors. Previous studies have demon-
strated that human MSCs (hMSCs) promote tumor growth and 
angiogenesis, in addition to providing stromal support (33,34), 
through autocrine and paracrine signaling (35,36). Although 
there are numerous studies of MSCs, the underlying mecha-
nism of the correlation between MSCs and tumors remains 
largely unexplored. In recent years, a number of studies have 
noted that the interaction between MSCs and human tumor 
cells is associated with the exchange of biological material via 
EVs, including exosomes from MSCs (37-39). In the present 
review, MSC‑derived exosomes are highlighted, which have a 
significant role in tumors, in order to realize the mechanism of 
this interaction.

During the past decade, CSCs have been increasingly 
identified in a number of malignancies. CSCs have stem‑like 
characteristics and exhibit numerous features of embryonic 
or tissue stem cells (40). CSCs are associated with tumor 
initiation, metastasis, progression, invasion, recurrence and 
resistance to therapies. It is becoming widely accepted that 
CSCs play a central role in cancer cell biology; CSCs are 
essential for cancer initiation, formation and relapse. Previous 
studies have suggested that CSC-derived exosomes act as a 
vehicle to deliver genetic information and produce a favor-
able microenvironment for cancer development (41-43). In the 
present review, the role of CSC‑derived exosomes in cancer is 
summarized.

5. Roles of stem cell-derived exosomes in cancer

Previous studies have demonstrated that stem cells generate 
a number of exosomes that may act as paracrine mediators 
by exchanging genetic information (38,39). There are certain 
differences between stem cell (MSC and CSC)‑derived 
exosomes and other sources of exosomes. CSC‑derived 
exosomes contain several proteins, including TSG101, Rab 
GTPases, annexins and signal transduction molecules (e.g., 

14-3-3, a heterotrimeric G protein, and Alix), that are poten-
tially associated with their biogenesis, targeting and putative 
immunological function (44). In addition, MSC‑derived 
exosomes are amenable to immortalization without compro-
mising exosome production, and are not immunogenic. 
MSC-derived exosomes have intrinsic therapeutic properties 
that reduce tissue injury.

Tumor growth. Stem cell-derived exosomes have been 
noted to deliver gene regulatory information to target cells; 
this information regulates cell growth and angiogenesis by 
modulating a variety of cellular pathways. There have been 
a number studies into the use of stem cell-derived exosomes 
to promote tumor cell proliferation in order to analyze the 
effects of cellular interactions between stem cells and various 
cancer cells. In recent years, studies have demonstrated that 
MSCs have a significant role in regulating tumor growth and 
metastasis (40,45). EVs, including exosomes isolated from 
hMSCs, were first completely biochemically and molecularly 
analyzed by Vallabhaneni et al (46). These authors used 
co‑injection xenograft assays to demonstrate that the exosomes 
secreted from hMSCs support breast cancer cell prolifera-
tion and metastasis. They also observed that hMSC‑derived 
EVs contain a large amount of miR‑21 and 34a, which are 
tumor-supportive miRNAs, and ~150 different proteins, 
most of which are known tumor supportive factors, including 
platelet‑derived growth factor receptor‑β, tissue inhibitor of 
metalloproteinase (TIMP)‑1 and TIMP‑2. The presence of 
bioactive lipids, including sphingomyelin, was verified in 
EVs, including exosomes, through lipidomic assays. Further-
more, metabolite assays identified the presence of lactic 
acid and glutamic acid in the EVs. In addition, Zhu et al 
revealed that MSC-derived exosomes enhanced vascular 
endothelial growth factor (VEGF) expression in tumor 
cells by activating the extracellular signal‑regulated kinase 
1/2 (ERK1/2) pathway, which promotes tumor growth (47). 
These authors were the first to demonstrate that exosomes 
from MSCs have a role in promoting tumor growth that is 
similar to that of the MSCs themselves, thus providing new 
insight into the actions of MSCs in tumor development and 
progression in vivo. Hernanda et al observed that exosomes 
(or microvesicles) secreted by MSCs may also be associated 
with tumor promotion (48). Subsequently, Yang et al demon-
strated that the internalization of MSC‑derived exosomes was 
involved in the acquisition of new tumor cell properties by 
altering cellular functionalities and providing the capability 
to re‑organize the tumor microenvironment, which improves 
tumor growth (49). However, the effects of exosomes from 
different types of stem cells on cell proliferation may be 
completely different. Del Fattore et al demonstrated that 
BM‑ and UC‑MSC‑EVs (including exosomes) suppressed 
cell proliferation, while the opposite effect was observed 
with adipose tissue MSC‑EVs (including exosomes) (50). 
In addition, microvesicles from human BM‑derived MSCs 
inhibited tumor growth (51). Another experiment indicated 
that intra‑tumoral injection of exosomes derived from 
miR‑146‑expressing MSCs significantly reduced glioma 
xenograft growth in a rat primary brain tumor model (52). 
miR‑146 suppressed epidermal growth factor receptor 
(EGFR) expression through binding‑targeting EGFR 
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mRNA, and reduced in vitro growth, migration and invasion 
of cancer (53). These studies revealed that miRNAs may be 
packaged into MSC exosomes, delivered to target tumor cells 
in culture, and reduce glioma cells, which suggested that the 
export of specific therapeutic miRNAs into MSC exosomes 
represented a new treatment strategy for malignant glioma. 
Additionally, although exosomes derived from multiple 
myeloma BM‑MSCs have been noted to improve multiple 
myeloma progression, normal BM MSC‑derived exosomes 
reduce tumor promotion (54). Exosomes from human umbil-
ical cord Wharton's jelly MSCs reduced bladder tumor cell 
growth in vitro and in vivo (55). Thus, the effects of different 
sources of MSC‑derived exosomes are uncertain.

Based on the aforementioned studies, it is known that 
exosomes secreted from MSCs may result in cell-to-cell 
transfer of mRNA, miRNA and proteins (56). However, the 
exact roles and mechanisms of MSC-produced exosomes in 
tumor biology remain largely elusive.

Cancer stem cell-derived exosomes also have a notable 
influence on tumor growth. It is known that human gliomas 
have a population of stem cells with a tumor‑supporting ability; 
these cells are called glioma‑associated stem cells (GASCs). 
Bourkoula et al demonstrated that exosomes derived from 
GASCs support tumor growth and have a tumor‑supporting 
phenotype (42). In addition, EVs, including exosomes from 
glioblastoma‑derived CSCs, regulate tumor growth through 
chloride intracellular channel‑1 (CLIC1) (43).

Thus, exosomes released from stem cells affect tumor 
growth (Table II); however, further studies of stem cell‑derived 
exosomes are required.

Tumor angiogenesis. The formation of new blood vessels is 
necessary for tumor growth and development, and plays a 
significant role in tumor progression and metastasis. The 
process of angiogenesis is extremely complex; it generally 
includes vascular endothelial substrate degradation, vascular 
endothelial cell migration and endothelial cell proliferation, 
as well as the formation of vascular pipeline branches and 
a new basement membrane. Exosomes contain abundant 
angiogenic factors that regulate tumor angiogenesis. For 
example, MSC-derived exosomes promote tumor angio-
genesis by increasing VEGF expression in tumor cells and 
activating ERK1/2 and p38 mitogen‑activated protein kinase 
pathways (47). Other studies have demonstrated that placental 
MSC exosomes promote vascular network formation and 
improve microvascular endothelial cell migration in a concen-
tration- and oxygen-dependent manner (57). In addition, EVs 
released by adipose mesenchymal stem cells (ASCs) may 
contribute to ASC-induced angiogenesis (58). In cancer stem 
cells, exosomes derived only from CD105-positive cancer 
stem cells conferred an activated angiogenic phenotype to 
normal human endothelial cells, stimulating their growth and 
vessel formation (39). The results defined a specific source of 
cancer stem cell-derived MVs that contribute to triggering 
the angiogenic switch and coordinating metastatic diffu-
sion during tumor progression (39). The effects of exosomes 
from different types of stem cells on tumor angiogenesis are 
similar to the effects of stem cell-derived exosomes on tumor 
growth. However, their effect may be completely different. 
Lee et al observed that MSC-derived exosomes suppressed 

angiogenesis by transferring anti-angiogenic molecules and 
serving as a significant mediator of cell‑to‑cell communica-
tion within the tumor microenvironment (59). These authors 
noted that MSC‑derived exosomes inhibited tumor growth and 
angiogenesis in breast cancer by downregulating the expression 
of VEGF, which is a pro‑angiogenic factor that is frequently 
overexpressed in cancer (60). miR‑16, which is contained in 
MSC‑derived exosomes, reduces the VEGF expression level 
in 4T1 cells. It has been demonstrated that miR‑16 controls 
VEGF expression (61-63). In summary, exosomes are signifi-
cantly associated with tumor angiogenesis.

Tumor metastases. Exosomes released from stem cells also 
contribute to tumor metastasis. A number of the key steps 
in tumor invasion and metastasis are associated with MSCs, 
including facilitating epithelial-mesenchymal transition and 
the induction of stem‑like properties that allow cancer stem 
cells to increase their survivability through the circulation (64). 
A number of studies have examined the role of CSC- and 
MSC-derived exosomes in metastasis, tumor reseeding 
(self‑seeding) and the formation of a pre‑metastatic niche. 
Gastric cancer (GC) MSC‑derived exosomes were observed 
to deliver miR‑221 to HGC‑27 cells, which facilitated the 
proliferation and migration of these cells (65). In addition, 
MSC‑derived exosomes promoted Wnt signaling pathway 
activation to facilitate the migration and proliferation of the 
breast cancer cell line MCF‑7 (66). The Wnt signaling pathway 
is characterized by the nuclear accumulation of β-catenin, 
which is involved in not only embryonic development but also 
tumor development (66). As for CSCs, Wolfson et al noted 
that exosomes derived from ductal carcinoma in situ (DCIS) 
stem‑like cells contained lower levels of miR‑140 compared 
with exosomes derived from a DCIS whole cell population, 
which could improve tumor growth and metastases (67). 
Dysregulation of miR-140 has an important role in regulating 
the transition of DCIS to invasive ductal carcinoma (IDC) (67). 
As the tumor grade increases, miR‑140 is progressively down-
regulated and plays a significant role in the stem cell regulatory 
pathways. Downregulation of miR‑140 leads to higher CSC 
populations and breast cancer progression by removing tumor 
suppressive pathways (67). Other studies have characterized 
the exosomal exchange of miRNAs between DCIS stem‑like 
cells and target cells; exosomes from DCIS stem‑like cells 
were observed to enhance the migratory capacity via several 
miRNAs, including miR‑140, miR‑29a and miR‑21, which 
are differentially expressed in the exosomes (68). These find-
ings suggest that CSC-derived exosomes may improve tumor 
metastases.

However, there are certain contrary findings. Lee et al 
demonstrated that MSC‑derived exosomes transferred specific 
miRNA mimics in a gap junction‑dependent and contact‑inde-
pendent manner. miR‑124 and miR‑145 mimics vitally 
decrease the luciferase activity of their respective reporter 
target genes, including small carboxy-terminal domain 
phosphatase 1 (SCP‑1) and sex‑determining region Y‑box 2 
(Sox2), and decrease the migration of glioma cells and the 
self‑renewal of glioma stem cells (69). Additionally, Ono et al 
noted that breast cancer BM‑MSC‑derived exosomes have 
more varied miRNAs than adult fibroblast‑derived exosomes. 
BM‑MSC‑derived exosomes overexpress miR‑23b, which 
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induces a dormant phenotype through suppressing a target 
gene, myristoylated alanine‑rich C‑kinase substrate, which 
encodes a protein that promotes cell cycling and motility (70). 
These findings suggest that exosomal transfer of miRNAs 
from the BM may promote breast cancer cell dormancy in a 
metastatic niche. Another study has also presented the same 
result; these authors observed that the delivery of miR-143 via 
MSC‑derived exosomes significantly reduced the migration of 
osteosarcoma cells (71).

Taken together, these findings reveal that stem cell‑derived 
exosome-mediated intercellular communication may be an 
essential mechanism for tumor metastasis.

Tumor therapy. Personalized medicine is used to identify 
patient- and tumor-specific factors that are useful for the 
identification of therapeutic options and the prognostic strati-
fication of patients in order to maximize effectiveness and 
minimize treatment‑associated toxicity (72). To achieve this 
goal, exosomes from stem cells, possibly MSCs, may provide 
a new approach to personalized medicine. Over the past few 
years, the potential of using MSCs in regenerative medicine 
has received increasing attention, and the use of MSCs in 
anticancer therapy has been extensively studied. A previous 
study suggested that MCS‑derived exosomes may have a key 
role in not only regenerative medicine to repair damaged 
tissue but also tumor therapy (73). MSCs may communicate 
with cancer cells via gap junctional intercellular communica-
tion and via the secretion of exosomes (74,75). Chen and Lim 
revealed that intercellular communication between MSCs 
and tumor cells could be promoted by secreting micropar-
ticles, including exosomes, through the exosomal transfer of 
miRNAs (76). Additionally, in recent years, miRNAs have 
emerged as potential anti‑cancer agents. Although miRNAs 
are an effective therapeutic method for cancer, the effective-
ness of this approach requires targeted delivery. Exosomes 
work as delivery vehicles for nucleic acids or drugs; this novel 
approach has gained increasing interest due to the effective 
biocompatibility and biodistribution of exosomes. In addition, 
stem cells have an infinite capacity for reproducible produc-
tion of exosomes as drug delivery vehicles, which may be 
essential for tumor therapy. Lim et al observed that exosomes 
transmit miRNAs from BM stroma to breast cancer cells in 
tumor cell quiescence. This study revealed that the transfer 
of miRNAs from BM stroma to breast cancer cells through 
exosomes may have a significant role in the dormancy of BM 
metastases through exosomes (77). Munoz et al revealed that 
MSC‑derived exosomes could deliver anti‑miR‑9, which blocks 
miR‑9, to glioblastoma multiforme (GBM) cells. Anti‑miR‑9 
was involved in the expression of the drug efflux transporter 
P‑glycoprotein, reversed the expression of the multidrug 
transporter, and sensitized the GBM cells to temozolomide, 
which increases cell death and caspase activity (78). These 
data demonstrated a potential role for MSCs in the functional 
delivery of synthetic anti‑miR‑9 to reverse the chemoresistance 
of GBM cells. Boelens et al revealed that stromal cell-derived 
exosomes stimulated the pattern recognition receptor retinoic 
acid‑inducible gene I to activate signal transducer and activator 
of transcription 1-dependent antiviral signaling and activate 
NOTCH3 in breast cancer cells to expand breast cancer 
cell subpopulations that are adept at resisting therapy and 

reinitiating tumor growth. These findings suggest a possible 
novel use of MSCs in the development of new ‘biotech drugs’ 
with increased efficacy and homing capacity (79). In addi-
tion, miR‑122‑modified adipose tissue‑derived MSCs secrete 
exosomes to increase chemosensitivity (80). MSC‑derived 
exosomes effectively silence the polo‑like kinase 1 (PLK‑1) 
gene by transporting PLK‑1 small interfering RNA to bladder 
cancer cells (81). Pascucci et al were the first to demonstrate 
that MSCs act as a factory to develop drugs with a higher 
cell‑target specificity through packaging and delivering active 
drugs, and suggested the possibility of using MSCs (82). 
These authors noted that paclitaxel (PTX) is incorporated by 
MSCs and released in exosomes. PTX is delivered to target 
cells and inhibits tumor growth through a simple procedure of 
exposing the cells to an extremely high concentration of PTX. 
Fuhrmann et al demonstrated that EVs, including exosomes, 
loaded with hydrophilic porphyrins induced a stronger 
phototoxic effect than free drugs in a cancer cell model; 
this approach may significantly improve cellular uptake and 
the therapeutic effect of phototoxic porphyrins in vitro (83). 
Significantly, these methods are simple and directly applicable 
to other drugs and vesicles, thus providing a new approach to 
cancer therapy.

EVs from other stem cells also have a potential role in tumor 
therapy. Fonsato et al demonstrated that EVs derived from 
human adult liver stem cells may inhibit HepG2 hepatoma and 
primary hepatocellular carcinoma cell growth and survival 
(Table III) (84). In summary, stem cell‑derived exosomes have 
a significant role in anti‑cancer treatment (Fig. 2).

Tumor biomarkers. Stem cell-derived exosomes provide 
an enriched source of biomarkers as they contain bioactive 
molecules that reflect the pathological state of the origin 
cells. Recently, CSCs have been used in cancer diagnostics 
and treatment. Exosomes released from rotenone‑treated 
prostate and breast CSCs have specific biomolecular charac-
teristics, including the expression of several exosomal markers, 
including CD9, CD63, CD81, Alix and TSG101. Thus, the 
release of exosomal markers may be highly relevant for 
biological activity and may be used as potential targets (44). In 
addition, GC‑MSC‑derived exosomes contain miR‑221, which 
is a potential new biomarker for tumor diagnosis (65).

Taken together, these findings suggest that the constituents 
of exosomes deliver information from cell to cell (delivering 
proteins and nucleic acids), and may be used as a biomarker 
for targeted cancer therapy. There are a number of studies on 
the use of MSCs in regenerative medicine and anti-cancer 
treatments (85-87). Over the past few years, these studies have 
raised high expectations. However, safety concerns and tight 
regulations hamper their practical use in clinical settings. The 
use of stem cell-derived exosomes may have numerous advan-
tages compared with cell‑based approaches, and may improve 
the safety of MSCs in tumor therapy. However, further experi-
ments are required to demonstrate the safety and feasibility of 
stem cell‑derived exosomes.

6. Conclusion

In conclusion, studies have demonstrated that exosomes 
derived from various cell types, including stem cells, may 



ONCOLOGY LETTERS  13:  2855-2866,  2017 2863

act as mediators of cell‑to‑cell communication. The role of 
stem cell-derived exosomes in tumor development has been 
intensively studied due to the influence of exosomes on 
tumors and the significant therapeutic potential of stem cells. 

MSC- and CSC-derived exosomes contain different protein 
and RNA profiles compared with their donor cells. Exosomes 
transfer their molecular contents, including numerous types 
of special proteins and RNA, between cells, thus influencing 
tumor behavior and proliferation. In addition, exosomes carry 
a number of the desirable attributes of a synthetic liposome 
vehicle, including the capacity to carry hydrophobic drugs, 
and are effective and safe drug delivery vehicles. In the present 
review, several aspects of stem cell‑derived exosome biology in 
cancer, which has the ability to communicate with surrounding 
and distant cells, are discussed. MSC‑ and CSC‑derived 
exosomes have a significant role in synergistically influencing 
cancer development, metastasis, progression and drug resis-
tance. Although a number of studies have examined the role 
of stem cell-derived exosomes in cancer (46-49), the exact 
mechanisms of the effects of stem cell-derived exosomes on 
cancer have been largely unexplored and untested. The utility 
of exosomes as a delivery vehicle is also unclear. Additional 
studies of stem cell‑derived exosomes are required to deter-
mine their roles in the pathogenesis of cancer and to provide a 
new tool for cancer diagnosis and therapeutics.
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