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SUMMARY 

Confined nematics are a natural setting to study aspects relating to phenomenology 

of symmetry breaking, evolution and dynamics of topological defects. In this study we 

highlight the interplay of the surface-like elastic constants with the phenomenology 

mentioned above. We exploit nematics confined to cylinders to study a spontaneous 

reflection symmetry breaking phase transition. The role of saddle-splay elasticity in driving 

this transition is described in detail. We also confine nematics to rectangular geometries 

which reveal novel director and defect configurations. We uncover surprising aspects 

regarding the scaling of surface-like elastic constants by studying morphological 

transitions of spherical nematic droplets. We exploit a monodomain- like configuration and 

the director arrangement in tactoids to shed light on the physics governing the nematic- 

biphasic transition of lyotropic chromonic liquid crystals. We also confine nematics to 

toroidal geometries with radial anchoring to delineate the coupling of geometry with the 

director configuration. Finally, the role of differential polarizability is demonstrated in the 

accurate determination of order parameters of liquid crystals. 
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CHAPTER 1. INTRODUCTION 

 Nematic liquid crystals  

A crystalline solid has all its constituents located in a fixed periodic array and has 

both translational and orientational order. In complete contrast, an isotropic fluid phase has 

neither translational nor orientational order. Besides the conventional solid and isotropic 

fluid phases, there can exist other interesting phases of matter which display intermediate 

symmetry. The nematic liquid crystalline phase is a particularly exciting example of the 

said behavior 1,2. Nematic liquid crystals are made of rod like molecules and possess 

orientational order that stems from the anisotropic shape and interactions of the constituent 

molecules. However, the centers of masses of these molecules have no translational order. 

Because of the intermediate symmetry, nematics possess several interesting properties. For 

instance, similar to fluids, nematic liquid crystals cannot resist a shear deformation, while 

the anisotropic shape and interactions result in having direction dependent properties like 

crystalline solids. These unique characteristics make liquid crystals well suited for a host 

of technological applications. 

In addition to their technological relevance, nematic liquid crystals are a fascinating 

subject for testing and understanding the underlying physics relating to condensed matter. 

Identifying the symmetry (or broken symmetry) is a powerful way of understanding and 

predicting the behavior of a phase. Consider the phase transition from an isotropic phase 

to a nematic liquid crystalline phase.  Clearly, the orientational symmetry of the isotropic 

phase is broken as the system undergoes a phase transition to the nematic phase. The order 

parameter characterizes the order in the phase of lower symmetry. Naturally, for nematic 
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liquid crystals the order parameter relates to the orientational distribution of the molecules 

in the system.  With an appropriately chosen order parameter, it is possible to expand the 

free energy in the vicinity of the phase transition in powers of the order parameter1. The 

phenomenological approach of Landau can be used to describe the phase transition of many 

condensed matter systems. However, nematic liquid crystals happen to be one most 

convenient material to perform experiments which test several of these theoretical 

predictions. Further, with the help of appropriate phenomenological models, it is possible 

to predict the scaling behavior of several important physical characteristics of the phase. 

For instance, the scaling of the surface elastic constants with order parameter for nematics 

liquid crystals is an avenue that has not been addressed rigorously. We use experiments on 

confined liquid crystals as means to address this fundamental question and others of similar 

spirit.    

Further, nematic liquid crystals are also a convenient playground to study 

topological defects. For ordered media, defect is a region where it is not possible to define 

the order parameter locally3.  The distinguishing aspect of topological defects from other 

kinds of defects in an otherwise uniform medium is that, it is not possible to remove a 

topological defect by simple modifications to the local properties of the system. Herein lies 

the origin of the term topological.  Homotopy theory provides the natural language for 

using the order parameter space to describe and classify defects in ordered systems 3,4. In 

addition to revealing the symmetry of the phase, dynamics of defects provide wealth of 

information. Further, the study of dynamic evolution of defects produced in symmetry 

breaking phase transitions is a central problem in cosmology, particle physics and 

condensed matter physics5.   
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Confined nematics are a natural setting to study both sets of phenomenology 

described above. We exploit nematics confined to cylinders to study a spontaneous 

reflection symmetry breaking phase transition. We also explore the dynamics of the novel 

defect configurations thus created. Further, we uncover surprising aspects regarding the 

scaling of surface-like elastic constants by studying the anchoring transitions of spherical 

nematic droplets. We also confine nematics to rectangular and toroidal geometries and 

study the coupling of geometry with the director configuration. 

1.1.1 Confined Nematics 

When nematic liquid crystals are confined to flat boundaries with planar boundary 

conditions, the ground state is a trivial configuration, where all molecules point along a 

specific direction, referred to as the easy axis of the director.  Confinement of nematics to 

curved geometry results in a much richer phenomenology.  The chosen ground state 

depends on the delicate balance between elastic, surface and external fields. Further, 

confined nematics like any other ordered material need to satisfy certain topological 

constraints depending on the nature of confinement. For instance, a crystalline lattice made 

of spherical particles covering the surface of a sphere cannot maintain its six-fold 

hexagonal close packing order all through the surface. In order to fill space, there need to 

be a minimum of 12 spheres that have five nearest neighbors in place of six6. Similarly, 

when nematics liquid crystals are confined to a sphere, there will be regions on the surface 

where the nematic director cannot be defined. These regions are termed as topological 

defects. The added requirement of satisfying topological constraints in addition to 

minimizing the free energy contributes to the added richness of the phenomenology of 

confined nematics. Further, confined nematics are excellent candidates for the 
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development of opto-electronic materials. Hence, there is added impetus for understanding 

the underlying physics of nematics under confinement.  

 Nematic elasticity 

Governed by anisotropic interactions, the constituent molecules of a nematics tend 

to align parallel to each other along a common axis. The direction of the axis is described 

by a unit bivector n, known as the director. Any deformation of the uniform undistorted 

state costs energy. It is possible to construct a phenomenological continuum theory 

assuming weak deformation fields, i.e the deformations happen at a much larger length 

scale as compared to the molecular length (∇𝑛 ≪ 1𝑎), where a is the molecular length.  

1.2.1 Frank’s theory of elasticity 

In his seminal work, Frank developed nematic elasticity along the lines of Hooke’s 

description for solids7. The free energy density is treated as a quadratic function of the 

curvature strains and the analogues of the elastic moduli (referred to as Frank’s elastic 

constants) appear as coefficients. The unit bi- vector L is chosen to represent the direction 

of preferred orientation in the neighborhood of any point. A local co-ordinate system is 

introduced with the z axis parallel to L at the origin. For this reference axis, the six 

components of the local curvature are: 

“splay”: 𝑠1 = 𝜕𝐿𝑥𝜕𝑥  ,  𝑠2 = 𝜕𝐿𝑦𝜕𝑦 ; “twist”: 𝑡1 = − 𝜕𝐿𝑦𝜕𝑥  ;  𝑡2 = 𝜕𝐿𝑥𝜕𝑦 ; “bend”: 𝑏1 = 𝜕𝐿𝑥𝜕𝑧  ;  𝑏2 = 𝜕𝐿𝑦𝜕𝑧  

 

(1.1) 
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 Figure 1.1 illustrates these elementary deformations. Expanding the components of 

the orientation vector to the leading order in the deformation terms, we get:   

 𝐿𝑥 = 𝑎1𝑥 + 𝑎2𝑦 + 𝑎3𝑧 + 𝑂(𝑟2); 
 𝐿𝑥 = 𝑎4𝑥 + 𝑎5𝑦 + 𝑎6𝑧 + 𝑂(𝑟2);      (1.2) 

 𝐿𝑧 =  1 + 𝑂(𝑟2) 

Where, 𝑠1 = 𝑎1, 𝑡2 = 𝑎2, 𝑏1 = 𝑎3, −𝑡1 = 𝑎4, 𝑠2 = 𝑎5,  𝑏2 = 𝑎6; 

 

Figure 1.1 Splay, twist and bend deformations in the local co-ordinate frame 

The free energy density can then be expressed as:   

 𝑔 = 𝑘𝑖𝑎�̀�  +  12 𝑘𝑖𝑗𝑎�̀�𝑎�̀�        (1.3) 

The coefficient matrix, which consists of 36 terms, reduces to 4 terms using arguments of 

symmetry. The free energy density reads:  

 𝑔 = 12  𝑘11(𝑠1 + 𝑠2)2 + 12  𝑘22(𝑡1 + 𝑡2)2 + 12  𝑘33(𝑏1 + 𝑏2)2 − (𝑘22 +𝑘24)(𝑠1𝑠2 + 𝑡1𝑡2)         (1.4) 
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Where, K11, K22, K33 are the elastic constants corresponding to the bulk splay, twist 

and bend terms, while K22+K24 is the elastic constant associated with the saddle-splay 

contribution. 

Clearly, Frank’s model is one of phenomenological nature. Prior to Frank’s work, 

Oseen had developed a model for liquid crystal elasticity using a molecular approach. The 

molecular model of Oseen and later work by Nehring and Suape include another term in 

the description of liquid crystal elasticity to the lowest order8. With the mixed splay-bend 

included, the elastic description of nematics truncated to the second order of deformation 

terms looks like:   

𝐹 = 12 ∫𝑑𝑉[𝐾11(∇ ∙ 𝒏)2 +𝐾22(𝒏 ∙ ∇ × 𝒏)2 + 𝐾33(𝒏 × ∇ × 𝒏)2 − (𝐾24 + 𝐾22)∇ ∙ (𝒏(∇. 𝒏) + 𝒏 ×∇ × 𝒏) + 𝐾13(∇ ∙ (𝒏(∇. 𝒏)) ]         (1.5) 

1.2.2 Description of Surface-like elastic constants in the liquid crystal literature 

Although derived from the same principles as the bulk elastic constants, the K24 

and K13 contributions to the free energy have often been neglected. We note that both these 

terms are pure divergence terms. It is possible to use Gauss’s theorem to represent the 

volume integral of the divergence of these two terms as surface integrals. For this reason 

K24 and K13 have been referred to as surface elastic constants. This nomenclature is 

misleading as the deformations that these two elastic constants denote are truly bulk 

deformations which under the appropriate conditions can also be evaluated with a surface 

integral. For this reason, it is more appropriate to label them as “surface-like” elastic 

constants 8. 

A common argument used to justify neglecting the two terms in the liquid crystal 

literature is that the gradients in the director field were assumed to be negligible when 

approaching the infinitely removed boundary. However, the important distinction is that, 
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the divergence term has to be calculated all throughout the bulk. Furthermore, unlike other 

fields of condensed matter, boundaries are crucial in understanding the behavior of liquid 

crystals and they are seldom infinitely removed from the bulk.  

Consider a spherical droplet with radial boundary conditions with the director being 

defined as nr=1, n = 0, nØ=0. We write the individual deformation terms (non-zero) of the 

Free energy contribution:  

For this configuration; (∇. 𝑛)2 = 1𝑟2  𝑎𝑛𝑑 ∇. (n(∇. 𝑛)) = 1𝑟2 

Hence, 𝐹𝑟𝑎𝑑𝑖𝑎𝑙 = 4𝜋𝑅(2𝐾11 − (𝐾24 + 𝐾22) + 2𝐾13)     

 Looking at the expressions for the individual contributions and the overall free 

energy, we see that, not only are the contributions of the surface-like terms non-negligible 

but they also have the same functional form as the splay contribution. Clearly, the surface-

like contributions cannot be neglected no matter how small or how large the droplet’s size 

(R).  

 In this thesis, we focus on the saddle-splay elastic contribution to the director 

organization in several different confining geometries. Recent experiments that have 

demonstrated the pivotal role played the saddle-splay contribution in the phenomenology 

pertaining to toroidal confinement 9 has grabbed our attention towards this subject as well 

as that of several others 10-13.  

1.2.3 Contribution of the saddle-splay term for the case of planar anchoring 
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We have seen in the description of Frank’s elasticity in the section above that the 

saddle-splay term in the local frame of reference is given by: −(𝑘22 + 𝑘24)(𝑠1𝑠2 +𝑡1𝑡2). For the case of planar anchoring, it is possible to re-express the saddle- splay term 

in terms of the principal curvatures of the confining surfaces. This treatment brings about 

the coupling of the saddle-splay term with the geometry of the confining boundary in a 

intuitive form. The mathematical treatment is shown below 11: 

We start from the expression of Frank’s free energy 

𝐹 = 12∫𝑑𝑉[𝐾11(∇ ∙ 𝒏)2 +𝐾22(𝒏 ∙ ∇ × 𝒏)2 + 𝐾33(𝒏 × ∇ × 𝒏)2 − (𝐾24 + 𝐾22)∇ ∙ (𝒏(∇. 𝒏) + 𝒏 × ∇ × 𝒏)] 
Contribution of the saddle- splay term is:  

𝐹24 = −12 (𝐾24 + 𝐾22)∫𝑑𝑉[ ∇ ∙ (𝒏(∇. 𝒏) + 𝒏 × ∇ × 𝒏)] 
Converting it to a surface integral using Gauss’s theorem:  

𝐹24 = −12 (𝐾24 + 𝐾22)∫𝑑𝑆[ ν ∙ (𝒏(∇. 𝒏) + 𝒏 × ∇ × 𝒏)] 
Where, ν is the unit normal vector of the surface. For the case of planar anchoring, ν. 𝒏 =0, so the first term drops out leaving us with:  

𝐹24 = −12 (𝐾24 + 𝐾22)∫𝑑𝑆[ν ∙ (𝒏 × ∇ × 𝒏)] 
Consider 𝒏 × ∇ × 𝒏: 

(𝑛 × ∇ × 𝑛)𝑎 =∈𝑎𝑏𝑐 𝑛𝑏 ∈𝑐𝑝𝑞 𝜕𝑝𝑛𝑞 = (𝛿𝑎𝑝𝛿𝑏𝑞 − 𝛿𝑎𝑞𝛿𝑏𝑝)𝑛𝑏𝜕𝑝𝑛𝑞 = −𝑛𝑏𝜕𝑏𝑛𝑎  
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Also, from product rule 

ν𝑏𝜕𝑎𝑛𝑏 + 𝑛𝑏𝜕𝑎ν𝑏 = 𝜕𝑎(ν𝑏𝑛𝑏) = 0  

So, we can re-write the contribution of 𝐹24 as:  

𝐹24 = − 12 (𝐾24 + 𝐾22) ∫ 𝑑𝑆[ν ∙ (𝑛. ∇)𝑛]   
Defining the extrinsic curvature tensor as: 

𝐿𝑖𝑗 = 𝑒𝑖. (𝑒𝑗 . ∇)ν , where e1 and e2 are the directions of principal curvatures k1, k2. 

𝐹24 = − 12 (𝐾24 + 𝐾22) ∫ 𝑑𝑆𝑛𝑖𝐿𝑖𝑗𝑛𝑗  ; 

From the definition of the principal curvature we have 

𝐹24 = − 12 (𝐾24 + 𝐾22) ∫𝑑𝑆(𝑘1𝑛12 + 𝑘2𝑛22)  

 Hence, the saddle-splay contribution can be expressed as 𝐹24 = − 12 (𝐾24 +𝐾22) ∫ 𝑑𝑆(𝑘1𝑛12 + 𝑘2𝑛22), where k1 and k2 are the principal curvatures at a point on the 

surface and n1 and n2 the director components along the corresponding directions. Figure 

1a illustrates the principal curvatures of a cylinder with the help of a schematic.  
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Figure 1.2 Schematics illustrating: (a) two principal curvatures of a cylinder (b) axial 

configuration (c) doubly-twisted configuration 

  This representation of saddle- splay contribution sheds tremendous insight on the 

role played by saddle splay when the two principal curvatures are different. For instance, 

a cylinder has: n1 = n and n2 = nz; hence k1 = 1/R and k2 = 0. As a result, for the case of 

cylindrical geometry, the integral of 𝐹24 is minimized when the director at the surface is 

along the e  direction as opposed to an axial configuration wherein the director points 

along the z-axis (ez). The axial configuration is illustrated in Figure 1.2b. Clearly, the 

contribution of the saddle-splay term for the axial configuration is zero. 

There is a more intricate configuration for liquid crystals confined to a cylinder, 

which involves a significant contribution of the saddle-splay term. This configuration is 

the doubly-twisted configuration, which is illustrated in Figure 1.2c. The simplest 

representation of the director profile in this configuration is: nr=0, n =  𝑟𝑅, nz= √1 − 𝑛𝜃2 , 

where,  is a measure of the amount of twist. Recent experiments on liquid crystals 

confined to toroids clearly demonstrated the preference of the doubly-twisted director 

configuration over axial or concentric configurations 9,11. For the simple ansatz described 

above, the contribution of the saddle-splay terms increases monotonously with increasing 
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twist angle (increasing twist angle implies a larger n component at the surface).  Looking 

at the local frame of reference too, this configuration involves twist deformation along two 

perpendicular planes (𝑡1𝑡2 ≠ 0). Hence, the contribution of saddle-splay term increases 

with increasing twist angle and under the right conditions this structure can be the chosen 

ground state over the axial configuration 9,12. We describe in greater detail the experimental 

finding of the doubly-twisted configuration for nematics confined to cylinders in Chapter 

2.  

 Organization of the thesis 

Having motivated the likelihood of the prominent role that the surface-like elastic 

constants might play under the appropriate confinement, we show the results pertaining to 

the cylindrical confinement of lyotropic chromonic liquid crystals (LCLCs) in Chapter 2. 

Saddle-splay elastic constant plays a key role in determining the ground state of LCLCs 

under cylindrical confinement. In Chapter 3 we continue the confinement studies of 

LCLCs. We explore the nematic organization in rectangular and square capillaries. The 

confinement studies on LCLCs reveal interesting physics pertaining to the aggregation 

behavior of these materials. This aspect is explored in Chapter 4 where Raman scattering 

measurements of order parameter and optical observations of tactoids reveal rich 

phenomenology relating to the nematic-isotropic transition of these materials. In Chapter 

5, we perform experiments seeking to test an often neglected prediction of 

phenomenological theories pertaining to the scaling of the surface-like elastic constants. A 

surprising transition from bipolar to radial morphology is observed when nematics 

emulsions are heated sufficiently close to transition temperature. We explain this transition 

by appealing to the contrasting scaling of the saddle-splay elastic constant in comparison 
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to the bulk terms. Chapter 6 continues the theme of confinement experiments on nematics, 

but this time in the unique geometry of a torus. We study normally anchored nematic tori 

and discuss the coupling of the unique geometric features of the torus with the director 

organization. At several places in the thesis, we utilize Raman scattering measurements to 

determine the order parameters of the nematic phase. Chapter 7 discusses the role of a 

molecular property called differential polarizability in obtaining reliable data using this 

technique. We have used LCLCs as the choice of nematic phase at various junctures in this 

thesis to ask and try to answer some fundamental questions. Chapter 8 however discusses 

the aspect of aligning LCLCs for using them in technological applications. We use a 

previously reported extension of Berreman’s theory to discuss the ideal experimental 

profiles of tessellated patterns which are commonly used for aligning liquid crystals. 
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CHAPTER 2. ROLE OF SADDLE-SPLAY ELASTICITY IN 

DETERMINING THE GROUND STATE OF CHROMONIC 

LIQUID CRYSTALS CONFINED TO CYLINDRICAL 

CAPILLARIES 

 After the discussion on the role of saddle-splay elastic constant on confined 

nematics and in particular with respect to cylindrical confinement, we discuss the 

experiments pertaining to the cylindrical confinement of lyotropic chromonic liquid 

crystals (LCLCs) in this chapter. 

 Introduction 

LCLCs are composed of plank like molecules with a poly-aromatic core and polar 

peripheral groups. The poly-aromatic cores stack face to face governed by - 

interactions14,15. At low concentrations the aggregates are short and orient randomly. As 

the concentration increases the aggregates increase in length and eventually form a nematic 

phase. Although Onsager’s excluded volume theory would be the intuitive way to describe 

the isotropic-nematic transition of these lyotropic systems, it has been found that the critical 

concentration of isotropic-nematic transition is much lower than that predicted by 

Onsager16. Several models like Y-stacks and slip stacks have been suggested to address the 

discrepancy17. Another curious aspect of these phases is the fact that the twist elastic 

constant (K22) is an order of magnitude lower than the splay (K11) and bend (K33) 

constants18,19. In this regard, LCLCs bear striking similarity with several other polymeric 

nematics whose K22/K11 and K22/K33 are of the same order of magnitude as LCLC’s20-23. 

This seems to be a feature common to nematics whose constitutent nematogens are 
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composed of semiflexible units.  These fascinating features of LCLCs distinguish them 

from small molecule thermotropic nematics, thus conferring on confined LCLCs new and 

richer phenomenology.  

    Spontaneous reflection symmetry breaking has been observed previously in 

tactoids of disodium cromoglycate (DSCG)24. Competition of the twist and splay 

deformation energies has been used to describe the emergence of chirality of the twisted 

tactoids. Such an argument is particularly valid in the case of LCLCs due to the twist elastic 

constant being an order of magnitude smaller than the splay elastic constant. Similarly, 

spherical droplets of Sunset Yellow FCF (SSY) with planar boundary conditions also break 

reflection symmetry by relieving the costly splay close to the surface defects (boojums) 

with a twist deformation25. In both of these cases any permitted ground state with or without 

twist involves a deformation of the director. The uniqueness of our work lies in the fact 

that when confined to a cylindrical geometry with planar anchoring, we uncover a 

configuration with significant distortions, even though there exists a configuration free of 

director deformations, the axial configuration, where the director lies along a cylindrical 

axis. We demonstrate that the often-neglected saddle-splay (K24) contribution is crucial in 

stabilizing the observed twisted director profile in cylindrical capillaries. Provided there is 

sufficient anisotropy between the saddle-splay and the twist elastic constants, the saddle-

splay term not only screens the twist but also stabilizes the director deformation by 

decreasing the free energy of the twisted configuration below that of the deformation-free 

structure.  
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Figure 2.1 Schematics of director configurations in a cylindrical capillary: (a) Axial 

and (b) Double twist. 

 Director configuration in LCLCs confined to cylinders 

2.2.1 Polarized optical microscopy observations 

Consider an axial director profile as illustrated in Figure 2.1a. For this director 

configuration the intensity profile of the transmitted light is of the form: 𝐼 ∝ 𝑠𝑖𝑛2(2∅𝑝), 

where ∅𝑝 is the angle between the director and the polarizer. The intensity is a minimum 

when the director is either parallel or perpendicular to the incident polarization, 

corresponding to complete extinction of the light. The maxima in the intensity correspond 

to the cases where the director makes an angle of 45o with respect to the incident 

polarization direction. POM images of two angular positions of a capillary filled with 

DSCG are shown in Figure 2.2a and 2.2b, which correspond to the long axis of the capillary 

being parallel and at 45o with respect to the incident polarization direction, respectively. It 

should be noted that neither one of these situations display the expected extinction of the 
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incident light. This truly remarkable feature points to the fact that we must have a twisted 

structure in place of an axial one.  In an axial configuration, the image corresponding to 

Figure 2.2a would be one of complete extinction of light. Instead we see that the intensity 

in both Figures 2.2a and 2.2b are comparable. This implies that the plane of polarization 

of the incident light is rotated by the liquid crystal and upon exiting the capillary, it is at an 

angle to the analyzer that is not 0o or 90o.  This is a classic signature of twist. A doubly 

twisted configuration, which could explain the observed experimental images is illustrated 

in Figure 2.1b. The director of this configuration is axial at the center of the cylinder and 

twists progressively as it approaches the surface.  We confirm the anchoring at the surface 

of the cylinder is planar by studying the tactoids that nucleate when the LCLC is in the 

biphasic region. The inset of Figure 2.2a shows a bipolar tactoid, which serves as a 

confirmation that the surface anchoring is planar. 
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Figure 2.2 (a, b) Polarized optical microscope images of DSCG in a cylindrical 

capillary. Scale bar is 100 m. The inset shows a bipolar tactoid of DSCG nucleating 

on the capillary wall in the biphasic temperature region under monochromatic light 

of 551 nm. (c, d) Simulation images of double twist configuration. (e) Intensity profiles 

of the cross sections of Fig 2(a) (black line) and 2(b) (red line). (f) Intensity profile of 

the cross section of Fig 2(c) (black line) and Fig 2(d) (red line).  

2.2.2 Jones Matrix simulations of doubly-twisted structure 

To test the hypothesis of double twist we perform Jones matrix simulations with a 

simple doubly twisted director ansatz. Jones matrices quantify the change in the 

polarization state as it traverses the sample. The director field is specified by n=nrer + 

ne+ nzez where er, e and ez are the orthonormal vectors in cylindrical coordinates, with 

nr=0, n =  𝑟𝑅, nz= √1 − 𝑛𝜃2 . The twist parameter  determines the amount of twist in the 
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system; =0 corresponds to an axial configuration. r is the radial distance from the center 

of the circular cross-section and R is its radius. Indeed, the simulated POM textures 

conform to the experimental observations that the light is not extinguished when the 

capillary long axis is parallel to the polarization of the incident light, which is evident from 

Figure 2.2c. Further we note that the intensity when the angle between the incident 

polarization direction and the cylindrical long axis is 45o, I45, is always greater than the 

intensity when the angle between the incident polarization and the cylindrical long axis is 

0o, I0, which is also in agreement with the experimental observations. Furthermore, the 

intensity profiles along the cross-section of the sample of both experiments and simulations 

are consistent with each other, as shown in Figures 2.2e and 2.2f allude to this.  The 

simulations capture the important characteristics of experimental profiles. The consistency 

of simulation and experiments indicates that doubly twisted configuration likely reflects 

the molecular arrangement inside the capillary.  

 We address the question of the driving force for the doubly twisted configuration 

over the axial configuration by considering the contribution of the saddle-splay (K24) term 

in the free energy expression: 

𝐹 = 12 ∫𝑑𝑉[𝐾11(∇ ∙ 𝒏)2 +𝐾22(𝒏 ∙ ∇ × 𝒏)2 + 𝐾33(𝒏 × ∇ × 𝒏)2 − (𝐾24 + 𝐾22)∇ ∙ (𝒏(∇. 𝒏) + 𝒏 ×
∇ × 𝒏)]                       (2.1) 

Where, K11, K22 and K33 are the Frank elastic constants associated with splay, twist 

and bend bulk deformations. The splay-bend (K13) contribution has been a contentious 

topic in nematic elasticity, but we can safely neglect the K13 term in our study as we are 

dealing with a case of planar anchoring26. The role of the saddle splay term, which is 
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weighted with the elastic constant K24, is subject to great debate. Several studies have 

neglected the contribution of saddle-splay under strong anchoring conditions. This 

argument stems from the fact the bulk integral of the saddle-splay can be reduced to a 

surface integral using Gauss’s theorem, and that the contribution of saddle-splay on the 

surface would be negligible compared to the cost of anchoring violation. However, this 

argument is rather misguided as the saddle-splay contribution can only be neglected if the 

director depends only on one Cartesian coordinate, which is not the case in our 

experiments26. For planar anchoring, this implies that when the confining boundaries are 

curved, the contribution of K24 cannot be trivially neglected.  Further in geometries like 

cylinders where the two principal curvatures are very different, the contribution of saddle 

splay can play a pivotal role in determining the director configuration.   

  We highlight the crucial role played by the saddle-splay term in the spontaneous 

reflection symmetry breaking of the director configuration resulting in a doubly twisted 

configuration for cylindrical confinement. For the case of planar anchoring, the saddle-

splay term tends to align the director along the direction of largest principal curvature. This 

can be better understood when the contribution of K24 to the free energy per unit length is 

written in the form: 𝐹24 = − 12 (𝐾24 + 𝐾22) ∫ 𝑑𝑆(𝑘1𝑛12 + 𝑘2𝑛22), where k1 and k2 are the 

principal curvatures at a point on the surface and n1 and n2 the director components along 

the corresponding directions. For a cylinder, n1 = n and n2 = nz; hence k1 = 1/R and k2 = 0. 

As a result, for the case of cylindrical geometry, the integral of 𝐹24 is minimized when the 

director at the surface is along the e  direction. This drives the system to twist and provided 

that there is sufficient anisotropy of the elastic constants, the twisted structure is always 

stable. We tend to this argument with a simple theoretical model below.   
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 Contribution of saddle-splay term to the free energy for the case of cylindrical 

confinement 

The same ansatz, which was used for the Jones matrix simulations, is used for the 

theoretical calculations. We obtain an expression in leading order of  for the free energy 

per unit length:  

𝐹2𝜋𝐾33 = (𝐾22−𝐾24)𝐾33 𝜔2 +  𝜔44 + ∑ 𝐾22𝐾33 𝜔2𝑛2𝑛∞3                        (2.2) 

The form of the free energy is completely analogous to the Landau theory of 

magnetism. It is, in fact, the sign of the quadratic term which controls whether the system 

adopts an axial configuration or breaks reflection symmetry, resulting in a doubly twisted 

director configuration. This theory is generic and would describe the reflection symmetry 

breaking of any nematic fluid.  Provided K24> K22, the director is always going to be 

twisted. For LCLCs the low value of K22 confer them with the possibility of satisfying the 

twisting criterion. We can conclude that the value of K24 for the LCLCs used in the 

experiments is always greater than K22 as the director is twisted in all the experiments. 

Although our model is simplistic in terms of the ansatz used, we capture the essential 

physics with the criterion that K24> K22 for a twisted structure.  

We note that the ansatz we use is the simplest we can assume for a double-twisted 

director ansatz. We have not minimized the Euler-Lagrange equation for the free energy 

assuming a general ansatz. This is the more rigorous treatment was performed elsewhere 

and the reader is referred to reference 27, where the treatment is described in detail. The 

ansatz so obtained has the form 27: 𝑛 = 𝑐𝑜𝑠𝛼 𝑠𝑖𝑛𝛽 �̂� + 𝑠𝑖𝑛𝛼𝑠𝑖𝑛𝛽𝜃 + 𝑐𝑜𝑠𝛽�̂� where, α=𝜋2 
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and 𝛽 = arctan ( 2√𝐾22𝐾24(𝐾24−2𝐾22)𝑟𝑅√𝐾33(𝐾24−(𝐾24−2𝐾22)𝑟2𝑅2). We note that the authors define the K24 term as 

12 𝐾24(∇ ∙ (𝒏(∇. 𝒏) + 𝒏 × ∇ × 𝒏)] in place of 
12 (𝐾24 + 𝐾22)∇ ∙ (𝒏(∇. 𝒏) + 𝒏 × ∇ × 𝒏)] and 

hence the necessary accommodations have to be made when comparing the two ansatz and 

final free energy expressions.  

From their description we note that while assuming a linear variation of the twist 

angle captures the essential physics some of the more intricate details relating to the 

intensity profiles are captured better by the ansatz obtained by minimizing the Euler- 

Lagrange equation for minimizing the free energy27. 

 Wave-guiding experiments for the measurement of twist angle 

To confirm the twisting criterion, we calculate the value of K24 by comparing the 

value of the twist parameter  measured experimentally and that obtained after minimizing 

equation 2.2 with the experimental measure of . We determine the twist parameter by 

measuring the twist angle as one traverses the diameter of the cylinder. In the Mauguin 

limit, where ϕ ≪ |Γ| = |2𝜋𝜆 (𝑛𝑒 − 𝑛𝑜)𝑑|, with ϕ the total twist angle and Γ the retardation 

caused by the anisotropy of the refractive indices, the director field serves as a waveguide 

to the incident polarized light.  
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Figure 2.3 (a) The maximum (red triangle dots) and minimum (black square dots) 

transmitted intensities at every polarizer angle when analyzer is rotated throughout 

180o. (b) The transmitted intensity at every analyzer angle when the polarizer is fixed 

at 75o. 

As the birefringence, ne – no, is fairly low (~0.02) for DSCG, we use capillaries of 

diameter 400 µm to satisfy the waveguiding requirement. When the waveguiding criterion 

is met, the minimum in transmitted intensity corresponds to the situation where, the entry 

polarization of the incident light is along the long axis (extraordinary waveguiding) or short 

axis (ordinary waveguiding) and the analyzer is perpendicular to the exit direction of the 

light. Theoretically this corresponds to zero transmitted intensity.  To determine this 

specific polarizer analyzer combination, we first rotate the analyzer every 5 degrees and at 

a given polarizer orientation. Then, the polarizer is rotated by 5 degrees and the analyzer 

rotation is repeated for the new polarizer orientation. The red triangles and blue circles in 

Figure 3a show the maximum and minimum intensities so obtained for the different 

polarizer orientations. It is evident from Error! Reference source not found.a, the m

inimum transmitted intensity corresponds to a polarizer angle of 75o for DSCG. For this 

polarizer orientation the transmitted intensity as a function of the analyzer rotation is shown 
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in Figure 2.3b. From the minimum in the plot of Figure 2.3b we estimate that the total twist 

angle is (150 ± 10)o.  

2.4.1 Determination of the value of saddle-splay elastic constant 

Since, within our ansatz, ϕ = 2 sin-1(), we find that = 0.95 ± 0.03. Substituting 

the value of  thus determined into the theoretical expression below:  

𝐾24𝐾33 = 12 (2𝐾22𝐾33 + 𝜔2 + ∑ 𝐾22𝐾33  𝜔2𝑛−2)∞3                         (2.3) 

We find that the range of 
𝐾24𝐾33 for DSCG varies from 0.75 to 1.75 under the 

assumption that 𝐾22𝐾33 ~0.1.  We also perform the same experiment with SSY and obtain a 

twist angle close to 170o. This would correspond to a value of 
𝐾24𝐾33  of 6.75.  We note that 

the exact value of 
𝐾24𝐾33 is extremely sensitive to the value of the twist angle for large twists 

( ~ 1). In comparison to small molecule liquid crystals like 5CB, we note that the value 

of K24 is significantly higher in comparison to the other elastic constants. For all the 

capillary dimensions (50, 100, 400 and 500 µm) used in the experiments, the twist angle 

measured is independent of the system size. This is another interesting aspect of our 

experimental system. Theoretically, we envision that very large values of twist per unit 

length can be obtained by cylindrical confinement of LCLCs. As the twist angle is 

independent of the system size, we can potentially confine LCLCs in as small a capillary 

as experimentally permitted and still obtain the same values of the twist angle. This makes 

our system a viable playground for a number of applications.  We note that it is only the 

ratio of the elastic constants that dictates the magnitude of twist in the system. The obtained 
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values of  
𝐾24𝐾33 are at odds with Ericksen’s inequalities; these emerge on the basis that the 

Frank free energy is positive definite, with the minimum corresponding to a deformation 

free director. In our experiments the anisotropy of the elastic constants results in the 

formation of a ground state that is lower in energy than the deformation free ground state. 

Further, in the presence of a real interface we note that there is an interfacial K24 like term 

that arises from the interaction between nematic material and the boundary 28.  As the 

functional form of the two terms is identical it is not possible to measure only the 

contribution of the bulk K24 term with the wave-guiding measurements. This could also 

account for the dramatically higher value of K24 measured for LCLCs. Although, we note 

that this line of reasoning would hold true for thermotropic liquid crystals as well but the 

values of K24 experimentally measured for these materials is in expectation with theoretical 

simulations and in keeping with Ericksen’s inequalities9.   



 25 

 

Figure 2.4 Polarized optical microscope images of DSCG in cylindrical capillaries 

with Neel Walls separating opposite twist handedness when the polarizer and 

analyzer make an angle of (a, b) 90o and (c, d) 60o. The opposite twist handedness is 

shown by the complementary intensity at complementary polarizer and analyzers. 

White arrows represent the direction of input polarizer (P) and analyzer (A). Scale 

bar is 100 um. (e) The intensity of the center of the wall region as the sample is rotated 

under crossed polarizers (black square dots) and the theoretical intensity profile of 

axial configuration (black line). (f) Corresponding schematic of the director 

alignment of the wall region. 

 Nature of defects separating oppositely twisted domains: 

The sign of the twist parameter  determines the handedness of the system and free 

energy is invariant to sign inversion. This implies that there is equal probability of finding 

domains of either handedness. Indeed, we see that there are multiple domains in a single 

capillary. Furthermore, these domains have opposite handedness and are separated by Neel 
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walls. Figure 2.4a demonstrates walls separating oppositely handed domains, where the 

sample is along the polarizer in a crossed polarizer setup. We note the extinction of the 

transmitted light from the center of the wall, indicating that it could be a Neel wall. In 

Figure 2.4b, where the sample makes an angle of 45o with polarizer, the transmitted 

intensity is a maximum from the wall region. The intensity profile of the center of the wall 

as the sample is rotated under cross polarizers is reminiscent of an axial configuration as 

shown in Figure 2.4e. This confirms we, in fact, have a Neel Wall separating domains of 

opposite handedness, as illustrated in Figure 2.4f. We establish that the regions separated 

by the Neel wall are oppositely twisted from complementary polarizer and analyzer angles. 

For instance, the 60o and -60o as shown in Figure 2.4c and 2.4d, the domains show exactly 

complementary intensity profiles, which is a signature of opposite handedness of twist.  

 

 

Figure 2.5 Doubly-twisted domain separated by point defects for SSY. a) to i) capture 

the stages of the annihilation dynamics of two oppositely charged defects. Dashed line 

is added along the midway plane between the two point defects to guide the eye. 
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2.5.1 Point defects separate oppositely twisted domains of SSY 

Another well studied LCLC sunset yellow shows similar behavior as DSCG when 

confined to cylinders. However, the phenomenology differs in some critical details. We 

see that the doubly-twisted director configuration persists even for SSY but the twist angle 

measured from wave-guiding experiments is closer to 170o. The higher twist angle for SSY 

confined to cylinder as compared to DSCG then corresponds to a higher relative value of 

K24. We note that for DSCG, K24/K33~ 1 whereas the twist angle measurements of SSY 

correspond to a ratio of K24/K33 ~ 5. In addition to the quantitative difference in the twist 

angle measured for the two LCLCs, the difference in the relative values of K24 also alters 

the qualitative phenomenology. As we described earlier, the regions of opposite 

handedness are separated by neel walls for DSCG. In contrast, regions of opposite twist 

are separated by point defects for SSY. This can be garnered from Figure 2.5.  

The preference of either defect configuration can be rationalized by the local free 

energy cost surrounding the defect13. The detailed derivation is shown in the supporting 

information of reference 13. The preference of either configuration as a function of the 

relative cost of the saddle-splay elastic constant is plotted in Figure 2.6.   
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Figure 2.6 Free energy contribution of the configuration with neel walls and point 

defects  

We gather from the plot that there is a transition around the relative cost of splay 

corresponding to K24/K33 ~ 3.5 above which point defects are preferred as opposed to neel 

walls. The plot is consistent with our experiments12,13.  

The annihilation dynamics of these point defects is also of significance as it 

contrasts the behavior observed for hedgehogs 29. Figure 2.5 shows snapshots of the 

annihilation process. We gather that the annihilation process is symmetric indicative of the 

local viscosities being identical for the two oppositely charged defects. This results from 

the fact that the director arrangement surrounding either defect is identical and involves the 

same deformations but in the opposite sense27. In contrast, the local arrangement of 

molecules surrounding a radial and hyperbolic hedgehog is quite different resulting in 

different local viscosities and hence asymmetric dynamics prior to annihilation29. Further 
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experiments are underway to quantify the dynamics of the annihilation process of the point 

defects observed in the doubly-twisted configuration.  

 Conclusions 

In this chapter we demonstrated the emergence of spontaneous chirality when 

LCLCs are confined to cylinders with degenerate planar anchoring conditions.  

Remarkably the doubly twisted state is the chosen ground state even when there is a 

director configuration free of deformations.  The contribution of the saddle-splay term 

drives the director to have a twisted structure. Our experiments present a unique and 

relatively straightforward path to measure the elastic constant K24 for LCLCs. This marks 

the first measurement of K24 for LCLCs. There is significant interest in the area of chiral 

separation of organic molecules in water. It has not escaped our attention that this 

configuration is an elegant platform for the detection and separation of chiral substances 

and enantiomers.  We have shown that the LCLC has equal probability of acquiring one 

handedness and domains of opposite handedness are separated by a neel wall. These 

experiments highlight the fascinating aspect of highly anisotropic elastic constants, a 

distinctive feature of LCLCs. This coupled with the curved geometry results in various 

fascinating phenomena and hints towards richer phenomenology when LCLCs are 

confined in more exotic geometries.  

 Materials and experimental details 
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Figure 2.7 (a) Inner surface height profile of a 50µm-diameter cylindrical capillary, 

the inset shows the AFM tip scanning the bottom of the inner wall of the capillary; 

(b) The surface tomography of the inner wall by flattening image (a) 

Aqueous solutions of SSY and DSCG were used in this study.  Cylindrical 

capillaries (Vitrocom) of diameter 50, 100, 400 and 500 microns were used without any 

surface treatment. The capillaries were filled with 14, 16 and 18 wt% of DSCG and 30 wt% 

SSY by capillary force and then immediately sealed with epoxy to prevent water 

evaporation.  The director profiles were interrogated using polarized optical microscopy 

(POM) (Leica DMRX Microsystem). In order to rule out any surface imperfections, we 

perform AFM measurements on the inner surface of the capillary.  
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CHAPTER 3. ROLE OF SADDLE-SPLAY ELASTICITY IN 

LYOTROPIC CHROMONIC LIQUID CRYSTALS CONFINED 

TO RECANGULAR AND SQUARE CAPILLARIES 

 After the results in the previous chapter on the confinement of LCLCs in cylinders, 

we present some counterintuitive results pertaining to LCLCs confined to rectangular and 

square capillaries.  

 Introduction 

Liquid crystals under confinement have been a topic of interest for fundamental 

studies and application oriented research 30-34. Confinement studies of liquid crystals have 

been performed for a range of geometries including spheres25, cylinders12,13,32, 

ellipsoids24,35-37. However, confinement studies in rectangular geometries are scarce38. This 

is perhaps due to the expectation of a simple axial configuration when nematics are 

confined to rectangles. However, in this chapter, we reveal rich physics pertaining to the 

confinement of LCLCs in rectangular capillaries.  

We elucidate that in a rectangular capillary filled with SSY, a mono-domain like 

configuration evolves from an initially doubly-twisted director configuration, which forms 

due to the coupling of the curvature of the edges to the Frank free energy by the role of 

saddle-splay elasticity.  The doubly-twisted region is eventually replaced by a planar 

monodomain in the center of the rectangle, and limited to the edges of the rectangular, with 

a defect line separating the two regions. In a square capillary, the doubly-twisted director 
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configuration remains the ground state because the energy cost of twist deformation is less 

than that of forming two defect lines. 

 LCLCs confined to rectangles 

3.2.1 Polarized optical microscopy observations 

 

Figure 3.1 Crossed (a) and uncrossed (b)(c) polarized microscopic images of SSY with 

opposite twist domains in a rectangular capillary. Scale bar, 200 µm.  (d) Schematic 

of the twisted director configuration in a rectangular capillary with thickness h=20µm 

and width w=200µm 

Intuitively, an axial director profile with the director pointing along the long axis 

of the capillary is expected, when a liquid crystal is confined to a rectangular capillary with 

planar boundary conditions. This corresponds to a deformation free ground state. For an 

axial director configuration complete extinction is expected when the capillary is either 

parallel or perpendicular to the polarizers.  This is in accordance with the expression for 

transmitted light intensity for the axial configuration: 𝐼~ sin2(2𝜑)sin2(𝛿2), where 𝜑 is the 

angle between the director and the polarizer and 𝛿 is the phase retardation between ordinary 

and extraordinary light. However, in our experiments, after cooling the sample from 

isotropic to nematic phase, we find that there is transmitted light even when the capillary 

is parallel to the polarizer as shown in Fig. 3.1 (a). This hints that the director might be 
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twisted. Further, in the same figure, we can clearly see disclination lines that separate 

different domains. We establish that these are domains of opposite twist from the intensity 

profile of images obtained by uncrossing the polarizers. Fig. 3.1(b) and 3.1(c) correspond 

to images with polarizers making an angle of 70⁰ and 110⁰ with each other. As can be 

appreciated from Fig. 3.1 (b) and (c), the intensity profiles are complimentary for the two 

polarizer-orientations. This is an expected result if the light twists in an opposite sense in 

the two domains. Fig. 3.1(d) is a schematic that illustrates the doubly twisted director 

profile that is consistent with the experimental results.  

 

Figure 3.2 Time lapsed polarized microscopic images of SSY cooling down from 

isotropic phase to nematic phase. The twist region of random handedness nucleates 

at the edges and expands to the entire capillary. Polarizer and analyzer are crossed 

in (a)(b) and (d) (e) (f), uncrossed in (c). Scale bar is 200 µm 
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When the sample is cooled from the isotropic phase, we observe that the twist 

originates at the edges of the capillary. This is shown in Fig. 3.2 (a). The twisted fronts 

approach each other upon further cooling, engulfing the isotropic region in the center as 

shown in Fig. 3.2 (b)-(e). From the uncrossed polarized image of Fig. 3.2 (c), we see that 

there are domains of opposite twist at both edges, which are separated by disclination lines. 

The twisted domains are spatially random and have equal probability of acquiring either 

handedness. When the two twisted fronts meet in the center, the twisted domains of the 

same handedness merge; while the ones with opposite handedness are separated by 

disclination lines. This can be clearly seen by comparing Fig. 3.2 (c) with Fig. 3.2 (f). 

3.2.2 Scaling arguments for free energy contributions 

We explain using scaling arguments, the preference of a doubly-twisted director 

configuration as opposed to an axial configuration. We start with a simplistic assumption 

of treating the rectangular capillary as two flat planes capped with a semi-cylindrical edges, 

as illustrated in Fig. 3.1(d). Near the curved edges, the director would favor a doubly 

twisted profile. This is rationalized by the contribution of the saddle-splay term which 

lowers the free energy of the doubly-twisted director configuration. Consider the Frank 

free energy expression: 

𝐹 = 12 ∫𝑑𝑉[𝐾11(∇ ∙ 𝒏)2 +𝐾22(𝒏 ∙ ∇ × 𝒏)2 + 𝐾33(𝒏 × ∇ × 𝒏)2 − (𝐾24 + 𝐾22)∇ ∙(𝒏(∇. 𝒏) + 𝒏 × ∇ × 𝒏)]         (3.1) 

Where, K11, K22 and K33 are the elastic constants associated with the well 

understood splay, twist and bend bulk deformations. Note that the volume integral of the 

saddle splay contribution can be reduced to a surface integral by using Gauss’s theorem. 
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For planar anchoring, it is illuminating to represent the surface integral of the saddle splay 

contribution in terms of the principal curvatures: 𝐹24 = − 12 (𝐾24 + 𝐾22) ∫ 𝑑𝑆(𝑘1𝑛12 + 𝑘2𝑛22), 
where k1 and k2 are the principal curvatures at a point on the surface, and n1 and n2 the 

director components along the corresponding directions. Specifically, for a cylinder (or 

half cylinder):   n1 = nθ and n2 = nz; hence k1 = 1/R and k2 = 0, where R is the radius of the 

cylinder. Hence, the saddle splay term drives the director to point along the nθ direction. 

For a twist angle close to 180° the contribution of K24 to the free energy per unit length 

would be –πK24. 

 Although it is favorable to twist at the edges, the twisting in the flat region costs 

energy. A simple scaling argument would estimate the energy cost per unit length in the 

flat region to be of the order K22
𝑤ℎ  (~10K22, for our geometry), where w is the width of the 

rectangle and h is the height as shown in Fig. 1(d). This can be rationalized by noting that 

the twist deformation is along the height of the capillary and hence the twist energy density 

scales as ~ 
1ℎ2. Multiplying with the area of the capillary (w*h) we get the scaling of the 

twist deformation cost per unit length to be K22
𝑤ℎ . Hence the deformation cost of having a 

doubly-twisted director (FDT) in a rectangular capillary is: FDT ~ (10K22-πK24). Previous 

experimental estimates of K24 for SSY are about the order 50K22 
12,13. Clearly this implies, 

FDT<0, and the doubly-twisted director is preferable when compared to axial configuration 

(Faxial=0). This explains the initial doubly twisted director configuration in the rectangular 

capillary.  

3.2.3 Time evolution of the doubly-twisted configuration  
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Figure 3.3 (a) Time evolution of the twisted configuration taken over by the 

monodomain like configuration.  (b) Polarized light absorption of green light (551 

nm) of the monodomian region. (c) Magnified crossed POM image of the 

monodomain region and twisted region and twisted region separated by the half 

disclination lines. Scale bar is 200 µm in (a) (b), and 100 µm in (c) 

In a few hours the doubly-twisted director configuration evolves to a configuration 

that forms a monodomain in the flat regions of the capillary but remains twisted at the 

edges. A typical transition from metastable doubly twisted configuration to a monodomain 

like configuration is shown as the time-lapsed images in Fig. 3.3 (a). The orientation of the 

director in the monodomain region can be clearly discerned from the polarized absorption 

images using monochromatic light (551±4 nm) as shown in Fig 3.3(b). When the polarizer 

is along the long axis of the capillary, the image is dark indicating complete absorption of 

the incident light. In contrast, there is a strong transmission when the polarizer is along the 

short axis of the capillary. SSY has a broad absorption band around 400~530 nm, resulting 

from N=N and N-H bonds in the molecular plane 39.  Therefore, the director, which is 

perpendicular to the molecular plane, is along the short axis of the rectangular capillary. 

The director at the edges is still twisted and a half strength disclination line separates it 

from the monodomain region. The two regions separated by the disclination line are clearly 
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observed in the magnified image of Fig. 3 (c). Fig. 3(d) is the schematic of the director 

configuration of monodomain in center and twist near the edges.  

For the new monodomain configuration there is no energy cost in the flat region. 

However, there is an added penalty of having two half-strength disclination lines 40,41. The 

energy cost of the disclination core per unit length is of the order of  𝜋𝐾𝑚2  2,42,43, where 

m=1/2 is the strength of the line. As twist is the dominant deformation around the core, the 

energy cost of the core of the two lines is 𝜋 𝐾222 . Clearly, the cost of having two disclination 

lines is an order of magnitude lower than doubly twisting in the flat region (~10K22). The 

monodomain like configuration is stable for weeks and is likely the ground state for SSY 

in rectangular capillaries. 

 Director configuration in square capillaries 

3.3.1 Optical microscopy observations and scaling arguments to explain the observed 

structure 

 

Figure 3.4 Crossed (a) and uncrossed (b)(c) polarized microscopic images of SSY with 

opposite twist domains in a square capillary. Scale bar is 100 µm.  
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In order to further confirm our theoretical analysis, we perform the same 

experiments with square capillaries with widths of 50 µm and 100 µm for comparison. 

From the cross-polarizers image in Fig 3.4 (a) and the uncross-polarizers images in Fig 3.4 

(b) and (c), we can draw the same conclusion that the director of SSY liquid crystal is 

twisted in the square capillary as we did for the rectangular capillary. However, the doubly-

twisted configuration in both 50 µm and 100 µm square capillaries keeps for months if the 

capillary is sealed well, and never changes to a monodomain like configuration as it does 

in a rectangular capillary.  The difference can be well explained by our previous scaling 

arguments. The total free energy cost is: FDT ~ (K22
𝑤ℎ  -πK24) for a doubly-twisted 

configuration; and FMono ~ (𝜋 𝐾222  -πK24) for a monodomain like configuration in a 

rectangular capillary. For a square capillary, the aspect ratio 
𝑤ℎ  is 1, causing that FDT is 

smaller than FMono. Therefore, a doubly-twisted configuration is more favorable to SSY 

liquid crystal confined in a square capillary. One can also have a better estimation of the 

core energy cost of the half-strength disclination line, by making a series of rectangular 

capillaries of different aspect ratios and checking their ground state configurations.  

 Conclusion 

We observed a spontaneous double twist structure of SSY lyotropic liquid crystal 

in both rectangular and square capillaries. The twist structure in a flat rectangular capillary 

eventually evolves to a well-aligned planar mono domain, which can be exploited to 

measure order parameters and viscoelastic constants of LCLCs. We elucidate the key role 

of the saddle-splay elastic constant on the formation of the double twist structure in a 

rectangular/square capillary, where curvature only exists at the corners. With a simple 
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scaling argument, we explain the evolution of the mono-domain like configuration from 

the initially double twist configuration, and the different ground states of SSY under 

rectangular and square confinement. 
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CHAPTER 4. INSIGHTS INTO THE AGGREGATION 

BEHAVIOR OF LYOTROPIC CHROMONIC LIQUID 

CRYSTALS USING CONFINEMENT EXPERIMENTS 

In the previous chapters, we described experiments pertaining to unusual director 

configurations observed when LCLCs where confined to several geometries. One of the 

observed configurations namely that of a mondomain is particular relevance in performing 

fundamental studies to determine various physical characteristics of LCLCs. In this chapter 

we exploit mono-domains to quantify the order parameter of LCLCs using Raman 

scattering experiments and answer some fundamental questions pertaining to aggregation 

of LCLCs. We also use optical observations on LCLC tactoids to corroborate the 

conclusions of the order parameter experiments.  

 Introduction 

Perhaps the most fundamental question that can be asked when studying liquid 

crystals, is regarding the orientational order in the system. Quantifying the orientational 

order is helpful in estimation of several other physical properties of liquid crystals like the 

elastic constants2. In the context of LCLCs, the question of the order in the nematic phase 

involves rich physics as the aggregate length and packing are a function of both 

temperature and concentration. We seek to delineate the role of concentration and 

temperature in influencing the aggregation behavior and in turn the order of LCLCs. 

Raman scattering experiments were used to study the thermal evolution of the order 

parameters for a range of concentrations. Of particular relevance were the order parameters 
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measured close to the nematic-biphasic transition of LCLCs. Remarkably, the measured 

order parameters at TNB (TNB is the nematic-biphasic transition temperature) are 

independent of concentration. We provide a simple model incorporating the volume 

fraction and average aggregate length to help understand the nematic-biphasic transition 

for LCLCs. These observations bring to light  the rich physics pertaining to the nematic-

biphasic transition of LCLCs 44.  

Further, we present experimental observations on the textures of tactoids as a 

function of concentration at the same reduced temperature. We show that the director 

configurations in the confined tactoids can be exploited as an optical guide to delineate the 

role played by concentration and temperature in the aggregation of LCLCs.  We explain 

the changes to the director configurations by appealing to the scaling of the elastic 

constants as a function of the aggregate lengths. The observations on tactoids corroborate 

the findings from Raman experiments. 

 Measurement of order parameters as a function of temperature and 

concentration 

4.2.1 Polarized Raman scattering experiments: 

We studied the degree of orientational order of SSY in nematic phase using 

polarized Raman scattering. Polarized Raman intensities are measured in two conditions, 

I
//
 and I┴, which represent the scattered intensities when the polarizer and analyzer are 

parallel and crossed, respectively. Fig 4.1 (a) shows a typical angular spectrum of Raman 

intensity for SSY in the rectangular capillary. As we can see I
//
 has a maximum when the 

polarizer and analyzer are parallel to the long axis of the capillary. This again confirms that 
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the molecular plane is along the long axis of the capillary, and hence the director aligns 

normal to the long axis. We employ a Lorentzian fit to the 1596 cm-1 peak that corresponds 

to the aromatic ring stretching. Peak heights as function of angular position of the director 

is plotted in Fig. 4.1 (b). As expected for a monodomain, I
// 

and I┴ have 2-fold and 4-fold 

symmetry, respectively. The depolarization ratio I┴/I
// 

(θ) is consequently obtained and 

fitted using the following equation 45,46, 

𝑅(𝜃) = (𝑟−1)2{56+40⟨𝑃2⟩+(9−105cos4𝜃)⟨𝑃4⟩}56(8𝑟2+4𝑟+3)−40(4𝑟2−𝑟−3)(1+3cos2𝜃)⟨𝑃2⟩+3(𝑟−1)2(9+20cos2𝜃+35cos4𝜃)⟨𝑃4⟩  (4.1) 

Where, <P2> and <P4> are the 2nd and 4th moments of the orientational distribution 

function, r is the ratio of differential polarizability. Measurements are performed for 

concentrations ranging from 0.95M to 1.15M.  
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Figure 4.1 (a) Polarized Raman spectra of SSY at 0o and 90o (b) Raman intensities of 

1596 cm-1 peak measured as a function of the capillary orientation (c) (d) P2 and P4 

as a function of temperature (e) (f) P2 and P4 plotted against their reduced 

temperatures for different concentrations 

The variation of the <P2> and <P4> as function of temperature and concentration 

are shown in Figure 4.1 (c) and (d). Order parameters for SSY increase with concentration 

at a given temperature. This is a unique property of LCLCs. Although the quantitative 
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values of <P2> and <P4> as a function of the temperature and concentration are 

informative, we can gain more physical insight by normalizing the temperature axis with 

nematic- biphasic transition temparature TNB. This can clearly help in discerning and 

separating the roles played by concentration and temperature. Figure 4.1 e and 4.1 f are the 

plots of the order parameters as a function of the reduced temperature for different 

concentrations. It is evident from these plots that <P2> and <P4> are the same for every 

concentration at T = TNB.. Further, the <P2> and <P4> dependence on the reduced 

temperature T/TNB is independent of concentration for SSY. Thus, the only role played by 

concentration is to change the TNB.  

4.2.2           Simple model to explain the order parameter data 

To explain the concentration independence of order parameters, we start with 

Onsager’s idea that the two key factors determining the orientational order are: volume 

fraction 𝜑 and aspect ratio 𝐿 𝐷 ⁄ 47. In our experiment, 𝜑 can be calculated from the SSY 

concentration using 𝜑 = 𝑐𝑀 (𝑐𝑀 + 𝜌)⁄  39,48, where 𝑀 = 452.36𝑔/𝑚𝑜𝑙 is the molar mass 

of SSY molecular, c is the concentration and 𝜌 = 1.4𝑔/𝑐𝑚3 is the density of SSY 

aggregates 39. The aspect ratio 𝐿 𝐷⁄  can be determined by estimating the length L of the 

SSY aggregates. The diameter D, which is about the size of a SSY molecule, is the same 

for all the aggregates 39,49. 

We use a simple model of one dimensional self-assembling units 50 to estimate the 

length distribution of the aggregates. The relative volume fraction 𝑋𝑁 of aggregates 

containing 𝑁 molecules is, 𝑋𝑁 = 𝑁(𝑋1𝑒𝛼 𝑘𝐵𝑇⁄ )𝑁𝑒−𝛼 𝑘𝐵𝑇⁄ , where 𝑋1 =
(1+2𝜑𝑒𝛼 𝑘𝐵𝑇⁄ )−√1+4𝜑𝑒𝛼 𝑘𝐵𝑇⁄2𝜑𝑒2𝛼 𝑘𝐵𝑇⁄  is the relative volume fraction of individual molecules 39,51, 𝑘𝐵 
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is the Boltzmann constant, 𝑇 is the absolute temperature, and  𝛼 is the inter-molecular 

attraction energy. The model assumes that the aggregation process is isodesmic. A 

commonly accepted value of  𝛼 is around 7.25 𝑘𝐵𝑇, as estimated from several experiments 

14,39,48,52 and molecular dynamic simulations 53. The model incorporates the variation of 

aggregate size distribution 𝑋𝑁 with both temperature and concentration. 

Using this model, we calculate the size distribution at TNB for different 

concentrations as shown in Fig. 4.2 (a). We find that samples of higher concentration have 

shorter average aggregate length at TNB. Further from Fig. 4.2 (b), which is a plot of the 

relative number of aggregates 𝑋𝑁/𝑁 with different length, we learn that there are more 

aggregates in a sample of higher concentration at TNB. Although non-intuitive, these two 

results are very insightful in trying to gain physical understanding about LCLCs. For hard-

rods the aspect ratio 𝐿 𝐷⁄  is a constant and determines the critical volume fraction. 

However, in a LCLC system, the aspect ratio depends both on concentration and 

temperature. In spite of this complication, we provide a simple picture by examining the 

product 𝜑 ∙< 𝑁 > for all the samples. As we can see from the table, at TNB the product of  𝜑 ∙< 𝑁 > is essentially the same for all samples.  

Table 4.1 Product of φ∙<N> for different concentrations 

C(M) 0.95 1.04 1.07 1.15 𝜑 0.235 0.251 0.257 0.271 

<𝑁> 14.6 13.3 12.4 11.8 𝜑 ∙< 𝑁 > 3.42 3.34 3.19 3.20 

 



 46 

Even though LCLCs are composed of semi-flexible aggregates, we find that the 

hard-rod theory of Onsager’s can qualitatively explain our experimental results. According 

to Onsager’s theory, the order parameter is expressed as: 𝑆 ≈ 1 − 3/𝛼, where 𝛼~ 4𝜋 (𝜑 𝐿𝐷)2 −
458 + 𝑜((𝜑 𝐿𝐷)−2). From the expressions, it is clear that the order parameter can be fully 

determined by the product of 𝜑 and 𝐿 𝐷⁄ . Our experiments quite surprisingly agree 

reasonably well with these predictions. Not only is the order parameter a constant at TNB 

for all concentrations, but we have also shown using a simple model that 𝜑 ∙< 𝐿 > 𝐷⁄  is a 

constant at TNB. 

 

 

Figure 4.2 (a) Relative volume fraction of aggregates with different lengths at TNB (b) 

Relative number of aggregates as a function of aggregate length for the four 

concentrations at TNB 

For a given concentration, entropy always favors more aggregates, while the π-π 

interaction between the molecules favors fewer but longer aggregates. The system 

equilibrates through the competition between the entropic and enthalpic contributions. As 

the temperature increases at a fixed concentration, the aggregate length decreases, and the 

product 𝜑 ∙< 𝑁 > decreases. The system becomes biphasic when the value of 𝜑 ∙< 𝑁 > is 
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smaller than 3.2. The transition temperature TNB is determined by the critical length for a 

given concentration. Hence higher the initial concentration corresponds to higher TNB.  

 Experiments on LCLC tactoids 

We provide further evidence to substantiate the claims based on the Raman 

experiments by observing the textures of tactoids of SSY for different concentrations. 

When an isotropic phase of a lyotropic system undergoes a phase transition to an ordered 

nematic phase, the pathway is usually mediated through spindle shaped droplets called 

tactoids. Observation and analysis of tactoids has been an integral part of the investigations 

on liquid crystals, including some of the earliest experiments which motivated the seminal 

theory of Onsager 16,54. In addition to shedding light on the nature of the isotropic- nematic 

phase transition, tactoids also provide a natural setting to study nematics under confinement 

24,35,37,55,56. Hence, they provide an attractive setting as a testbed for fundamental research 

as well as being relevant to technological applications. This has driven the experimental 

investigation of tactoids in a host of materials, including dispersions of viruses 54,57, 

proteins 58, inorganic platelets 59 and lyotropic chromonic liquid crystals (LCLCs) 24,60.  

The director configuration in the tactoids is dictated by the individual contribution 

of the elastic constants, splay (K11), twist (K22) and bend (K33) to the Frank free energy 

24,35,37,55,61,62 .  Historically, tactoids of lyotropic nematic liquid crystals have been found to 

have an elongated shape and adopt a bipolar configuration with the director following the 

meridional lines 54,58,59,62. Only recently has a twisted-bipolar director configuration been 

experimentally realized for a LCLC system when it was crowded with polyethylene glycol 

(PEG) 24.  Twisted bipolar tactoids of cellulose nanocrystals have also been demonstrated 
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recently 63. The emergence of chirality in achiral liquid crystals has fueled the curiosity of 

scientists ever since their discovery 64-67. There have been a host of technological 

applications which take advantage of chiral configurations of confined liquid crystals 68,69.   

In this section we exploit the emergence of a new chiral tactoidal structure to address 

fundamental questions pertaining to the aggregation behavior and the physics behind the 

nematic-biphasic transition of LCLCs. 

 LCLCs have gained increasing attention in the last two decades as an interesting 

yet poorly understood class of liquid crystals 51,70-74. They are made up of plank-like 

molecules with a polyaromatic core and polar peripheral groups 14,75. The  interactions  

result in the stacking of the constituent molecules15. The aggregation process is believed to 

be isodesmic; that is, addition or removal of molecules to a column is always associated 

with the same energy cost 39,76-79. In addition to applications of technological relevance 80-

85, LCLCs provide a fertile playground for fundamental studies. Of particular interest are 

studies dealing with confinement of these materials.  The twist elastic constant for LCLCs 

is much lower than splay, bend and saddle-splay elastic constants 18,19. This results in the 

emergence of spontaneous twist when LCLCs are confined to different geometries. 

Twisted structures have been reported previously in disodium cromoglycate (DSCG) 

tactoids 24, Sunset Yellow FCF (SSY) droplets 25 and for LCLCs confined to cylinders 12,13. 

Another interesting aspect of LCLCs is that the length distribution of the constituent units 

is polydisperse and determined both by temperature and concentration 14,19,48.  A 

consequence of the polydisperse size distribution of LCLCs is a broad biphasic regime 

where the nematic and isotropic phases coexist 48.  However, there are several fundamental 
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questions pertaining to LCLCs including their aggregation behavior, elasticity and 

anchoring that need to be rigorously addressed 74.  

We exploit tactoids for studying the effect of confinement on LCLCs for a range of 

temperatures and concentrations, as well as to uncover the underlying physics pertaining 

to the aggregation and phase transitional behavior of LCLCs 24. We show that the director 

configurations in the confined tactoids can be exploited as an optical guide to delineate the 

role played by concentration and temperature in the aggregation of LCLCs. For high 

concentrations we observe the well understood bipolar tactoids. However, upon lowering 

the concentration we observe a mirror-symmetry breaking transition and the emergence of 

twisted-bipolar tactoids. We find that, for the same reduced temperature, T/TBI (TBI is the 

biphasic-isotropic transition temperature for the given concentration), the twist angle of the 

twisted-bipolar tactoids increases as the concentration is lowered. Concurrently, we 

observe a new director configuration, where the director is oriented concentrically and is 

free of singular defects. We make a case for this configuration being the escaped-concentric 

configuration while clearly distinguishing it from twisted-bipolar tactoids. The surprising 

finding is rationalized by using a simple model to calculate the average length and length 

distribution of the aggregates. We conclude that, at the same reduced temperature, lower 

concentrations on average have longer aggregates. Consequently the splay deformation in 

the bipolar droplets becomes prohibitive with increasing length of the aggregate 21.  

4.3.1  Polarized optical microscopy: 

Historically, tactoids of lyotropic liquid crystals have always conformed to the 

bipolar director configuration 36,54,58,59. In this configuration the director follows the 
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meridional lines with the surface defects (or boojums) being located at the poles. This can 

be appreciated from the image in Figure 1a, which is an image of a bipolar tactoid under 

crossed polarizers. Note that the central part of the tactoid is completely dark. This is a 

characteristic feature of bipolar tactoids in the absence of twist. The sample corresponding 

to Figure 4.3a is 1.1M SSY observed at 59.5oC (T/TBI = 0.99). When the concentration is 

lowered to 1.0M (observation temperature 42.8oC, T/TBI = 0.99) we see that the bipolar 

tactoids develop a twist. This can be inferred via the transmitted light intensity in the central 

region of the tactoids in Figure 4.3b. The twisted director configuration acts as a waveguide 

for polarized light and results in a transmitted intensity even under crossed polarizers. The 

inset of Figure 4.3b shows the extinction of transmitted light when the polarizers are 

uncrossed, which serves as additional confirmation of the twisted structure. As the 

concentration is lowered below to 0.9M, we observe the emergence of a tactoidal 

configuration which exhibits a completely different texture.  This new director 

configuration has a radial symmetry unlike bipolar or twisted-bipolar tactoids. The new 

configuration can be observed clearly in Figure 4.3c.  The concentration of the 

corresponding sample is 0.9M and the observation temperature is 29.6oC (T/TBI = 0.99).  
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Figure 4.3 Polarized microscopic images of SSY tactoids at different concentrations 

(a) 1.1M, bipolar; (b) 1.0M, twisted-bipolar tactoids and a small fraction of tactoids 

with the new director configuration; (c) 0.9M, increased fraction of tactoids with the 

new director configuration. The inset in (b) shows the extinction in the center of a 

twist-bipolar tactoid when polarizers are uncrossed with monochromatic illumination 

(589nm). (d) polarized microscopic image of 1.0 M SSY tactoids with 2wt% PEG . 

The scale bar for all the images is 100 μm  

In order to understand the physics behind the phenomenology pertaining to the 

configurational transformations in the tactoids, we first quantify the concentration 

dependence of the twist angle of the twisted-bipolar tactoids at the same reduced 

temperature, using wave-guiding experiments 25,86. Where, the twist angle is defined as the 

angle the director on the surface of the tactoid makes with the axis of symmetry 25. We 

observe that, at the same reduced temperature (T/TBI), lower concentrations have a larger 

twist angle. Starting with purely bipolar tactoids (twist angle =0o) the twist angle increases 

to about 135o for a 0.8M sample. The data for all the concentrations is plotted in Figure 
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4.4a. It has been shown previously in the context of LCLC droplets, that, the equilibrium 

twist angle of twisted-bipolar droplets is determined by the balance of offsetting the 

energetically costly splay deformation at the expense of twist and bend deformations 25. 

Their results show that a large fraction of the elastic deformation cost in bipolar and 

twisted-bipolar droplets is associated with the splay deformation surrounding the surface 

defects 25. We perform similar numerical calculations, but by fixing the ratio of bend/twist 

while allowing the value of splay elastic constant to vary.  This is shown in Figure 4.4b. 

The plot verifies the prediction that increasing cost of splay results in an increasing twist-

angle of the twisted-bipolar tactoids. The twist angle data and the numerical calculations 

suggest that, for a given reduced temperature, the relative cost of splay (K11/K33 and 

K11/K22) increases as the concentration is lowered.  

 

Figure 4.4 a) Twist angle of twisted bipolar tactoids and number fraction of the new 

director configuration as a function of temperature. b) Free energy cost of twisted-

bipolar tactoids as a function of the different relative cost of splay  

The elastic constants associated with the bulk deformations of a liquid crystal 

whose constituents are semi-flexible aggregates have contrasting scaling with the 

aggregate length, L. The splay elastic constant, as was alluded by Meyer, scales linearly 
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with the aggregate length (K11~ 𝜑𝐿) 19,21. In contrast, the bend elastic constant for 

semiflexible aggregates is free to conform to the director orientation and hence is only 

dictated by the persistence length,  𝜆𝑝,  of the aggregates (K33~ 𝜑𝜆𝑝). The twist elastic 

constant is also only a function of the persistence length and scales as K22 ~ (𝜑𝜆𝑝)13 22. 

Persistence length is a molecular property which is a weak function of temperature and 

concentration 87.  On the other hand the aggregate length L is quite sensitive to changes in 

temperature and concentration 39. Naturally, longer aggregates result in higher relative cost 

of splay. From the scaling of the elastic constants and the trend in the twist angle of twisted-

bipolar tactoids, it is reasonable to deduce that, at the same reduced temperature lower 

concentrations have longer aggregates.   

We also gather from Figure 4.3a to 4.3c that the fraction of tactoids with the new 

director configuration increases as the concentration is lowered. This is also quantified in 

Figure 4.4a. We postulate that this phenomenon is also a consequence of the relative 

increase in the splay cost as the concentration is lowered. We test this idea by increasing 

the cost of splay deformation of LCLCs while keeping the relative cost of bend and twist 

mostly unchanged. We achieve this with the addition of a small amount of polyethylene 

glycol (PEG) to SSY solutions. PEG is a widely used condensing agent. The use of PEG 

in influencing the aggregation behavior of LCLCs is well documented 24,88. PEG remains 

in the isotropic part of the solution and exerts osmotic pressure on the nematic region 

resulting in the elongation of the aggregates. In essence, addition of PEG to a sample results 

in the increase of aggregate length consequently resulting in the increase of splay which 

scales linearly with aggregate length. Twist and bend on the other hand only scale with the 

persistence length and hence remain mostly unchanged.  
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Figure 4.3d is a cross-polarized image of a 1.0 M sample 0.5 wt% PEG. As 

compared to a 1.0M PEG free sample, which is Figure 4.3b, we see that Figure 4.3d clearly 

has a significantly higher fraction of tactoids adopting an escaped-concentric 

configuration. Not surprisingly, the twist angle of the twisted-bipolar tactoids also 

increases upon the addition of PEG. The measured twist angle of the twisted-bipolar 

tactoids in Figure 4.3b and 4.3d are about 18o and 105o respectively. We tabulate the 

fraction of tactoids adopting the new director configuration upon the addition of PEG for 

different concentrations in Table 4.2 below:  

Table 4.2 Fraction of tactoids with new configuration as a function of PEG weight 

percent 

SSY Concentration 0.90 M 1.00 M 1.04 M 1.13 M 

Fraction with c(PEG) = 0 wt% 0.43 0.23 0.15 0.06 

Fraction with c(PEG) = 0.5 wt% 0.53 0.43 0.32 0.26 

Fraction with c(PEG) = 2 wt% 0.72 0.71 0.68 0.67 

 

The trend is consistent for all concentrations and is in keeping with the idea that 

longer aggregates lead to greater fraction of tactoids with the new director configuration. 

We note that while PEG also increases the concentration of SSY aggregates 88, the scaling 

of both bend and splay is linear in concentration. Hence, the phenomenon observed upon 

the addition of PEG is largely due to changes to the aggregate lengths.  

4.3.2 Dichroism experiments: 

After establishing the phenomenology relating to the tactoidal configurational 

changes as a function of concentration, we shed more light on the nature of the new director 
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configuration that is prominent as the concentration is lowered. For this purpose, we 

perform linear dichroism studies on these droplets. The radial symmetry of the texture 

under crossed polarizers indicates that the director configuration is oriented in either a 

radial or a concentric fashion with a defect/escaped core at the center of symmetry.  

Comparing the regions of light extinction and light transmission in Figure 4.5b and 4.5c, 

we can rule out the possibility of a radial configuration. This can be ascertained by 

observing the intensity at the periphery of the droplet. In both instances the dark regions 

close to the periphery of the droplet, where the light is extinguished, are along the polarizer. 

This is contrary to the expectation if the droplet structure was radial. The molecular plane 

of sunset yellow molecules is perpendicular to the director orientation 38. Hence, in a radial 

droplet, the extinction at the periphery should be perpendicular to the polarizer direction. 

The dichroism data suggests that the director is oriented concentrically as opposed to being 

radial. The simple concentric configuration involves an azimuthally oriented director with 

a line defect running through the center 25. However, the formation of the line defect can 

be avoided through a twist deformation resulting in an escaped configuration. The swirl in 

the dichroism images is indicative of escape of the director configuration via a twist 

deformation.  
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Figure 4.5 Dichroism, bright-field and transition images of SSY tactoids (a) under 

crossed polarizers. (b) under monochromatic illumination (551 nm) with vertical 

polarization. (c) under monochromatic illumination (551 nm) with horizontal 

polarization. (d) bright-field. (e) The transition from twisted bipolar to the new 

director configuration. The corresponding solution is 0.97M SSY doped with 0.5 wt% 

PEG. (f) A schematic of escaped-concentric configuration 

4.3.3 Nature of defects in the new director configuration 

Further information regarding the new configuration can be garnered by the bright-

field images shown in Figure 4.5d. The surprising finding here is the lack of any indication 

of the presence of surface defects (boojums) which are a feature of the bipolar and twisted-

bipolar configurations. Boojums when imaged under bright-field microscope can be 

readily distinguished due to the strong scattering off the defect core. The core of the defect 

has a different refractive index in comparison with the nematic phase. This results in strong 

scattering of light close to the defect. A combination of cross-polarized and bright-field 

images can be used to identify boojums. One such example is shown in Figure 4.6a and 

4.6b, where scattering off the boojums of a twisted bipolar tactoid is readily obvious. 

However, in contrast, when the tactoids with the new configuration are observed under 

bright-filed microscopy, no scattering is apparent.  
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Figure 4.6 Microscopy images of tactoids. (a) and (b) are the polarized optical image 

and bright-field image of a twisted-bipolar tactoid. Two singular boojums can be 

clearly observed on each pole. (c) and (d) show the polarized optical image and bright-

field image of tactoids in columnar phase. The tactoids exhibit concentric structure 

with a disclination line in the center. The singular line defects are clearly observed. 

The columnar tactoids are observed with 1.04 M SSY doped with 3 wt% PEG 

The difference in the defect textures of the two configurations is made more 

apparent by examining the transition of a twisted-bipolar tactoid to one with the new 

configuration. This is shown in a sequence of images shown in Figure 4.5e. The sample 

under observation is 0.97M SSY solution with 0.5 wt% PEG.  The tactoid initially has a 

twisted-bipolar configuration, and the boojums can be readily identified. As the 

configuration transitions, we see that the boojums are forced towards the center, while 

trying to maintain maximum separation via tracing a circular spiral (clockwise in this 

instance). Finally, from the last two snapshots we infer that the singular defects are replaced 

by a non-singular core of the new director configuration. Identifying the exact director 

configuration of the non-singular core is beyond our experimental capability. However, we 
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surmise that the reason for the preference of the non-singular core as opposed to the 

boojums is related to the cost of splay associated with the director field around the boojums, 

where most of the free energy cost of deformation is concentrated 25. Finally, upon addition 

of 3wt% PEG to a 1.04 M SSY solution, the tactoids enter the columnar phase and adopt a 

concentric configuration. Scattering off the defects in the bright-field image for this case 

is again readily obvious. This is shown in Figure 4.6d.   

 

Figure 4.7 (a) Crossed polarized image of a 0.88M solution showing two escaped-

concentric tactoids that have nucleated on the side wall of a square capillary (b) and 

(c) show the twist angle measurement of escaped-concentric tactoids. (b) The 

maximum (red triangles) and the minimum (blue circles) transmitted intensity at 

every polarizer angle when the analyzer is rotated through 180o. (c) The transmitted 

intensity at every analyzer angle when polarizer is fixed at horizontal position  

At this juncture, having established the features of the new director configuration, 

we need to find the appropriate nomenclature to provide an identity for the configuration. 

Previous research on droplets of liquid crystals which possess a higher value of splay 
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elastic constant in comparison to twist and bend, has led to reports identifying the droplet 

structure as escaped-concentric 89. However, distinguishing this configuration from a 

twisted-bipolar configuration has been fraught with controversy. In fact it was later argued 

that a 90o twisted-bipolar droplet is essentially the same as the suggested escaped-

concentric structure 90. Ironically, although the splay is largely concentrated close to the 

surface defect for twisted-bipolar configuration, the difference in the possible defect 

structures between the two configurations was never discussed in the context of minimizing 

the splay deformation 89. We present observations that are consistent with the idea that the 

director trying to avoid the splay deformation, leads to the emergence, increasing number 

fraction and the arrangement near the defect of the new configuration. For these reasons, 

we find it is appropriate to call this new director configuration as escaped-concentric. 

Finally, we confirm that the twist angle of the escaped-concentric tactoids is indeed 90o by 

wave-guiding measurements on tactoids that happen to nucleate on the side wall of a square 

capillary. The data is presented in Figure 4.7. We hypothesize that the director avoids the 

formation of the boojums with a non-singular core which violates the anchoring in a small 

region by pointing axially. A schematic of the proposed escaped-concentric configuration 

is provided in Figure 4.5f.  Far away from the defect/non-singular core the director 

arrangement in the escaped-concentric configuration is identical to a 90o twisted-bipolar 

tactoid. The important distinction however lies in the director arrangement near the defect.  

 Conclusion 

Although LCLCs have been a subject of experimental curiosity for the past two 

decades, there are several unanswered questions pertaining to their phenomenology. In this 

chapter we use tactoids as a means to uncover rich physics pertaining to the nematic- 
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biphasic transition of LCLCs. In the process we also uncover several interesting 

phenomenology pertaining to tactoids, like breaking of achiral symmetry. In addition to 

being relevant to liquid crystal research the overarching themes in our work would be of 

interest to research in symmetry breaking phase transitions, chiral structures and colloidal 

physics among others.  

Bipolar tactoids prevailed in our experiments when higher concentrations were 

observed optically. However, upon lowering concentration we observed a breaking of 

achiral symmetry and a predominance of twisted bipolar tactoids. On further reduction of 

concentration, the tactoids assume a surprising escaped-concentric director profile. An 

analysis of the aggregate length distribution at the same reduced temperature for different 

concentration reveals that lower concentrations on average have longer aggregates. The 

contrasting scaling of elastic constants with the aggregate length explains the experimental 

results qualitatively. The dramatic director configurational changes that we see are a direct 

result of the changes to aggregate size which can also be induced my crowding agents and 

other impurities like ions 24,48. These reasons make the tactoidal droplets an extremely good 

candidate for sensor applications. The insights gained from optically observing tactoidal 

droplets were extended to understand the underlying physics of the nematic-biphasic 

transition.  Order parameters <P2> and <P4> of SSY LCLC were measured close to the 

transition temperature and they were found to be independent of the concentration.  We 

find that the product of volume fraction and the estimated average length of aggregates is 

almost a constant at TNB. This provides an explanation for the invariance of the order 

parameter with concentration. The optical observation of tactoidal droplets and the order 

parameter measurements then lay the basis for the physical picture we put forward, which 
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corresponds to higher concentrations having shorter aggregates but a larger number of 

them, while, lower concentrations have longer but fewer aggregates at the transition 

temperature.  

 Material and experimental details 

SSY was purchased from Sigma-Aldrich and TCI America with a purity of 90%. 

Polarized optical microscopy experiments were performed with a Leica DMRX 

microscope. Polarized Raman measurements were done using a Kaiser Raman Rxn system. 

Sample preparation: SSY was purchased from Sigma-Aldrich and TCI America with a 

purity of 90%. Further purification was carried out by dissolving it in deionized water and 

adding ethanol causing the SSY to precipitate. We then filtered the isolate and dried the 

powder in a vacuum oven. The purified SSY is then dissolved in deionized water to make 

SSY solutions. All rectangular glass capillaries were purchased from Vitrocom. Without 

further treatment, the capillaries were filled with isotropic SSY solutions by capillary 

action, and then placed on a glass slide. The ends were sealed with epoxy glue to prevent 

the water evaporation. The capillaries used for tactoidal experiments are 100 m*1000m. 

For Raman experiments the capillary dimensions are 20 μm* 200 m. The dimension of 

the square capillary is 100 m. The sample slide was placed on a Linkam T95-PE heat 

stage with a temperature control accuracy of 0.1⁰C. The heat stage was mounted on the 

360⁰ rotation stage of the Leica DMRX microscope. The low magnification images were 

obtained with a 10x (NA=0.3) Leica objective and the high magnification images were 

obtained with a 100x (NA=1.4) Leica objective.  
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CHAPTER 5. SCALING OF SADDLE-SPLAY ELASTIC 

CONSTANT WITH THE ORDER PARAMETER 

In this chapter, we provide experimental evidence towards an often-neglected 

theoretical prediction regarding the scaling of surface-like elastic constants. We study the 

bipolar to radial transition of liquid crystals confined to spherical droplets. Using the 

contribution of the individual elastic constants to the Frank free energy we conclude that 

the linear scaling of the saddle-splay elastic constant is likely to blame for the surprising 

transition in the spherical droplets when they are heated sufficiently close to the transition 

temperature. 

 Introduction 

The order parameter for nematic liquid crystals is related to the orientational 

distribution of the molecules. The uniaxial order parameter S is an even function of the 

polar angle β, which is the angle between a given molecule and the director. Legendre 

polynomials provide the mathematical formalism for expressing S in terms of the polar 

angle β, which the molecules make with the director: 

𝑆 = < 3𝑐𝑜𝑠2𝛽−12 >     (5.1) 

Where, < > denotes ensemble average.  
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It is customary to think of the bulk elastic constants associated with liquid crystals 

in terms of their quadratic scaling with order parameter as per the expectation of theoretical 

predictions 1,7. This implies that the ratios of elastic constants do not change with the 

variation of temperature. For this reason, configurational transitions or changes to 

qualitative phenomenology are not expected when temperature and hence the order of the 

system is changed. However, another prediction of phenomenological models pertaining 

to the linear scaling of the surface-like elastic constants with order parameter has not been 

paid enough attention in an experimental sense 31. In the recent years, the prominent role 

played by saddle-splay elastic constant in dictating the director configuration in confined 

geometries was demonstrated through clear experiments 9,12,13. The prominent role played 

by saddle-splay in confined geometries in combination with the prediction of its linear 

scaling with order parameter gives rise to the possibility of the occurrence of interesting 

phenomenology when the order parameter of the system changes. 

In this chapter we put the theoretical prediction pertaining to the scaling of saddle-

splay elastic to an experimental test. A good approach to test this prediction would be 

comparing the director arrangement in an appropriate confinement close to the nematic- 

isotropic transition temperature and far away from it. The order parameter close to 

transition is quite small (S ~0.3) and gives rise to the possibility that the surface-like elastic 

constant that scale linearly might have a dominant role in comparison with the bulk elastic 

terms that have a quadratic scaling with order parameter. We show below that the use of 

spherical confinement of nematics is not only a convenient experimental choice but also 

one of the clearest ways to demonstrate the linear scaling of surface-like elastic constants.  

 Experiments of spherical droplets with planar anchoring conditions 



 64 

5.2.1 Textural changes in the morphology of a bipolar droplet as a function of order 

parameter  

There has been considerable interest in understanding the behavior of liquid crystals 

confined to micrometer sized droplets as they are promising candidates for opto-electronic 

applications and for use as sensors 25,34,68,69,91. Liquid crystal drops are fundamentally 

relevant, as the coupling of geometry and topology with nematic order brings into play rich 

physics relating to transitions between thermodynamically stable defects 92,93. Several 

studies have shown structural transformations of liquid crystals droplets as a function of 

external parameters like surface anchoring, electric and magnetic fields and even extremely 

small amounts of endotoxins 91,94,95.  

We study liquid crystal emulsions dispersed in water/ polyvinyl alcohol (PVA). It 

is well known and widely reported that PVA imposes planar anchoring on liquid crystals 

9,92,93. The 5CB droplets surrounded by PVA adopt the expected bipolar configuration. The 

texture can be readily identified in Figure 5.1a where a bipolar drop is imaged with 

monochromatic light and crossed-polarizers. This is representative of the droplet 

morphology far from the transition temperature. The number of dark fringes observed in 

Figure 1a relates to the birefringence of the liquid crystal and the diameter of the droplet 

as ∆𝑛 ∗ 𝑑 = 2𝜋𝑚𝜆, where m is number of fringes.  As, the droplet is heated and 

consequently the order parameter (and birefringence) is reduced, we notice that the fringes 

observed in the experimental texture also decrease. This can be deduced in Figure 1b and 

1c. This observation corresponds to the reduction of the birefringence with temperature. 

Finally, when the temperature is sufficiently close to the transition temperature (T/TNI 

~0.997) we first observe a metastable structure where a disclination ring can be clearly 
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discerned. This is shown in Figure 1d. The disclination ring quickly collapses to a radial 

hedgehog and a radial configuration can be clearly identified in Figure 1e.  

 

Figure 5.1 Thermal evolution of the droplet morphology a) Bipolar drop far from 

transition(T/TNI ~0.97) b) and c) The dark fringes of the bipolar drop reduce as it is 

heated d) metastable configuration with disclination ring e) radial droplet at T/TNI 

~0.997 f) to h) are Jones calculus simulations that capture the experimental textures 

observed in a) to c); i) Order parameter data from Raman scattering experiments and 

from the values of birefringence used in the Jones calculus simulations 

In order to understand the morphological evolution of the droplet configuration in 

a quantitative sense, we perform Jones calculus simulations which capture the experimental 

findings. Figure 1f to 1h are Jones calculus simulations of the droplet morphologies which 

replicate the experimental morphologies in Figure 1a to 1c in a quantitative sense by 

capturing the order of the fringes.  The value of birefringence used for the simulations is 

correlated with the corresponding order parameter (Δn~S). We do this by noting that 

birefringence for 5CB can be quantified2,96 using Haller’s approximation as Δn =Δn𝑜(1 − 𝑇𝑇𝑁𝐼)𝛽 .  Δn𝑜 is the birefringence at 0K and is obtained by extrapolating the 

experimental data using Haller’s relation96. We use Δn𝑜reported in the literature to obtain 

order parameters from the values of the birefringence used in the simulations. The order 
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parameters so obtained are plotted along with the thermal evolution of the order parameters 

as measured from Raman scattering experiments in Figure 1i. We note that there is 

excellent agreement between the two sets of data and the changes to the bipolar 

morphology can be fully explained by the variation of the order parameter with 

temperature. However, the rationale for the surprising transition to a radial texture is less 

obvious. The transition from the bipolar to the radial configuration corresponds to an order 

parameter of S~ 0.4. We describe the pathway of the transition from the bipolar to the radial 

texture below. 

5.2.2 Pathway of transition from bipolar to radial texture 

Figure 5.2 shows the transformation stages of a bipolar drop as it is heated 

sufficiently close (S~0.4) to TNI. A disclination ring nucleates from the initial bipolar 

configuration, the ring is then pushed to the edge where is collapses to a hedgehog, which 

then relaxes back to the center, to form a radial droplet. The steps described here are 

analogous to the droplet configurations reported in the literature when the anchoring 

conditions of the outer medium are varied 95. However, in our case, the external conditions 

are kept constant and it is the interplay of the variation of elastic constants with temperature 

that brings about the transition.  
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Figure 5.2 Transformation pathway of bipolar to radial structure when the droplet is 

heated close to transition. a) Bipolar droplet b) and c) formation of a disclination-ring 

at the periphery of the droplet d) and e) Saturn ring shrinks to a hedgehog and moves 

from the interface to the center of the droplet f) melting to the isotropic phase 

 The transition from bipolar to radial drop always occurs within 1oC from the 

transition temperature. To rule out any coincidental temperature induced changes in the 

anchoring conditions at around 35.5 oC which is transition temperature of 5CB, we perform 

the same experiment with another liquid crystal (E7) that has a much higher transition 

temperature than 5CB. We see the same transition from bipolar to radial configuration 

again within 1oC of the transition temperature (63.8 oC) ruling out any effects caused by 

changing anchoring conditions.  

 Free energy cost of deformation in bipolar and radial droplets 

When confined to spherical drop the director adopts a configuration that minimizes 

the Frank free energy given by:  
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𝐹 = 12 ∫𝑑𝑉[𝐾11(∇ ∙ 𝑛)2 +𝐾22(𝑛 ∙ ∇ × 𝑛)2 + 𝐾33(𝑛 × ∇ × 𝑛)2 − (𝐾24 + 𝐾22)∇ ∙(𝑛(∇. 𝑛) + 𝑛 × ∇ × 𝑛)] +  𝑊𝑠𝑖𝑛2(𝜃 − 𝜃0)       (5.2)   

Where, K11, K22 and K33 are the familiar splay twist and bend elastic constants. The 

terms weighted by (K24 + K22) is the saddle-splay contribution. W denotes the strength of 

the surface anchoring which forces the molecules at the surface to adopt degenerate planar 

anchoring. 

We explain this remarkable transition from bipolar to radial configuration by 

considering the contribution of the saddle-splay elastic constant to the Frank free energy 

and its scaling behavior with respect to the order parameter. For the case of planar 

anchoring, the saddle-splay term tends to align the director along the direction of largest 

principal curvature. This can be better understood when the contribution of the saddle splay 

term to the free energy per unit length is written in the form: 𝐹24 = − 12 (𝐾24 +𝐾22) ∫ 𝑑𝑆(𝑘1𝑛12 + 𝑘2𝑛22), where k1 and k2 are the principal curvatures at a point on the 

surface and n1 and n2 the director components along the corresponding directions. For the 

case of a spherical drop as the two principal curvatures are the same, the contribution of 

saddle splay term is a constant (-2(K24+K22) R) irrespective of whether the droplet is a 

bipolar droplet, twisted bipolar droplet or concentric. However, when we evaluate the 

contribution of the saddle splay term when the droplet adopts a radial configuration the 

contribution of saddle splay term to the free energy is (-4 (K24+K22)R. The rationale behind 

the larger contribution of saddle-splay term in a radial drop can be reasoned by realizing 

that saddle-splay is a deformation of simultaneous splays and twists −(𝑘22 + 𝑘24)(𝑠1𝑠2 +𝑡1𝑡2). In a radial drop (𝑛𝑟 = 1) the contribution of the 𝑠1𝑠2 term is clearly the maximum. 
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However, for the case of the bipolar drop clearly the contribution of the 𝑠1𝑠2 term is smaller 

as the director has a 𝑛𝜃 component. The full expression for the deformation cost involved 

(assuming K11~ K33) in a bipolar droplet and a radial droplet are given below:  

Fbp = 5𝜋𝐾11𝑅 − 2𝜋(𝐾24 + 𝐾22)𝑅      (5.3) 

Fr = 8𝜋𝐾11𝑅 − 4𝜋(𝐾24 + 𝐾22)𝑅 + 2𝑊𝑅2 

 

Figure 5.3 Free energy cost of deformation in bipolar and radial droplets as a function 

of the order parameter 

Although the saddle splay contribution stabilizes the radial droplet more in 

comparison to a bipolar droplet, we still need to address the important question of why the 

transition depends on the order (temperature) of the system? We appeal to the prediction 
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of phenomenological theories that expect K24 to scale linearly with order parameter to 

explain these experimental results 31,32. The scaling of the saddle-splay term is then in 

contrast with the bulk terms which scale with the order parameter in a quadratic fashion. 

The value of K24 has been experimentally measured to be around the value of K22 for 

5CB9,10. These measurements and first principle calculations were performed far from the 

transition temperature (S~ 0.7). Closer to the transition temperature, where the order 

parameter is around 0.4, it is reasonable to expect the value of K24 ~ 2.5 K22 due to the 

linear scaling of K24 with S. This would then explain the driving force for the transition 

from bipolar to a radial droplet. Figure 5.3 is a plot of the energy cost of radial and bipolar 

configurations as a function of the order parameter. We approximate the normalized free 

energy cost of radial and bipolar droplets in terms of the order parameter as: 

𝐹𝐵𝑃𝑛𝑜𝑟𝑚 = 5 − 2 ∗  
(𝑆+𝑆2)2𝑆2   𝐹𝑅𝑛𝑜𝑟𝑚 = 4 ∗ (2 − (𝑆+𝑆2)2𝑆2 ) + 0.2          (5.4) 

The crossover in Figure 5.3 is in good agreement with the experimentally observed 

transition corresponding to S~0.4. Although the plot of the free energies in Figure 5.3 is in 

good agreement with the experiments, there is a caveat attached to the calculations. We 

note that in the free energy expressions for the radial droplets (equation 5.2), the anchoring 

term (W) has a quadratic (R2) dependence (𝐹𝑊~𝑊𝑅2) with the system size while the 

elastic term has a linear dependence (𝐹𝐸~𝐾𝑅). This implies that it is not possible to plot 

the comparison between the free energy cost of the two configurations in a manner that is 

independent of system size. Figure 5.3 was a plot for a droplet of size 10 microns. 

Naturally, we might expect the observed phenomena (S at which the transition occurs) to 
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be a dependent on the system size. Further work is needed to experimentally verify this 

prediction.  

 

 Prediction of phenomenological theories 

Although there has not been a lot of experimental attention pertaining to the scaling 

of the saddle-splay elastic constant, the theoretical predictions were made quite a while 

ago. Following the usual lines of the Landua- deGennes treatment 31, a tensorial nematic 

order parameter can be introduced:  

    𝑄𝑖𝑗 = 𝑆2 (3𝑛𝑖𝑛𝑗 − 𝛿𝑖𝑗) 

Where 𝑛𝑖 denotes the ith director field component and S is the uniaxial order 

parameter. With the tensorial order parameter defined, we can express the free energy with 

a general Landau- de Gennes type expansion: 

𝐹 =  𝐿(1)𝑄𝑖𝑗,𝑖𝑗 + 𝐿1(2)𝑄𝑗𝑘,𝑖𝑄𝑗𝑘,𝑖 + 𝐿2(2)𝑄𝑖𝑗,𝑖𝑄𝑘𝑗,𝑘 + 𝐿3(2)𝑄𝑗𝑘,𝑖𝑄𝑖𝑘,𝑗 + 𝐿5(2)𝑄𝑖𝑘,𝑖𝑗𝑄𝑗𝑘 + 𝐿6(2)𝑄𝑗𝑘,𝑖𝑖𝑄𝑗𝑘+ 𝐿1(3)𝑄𝑖𝑗𝑄𝑖𝑗,𝑘 𝑄𝑘𝑙,𝑙 + 𝐿2(3)𝑄𝑖𝑗𝑄𝑖𝑘,𝑗  𝑄𝑘𝑙,𝑙 + 𝐿3(3)𝑄𝑖𝑗𝑄𝑖𝑘,𝑘 𝑄𝑗𝑙,𝑙 + 𝐿1(3)𝑄𝑖𝑗𝑄𝑖𝑗,𝑘  𝑄𝑘𝑙,𝑙+ 𝐿2(3)𝑄𝑖𝑗𝑄𝑖𝑘,𝑗  𝑄𝑘𝑙,𝑙 + 𝐿3(3)𝑄𝑖𝑗𝑄𝑖𝑘,𝑘  𝑄𝑗𝑙,𝑙 + 𝐿4(3)𝑄𝑖𝑗𝑄𝑖𝑘,𝑙  𝑄𝑗𝑘,𝑙 + 𝐿5(3)𝑄𝑖𝑗𝑄𝑖𝑘,𝑙  𝑄𝑗𝑙,𝑘+ 𝐿6(3)𝑄𝑖𝑗𝑄𝑖𝑘,𝑙  𝑄𝑘𝑙,𝑗 + ⋯ 

Where, 𝐿𝑖(𝑗)’s are the temperature independent constants. Comparing the expansion terms 

with the conventional expression for Frank’s free energy, we get: 

𝐾11 = 9𝑆22 (2𝐿1(2) + 𝐿2(2) + 𝐿3(3) − 𝐿5(2) − 2𝐿6(2)) + 9𝑆34 (−𝐿2(3) +  2𝐿3(3) + 𝐿4(3) +  2𝐿5(2) − 𝐿6(3)) 
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𝐾22 = 9𝑆2(𝐿1(2) − 𝐿6(2)) + 9𝑆34 (𝐿4(3)) 

𝐾33 = 9𝑆22 (2𝐿1(2) + 𝐿2(2) + 𝐿3(3) − 𝐿5(2) − 2𝐿6(2)) + 9𝑆34 (2𝐿2(3) − 𝐿3(3) + 𝐿4(3) − 𝐿5(3) + 2𝐿6(3)) 

𝐾24 = 3𝑆𝐿(1) + 9𝑆22 (2𝐿1(2) + 𝐿3(2) − 13 𝐿5(2) − 2𝐿6(2)) + 9𝑆32 (𝐿4(3) +  2𝐿5(2) − 𝐿6(3)) 

𝐾13 = 3𝑆𝐿(1) + 3𝑆24 ( 𝐿5(2))   

From the equations above we gather that the surface-like elastic constants K24 and 

K13 have a term linear in the order parameter while all the bulk terms to the leading order 

scale as square of the order parameter. We note that there could be higher order terms that 

scale linearly with S, but K24 and K13 are the only terms that correspond to deformations 

that are of the order ~
1𝜆2 (λ is the relevant system size). Hence we do not believe the 

contributions of the higher order terms are significant enough in comparison with K24 to 

influence the experiments we described above. However, we do note that the expansion of 

the free energy in the Landau- deGennes formalism is only valid very close to the transition 

where the order parameter is very small. Experimentally, the observations of the transitions 

from bipolar to radial droplet might correspond to an order parameter that is higher than 

those for which the Landau- deGennes expansion is applicable.  

There has been some attention devoted to the determining if K13 indeed scales 

linearly with order parameter 28,97. However, the very inclusion of K13 term in the Frank 

description of elasticity is fraught with controversy26,28,98-102. In order for the free energy 

functional to be well posed with the inclusion of K13, higher order terms have to be included 

as well.  Without the higher order terms the K13 term can be unbounded from below 
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allowing for large deformations in the director field26. Clearly, this contradicts the 

assumption of linear elasticity. Density functional theory calculations predict that the value 

of K13 is identically zero which automatically solves any paradoxes associated with the 

elastic constant28.  

In the same work28, the authors also reveals a few important findings that are 

pertinent to our work. They discuss the influence of having a real boundary or interface on 

the way the elastic contributions are expressed. They conclude that although K24 is truly an 

intrinsic material parameter, it is not possible to isolate the contribution of the material K24 

term from an interfacial K24-like term (or an anchoring term). In the light of these results 

from density-functional theory we realize that the driving force for our experiments is an 

effective K24 term which is a combination of the bulk K24 term and a K24 like term that has 

its origin in the interfacial region and hence depends on the external medium as well. This 

effective K24 term is clearly not a material property anymore and would depend on the 

experimental conditions.  

 Conclusions 

There have been a few studies recently about transition from bipolar to radial 

droplets induced via inclusion of endotoxins and through variation of droplet size91,103. 

Although fascinating experimentally, a full quantitative understanding is still lacking to 

explain these phenomena. Our work demonstrates how changes in internal order can bring 

about the same bipolar to radial transition. We explain the results by appealing to the 

theoretically predicted linear scaling of the surface elastic constants with order parameter. 

We bring to light this completely neglected aspect in the literature regarding the scaling of 
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the surface elastic constants. Further, manipulation of internal order opens up an array of 

interesting sensor applications using liquid crystal droplets.  We foresee applications using 

liquid crystal droplets, where any external influence like contaminants and temperature 

fluctuations which can lower the order parameter and bring about switching in the droplet 

morphology.  
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CHAPTER 6. NEMATICS CONFINED TO TOROIDS WITH 

RADIAL ANCHORING 

 This section explores the ground state of nematic organization when confined to 

toroidal geometries with normal anchoring conditions. We study the coupling of the 

director configuration with geometry by varying the aspect ratio of the tori. All the 

experiments were performed in the laboratory and with the guidance of Dr. Fernandez-

Nieves.  

 Introduction  

Historically, the study of nematics confined in cylinders with radial boundary 

conditions has been a fertile area of research 29,31,32. The first reported experimental 

observation of a point defect in nematics (hedgehog) was for a nematic confined to 

cylindrical capillary with normal anchoring conditions 104. Further, some of the earliest 

research on measuring the saddle-splay elastic constant was also utilized the director 

configuration in a cylinder with radial anchoring 31,32,105. This director configuration 

commonly observed in normally anchored cylinders has been artistically dubbed as the 

escape radial (ER) configuration. We describe some of the features of this director 

configuration below.   

Consider a cylinder with radial anchoring. The expectation is that the director 

would only have a radial component with a defect line running through the center of the 

capillary. This configuration which is named as planar radial (PR) and is shown in Figure 

6a. However, the PR configuration has never been experimentally observed. The director 
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instead bends out of plane and avoids the costly defect core. This is termed as escape in the 

third dimension. The schematic illustrating the escape radial configuration is shown in 

Figure 6b. The director profile of escape-radial configuration which minimizes the free 

energy is given by105 (𝑛𝑟 , 𝑛𝜃, 𝑛𝑧) = (𝑠𝑖𝑛 𝛺, 0, cos 𝛺); where, 𝛺 = 2𝑇𝑎𝑛−1(
𝑟𝑎).  Although the 

schematic shows a bend direction in one direction (right), it can be readily realized that 

there are two directions of escape (or two directions of bend) involve the same cost of 

director deformation. This creates an avenue for the presence of defects which separate 

regions that escape in opposite directions 104. Hence, this setting was also suitable to study 

the annihilation dynamics of a radial and hyperbolic hedgehog 29. The characteristic texture 

observed when escape-radial configuration is viewed under crossed-polarizers is shown in 

Figure 6.1c. The liquid crystal in question is 5CB and lecithin is used to coat the surface of 

the cylindrical capillary to ensure normal anchoring. The alternating dark and bright bands 

can be readily used to identify the escape-radial texture. The dark region at the edge of the 

capillary is due to the fact the liquid crystal molecules are normal to the surface and hence 

are along one polarizer. As we approach the center the molecules bend towards the long 

axis of the cylinder resulting in the bright region, as the director now makes an angle with 

either polarizer. Finally, close to the center the director points along the long axis of the 

cylinder and hence is parallel to the other polarizer resulting in the dark region at the center. 

We used cylindrical capillaries of diameters 400, 500 and 800 microns to perform these 

experiments. The intensity profile measured along the representative red dashed line of 

Figure 6.1c, is shown in Figure 6.1d. As we may expect, the intensity starts out at the lowest 

on the edge of the capillary and increases as the director bends towards the center. At the 

center of the capillary the profile has a local minima as it is again parallel to a polarizer. 
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We note that for the capillary diameters we use that ratio of the maxima/minima is always 

about 4.   

 

Figure 6.1 Director orientations along a horizontal slice along the long axis of the 

cylinder a) Planar-radial configuration with the red line in the center being the 

declination core b) Escape-radial configuration c) Texture of escaped-radial 

configuration observed under crossed-polarizers for cylindrical capillaries of 

diameter 400, 500 and 800 microns d) Intensity profile along a vertical slice of (c), the 

dashed line in red is a representative slice e) Brightfield image of a toroidal nematic 
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droplet depicting the two relevant length scalesed under crossed-polarizers for 

cylindrical capillaries of diameter 400, 500 and 800 microns d) Intensity profile along 

a vertical slice of (c), the dashed line in red is a representative slice e) Brightfield 

image of a toroidal nematic droplet depicting the two relevant length scales 

A torus is defined by two characteristic length scales. This is illustrated in Figure 

6.1e, where the ‘a’ is the tube radius and ‘R’ is the center to center distance. The ratio of 

the two length scales defines the aspect ratio of the torus (ξ=𝑅𝑎). From a geometric 

perspective, a torus has inherent bend which is absent in a cylinder. This brings about 

additional physics pertaining to how these unique geometric aspects of a torus couple with 

the director configuration.  For the case of a planar anchored torus, it was recently 

demonstrated that a novel doubly-twisted structure was the preferred ground state in place 

of an axial configuration 9. The authors clearly exemplify the role of the two competing 

curvatures in a toroidal geometry which results to the director conforming to a doubly-

twisted configuration. Motivated by these previous results, we seek to explore the director 

configuration under toroidal confinement but with normal anchoring conditions. We will 

contrast the results observed in the torus with the escape-radial configuration of the 

cylinders to help identify the new phenomenology. All the results described are with strong 

radial anchoring.  

 Director configuration in a torus with normal anchoring conditions:  

Figure 6.2a shows the cross-polarized texture of a torus (ξ~ 5) with radial 

anchoring. If we observe the parts of the torus that lie parallel to a polarizer (red line in 

Figure 6.2c), we can note that the texture is qualitatively similar to that observed for the 

escaped radial texture observed in cylindrical capillaries. The bright-field image in Figure 

6.2b reveals the lack of scattering indicating the absence of singular defects. This is also 
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consistent with expectation of the escape-radial configuration provided there is only one 

direction of escape. Although, the optical texture is qualitatively consistent with the 

expectation from an escape-radial configuration, there are quantitative differences in the 

intensity profiles when compared to cylinders.  

 

Figure 6.2 Nematic liquid crystals confined to toroidal geometry with radial 

anchoring a) Crossed-polarized image of a torus with aspect ratio ~4.7 b) Brightfield 

image of the same torus c) Red lines added to the cross-polarized image in (a) to 

denote the region of which we plot the intensity profile in (d), d) Intensity profile along 

a slice shown by the red line in (c) 
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Similar to the cylinder we measure the intensity profile along the red lines shown 

in Figure 6.2c. The intensity has a similar profile to what was noted earlier for cylinders. 

As expected close to the surface of the torus, the molecules are normal to the surface and 

hence parallel to the polarizer in the plane of the red line in Figure 6.2c. Hence the intensity 

is the lowest close to the surface. We see an increase in the intensity as we move away 

from the surface and finally, there is local minima close to the center of the torus. This is 

qualitatively similar to the observations in the case of cylindrical confinement. However, 

we observe that the ratio of 
𝐼𝑚𝑎𝑥𝐼𝑚𝑖𝑛  ~ 1.2, which is considerably lower than what was observed 

for the escape radial configuration in a cylinder (
𝐼𝑚𝑎𝑥𝐼𝑚𝑖𝑛  ~ 4). The tube radius of the torus 

under observation is around 400 microns, which is similar to the size of the cylindrical 

capillaries. Hence the size dependent scattering of light has no role to play in influencing 

the observed intensity ratios2. It is likely that the additional cost of deformation that is 

inherent in a toroidal geometry is the likely cause of this new phenomenology.  

The observation that the central region of the torus is brighter than what might be 

expected for an escaped-radial configuration hints to us that there can be a twist 

deformation in the director arrangement 9. This postulation is in keeping with the 

observations of a planar anchored torus and cylinders wherein the central region of the was 

brighter than what would have been expected if the configuration was axial 9,12. Further, 

we note that the profile of the intensity observed for the torus is reminiscent of twisted 

escaped-radial configuration observed for LCLCs confined to cylinders with radial 

anchoring67.  In the case of LCLCs it is the anisotropy of elastic constants (K22<<K11~K33) 

that results in the director resorting to a twist deformation to offset some of the more 
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expensive splay and bend deformations. However, in our experiments with 5CB, there is 

not a significant amount of anisotropy in the values of the elastic constants.  It is the 

geometry alone that gives rise to the new phenomenology. We verify this with experiments 

using bent cylindrical capillaries below. 

 Experiments on bent-cylinders:  

 

Figure 6.3 Nematic liquid crystals confined to bent cylindrical capillaries a) 

Brightfield image of 5CB confined to a bent cylindrical capillary b) Cross-polarized 

image of the 5CB confined to a bent capillary c) Intensity profile parallel to a polarizer 

d) Plot of the maxima/minima for tori and bent cylinder as a function of aspect ratio 
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After postulating that the configuration of radially anchored liquid crystals in a 

torus is that of an escaped-radial with twist we seek to decouple the role of geometry and 

topology in the observed phenomenology. For this reason, we perform experiments on bent 

cylindrical capillaries. The geometry of the bent cylindrical capillaries is similar to a torus 

but they are clearly distinct in a topological sense.  

Brightfield image of representative bent cylinder is shown in Figure 6.3a. The 

corresponding cross-polarized image is shown in Figure 6.3b. From Figure 6.3c The 

intensity profile (along a polarizer) measured in a bent cylindrical capillary is similar to 

that of the torus. The intensity profiles of the bent cylinder help in clarifying that the 

phenomenology observed is a result of the additional bend in the geometry as compared to 

a cylinder. While topology might play a part in other phenomenology pertaining to defects 

and more 9, it appears that the escape-radial with twist configuration is a consequence of 

only the additional bend in the geometry. It would then seem natural that the observed 

intensity profile would be a function of the amount of bend (aspect ratio) in the geometry. 

We quantify the ratio of maxima/minima in the intensity as a function of aspect ratio in 

Figure 6.3d. The procedure to calculate the aspect ratio of the bent cylindrical capillaries 

is described in the material and methods section of this chapter. We see that for very high 

aspect ratios (ξ~12 and above), the intensity ratio is reminiscent of the behavior in cylinders 

(
𝐼𝑚𝑎𝑥𝐼𝑚𝑖𝑛  ~ 4). As the aspect ratio is lowered and consequently the bend in the geometry 

increases we see that the ratio of 
𝐼𝑚𝑎𝑥𝐼𝑚𝑖𝑛  decreases. This is consistent with the idea that, some 

part of the additional splay and bend deformations imposed on the director by the geometry 

is relieved via a twist deformation. We provide some analytical estimates below for the 
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additional cost of splay and bend deformations involved with an escaped-radial 

configuration in a torus.  

 Additional Free energy cost of escaped-radial configuration in a torus: 

 

Figure 6.4 Schematic of the additional bend of the escaped core and splay at the inner 

handle in a torus as compared to the cylinder   

The escaped core is the case of a cylinder is free of deformation and the director 

points along the long axis. This feature can be clearly noted from the schematic in Figure 

6.4a. However, in the case of torus the escaped core has a significant amount of bend, 

which depends on the aspect ratio of the torus. Clearly, the bend in the geometry results in 

additional contribution of bend to the overall energy cost of deformation. In addition to 

this, we note that there is also additional splay deformation in the toroidal geometry that is 

absent in the case of the cylinder. It is easier to observe the splay by looking near the inner 

handle of the schematic in Figure 6.4b. In below we estimate the additional cost of these 

two deformations when the director conforms to an escape-radial configuration in a torus. 

We extend the escaped-radial ansatz using the proper metric terms to assume an 

ansatz for the escape-radial configuration in a torus 31,32,105:  
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(𝑛𝑟 , 𝑛𝜃, 𝑛∅) = (
𝑠𝑖𝑛 𝛺𝑅+𝑟𝑐𝑜𝑠𝜃, 0, √1 − 𝑛𝑟2); where, 𝛺 = 2𝑇𝑎𝑛−1(

𝑟𝑎)  

       Where, θ is the polar angle and r is the radial co-ordinate. Expanding the deformation 

terms of the Frank’s free energy, we find that there are two additional terms in 

comparison with the escape radial configuration in a cylinder. 

 𝐹 = 2𝜋𝐾33 ∬ 𝑟𝑐𝑜𝑠2𝜃 𝑐𝑜𝑠2𝛺𝑅+𝑟𝑐𝑜𝑠𝜃 𝑑𝜃 𝑑𝑟 + 2𝜋𝐾11 ∬ 𝑟𝑐𝑜𝑠2𝜃 𝑠𝑖𝑛2𝛺𝑅+𝑟𝑐𝑜𝑠𝜃 𝑑𝜃 𝑑𝑟 

𝐹 = 𝜋𝑅𝐾 22 (1 + 382 + 5484 + 𝑂(−6))     (6.1) 

For a torus of  ~ 1.5, the additional deformation energy in the escape radial 

configuration of a torus is comparable to the cost of the escape radial configuration 

(~2𝜋𝑅𝐾) in a cylinder (assuming a single constant approximation).  

While, the analytical approach is useful in estimating the cost of the additional 

deformation involved with having an escaped-radial configuration in a toroidal geometry, 

it becomes untenable to directly compare the free energy cost of escape-radial and twisted 

escape-radial configurations. Further work following a numerical approach is needed to 

determine the ground state of radially anchored tori. 

 Conclusions 

 In this chapter we study the ground states of normally anchored nematic tori. We 

find a preference of a twisted-escaped radial configuration when the aspect-ratios of the 

tori are sufficiently low. This configuration has never been observed previously in the case 

of small molecule liquid crystals like 5CB. Although, LCLCs show similar behavior when 



 85 

confined to cylinders, we note that the emergence of the twisted escape-radial configuration 

in that instance is due to the anisotropy of the elastic constants.  In our experiments it is the 

geometry of the confinement that results in the novel director configuration. However, 

more theoretical work is needed to unequivocally determine the ground state of normally 

anchored nematic tori. 

 Materials and methods: 

6.6.1 Aspect ratio of bent cylinders 

 

Figure 6.5 Procedure for the calculation of aspect ratio of bent cylinders a) Brightfield 

image b) Use Image J software’s binary conversion c) Use Image J software’s finding 
edges module d) Isolate inner edge of the capillary e) and f) curve- fitting of the inner 

edge to a polynomial function  

Figure 6.5 describes the procedure involved in converting the brightfield image of 

a bent capillary to a polynomial fit of the inner diameter. After we obtain the polynmical 

function, calculation of the curvature is straightforward. 
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6.6.2 Ensuring normal anchoring of nematic tori 

The procedure put forward to generate stable nematic drops with handles was used 

in the experiments pertaining to the toroidal droplets 9. In their method carbopol is used as 

the yield-stress medium to prevent the collapse and breakup of toroidal droplets. We add 

sufficient amount (>10 mM) of sodium do-decylsulfate (SDS) to the carbopol to ensure 

normal anchoring. 
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CHAPTER 7. ROLE OF DIFFERENTIAL POLARIZABILITY IN 

RAMAN SCATTERING EXPERIMENTS ON LIQUID CRYSTALS 

In this chapter we use nematics confined to rectangular cells to perform Raman 

scattering measurements of their order parameters. Polarized Raman scattering can be used 

to determine the orientational distribution function in ordered materials. Conventional 

measurements of the second (P2) and fourth moments (P4) of the orientational distribution 

function using polarized Raman scattering result in values of fourth moment which are in 

stark disagreement with theory. More recently, experimental improvements have been 

suggested with the full spectrum of depolarization ratios being used to measure the order 

parameters. This technique resulted in values of P4 which were in much better agreement 

with theory. In this chapter, we show that when an accurate value of the ratio of the 

differential polarizability is used, the conventional method is equally effective in capturing 

the values of the fourth moment of the orientational distribution function accurately. We 

postulate based on ongoing theoretical calculations by our collaborators in Mc Gill 

university that, the difference in the molecular confirmations resulting from a different 

dihedral angles in the nematic and isotropic phase are likely to blame for the different 

values of the ratio of differential polarizability in the two phases.  

 Introduction 

 Nematic liquid crystals are rod like molecules that orient on average along a 

preferred direction called the director (n). Governed by thermal fluctuations, a molecule at 

a given instant makes a polar angle β with the director axis. The orientational distribution 
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function (ODF) can then be constructed to describe the orientation of all the molecules in 

the nematic phase 106,107 . Given the cylindrical symmetry that a typical nematogen 

possesses, the orientation of the molecule can be completely described by the polar angle 

β.  The orientation distribution function can be expanded in terms of averaged Legendre 

polynomials <Pn(cosβ)> as 𝑓(𝛽) = ∑ 2𝐿+18𝜋2∞𝐿 < 𝑃𝐿(𝛽) > 𝑃𝐿(𝛽).               

Although the ODF provides the complete description of the orientation distribution 

of all molecules in the system, the second (P2) and fourth moments (P4) are sufficient to 

determine many characteristic properties of nematics 88,108-110.  While P2 can be measured 

by several experimental techniques, Polarized Raman Scattering is one of the few 

techniques that can measure both P2 and P4 simultaneously.  

Conventionally the measurements of P2 and P4 using polarized Raman 

measurements have been based on the pioneering work of Jen et al 106,107. The P2 values 

found by their method are in satisfactory agreement with theory. However, the P4 values 

so calculated were much lower than theoretical predictions 111. For some materials like 

MBBA even negative values of P4 have been reported 111,112. There was considerable 

theoretical effort to make sense of the low P4 values as simple mean field theories like 

Maier- Saupe do not permit a negative value of P4 113,114.  These corrections could not 

remedy the mismatch between the theory and experimental measurements. 

 A better experimental methodology to determine P4 

More recently Jones et al developed a framework to calculate the values of P2 and 

P4 using the full spectrum of depolarization ratios (𝑅 = 𝐼𝐼𝑙𝑙) 45. In their method the 
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depolarization ratio is measured as a function of the director orientation with respect to the 

polarizers at 5 degree intervals from 0 to 360 degrees. The value of P4 obtained by this 

method is in much better agreement with theory as compared to the method of Jen et al. 

Measurements of P2 and P4 using the method of Jones et al has been made for a number of 

systems including some biaxial nematics 108,109.  

We describe the methods of Jen et al and Jones et al in detail in the section below. 

In here we motivate what prompted us to have a deeper look at the method of Jones et al 

even though the data generated by the method gave satisfactory estimates of the order 

parameter.  

We note that while the method of Jones et al does remedy the problem of unusually 

low values of P4 resulting from conventional methods, there is need for caution while using 

this method. The method of Jones et al is based on a simple model for the intensity of the 

Raman signal as a function of the angle the director makes to the incident laser. A 

significant approximation of this method is to neglect the non-linear terms resulting from 

the coupling of the ordinary and extraordinary components on the wave-vector. The 

method of Jen et al is far cleaner in this regard as the method requires intensities only at 

angles 0 and 90 degrees, which the director makes with respect to the incident polarization. 

At these two angular positions there is no coupling of the ordinary and extraordinary 

components.  

 Comparing the methodology of Jen et al and Jones et al to determine the order 

parameters  
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Consider a nematic molecule that is making an angle β with the z-axis in the 

laboratory frame of reference. The induced dipole moment generated by an incident electric 

field (�⃗� ) can then be written as    𝜇𝑍 = 𝛼𝑍𝑍𝐸𝑍𝑐𝑜𝑠𝛽, Where, α is the polarizability tensor. 

A suitable assumption to make for rod like molecules is that the in the molecular frame of 

reference the polarizability along the long axis of the molecules is much larger than the 

two perpendicular directions (𝛼𝑧𝑧 > 𝛼𝑥𝑥 = 𝛼𝑦𝑦). Unlike spectroscopic techniques like 

Infra-red spectroscopy where in the intensity measured depends on the polarizability, the 

intensity measured in Raman spectroscopy depends on the differential polarizability 

(𝛼𝑧𝑧́ = 𝑑𝛼𝑧𝑧𝑑𝑧́ ).  The intensity of Raman scattering from a nematic medium can be expressed 

as: 𝐼𝑖𝑗(𝜃) = 𝑘 𝛼𝑖𝑗′2 ∫ 𝑓(𝛽) (𝐸𝑖𝑗(𝛽))2 sin (𝛽)𝑑𝛽∙𝛽                                              

Where, β is the angle between the director and the incident polarization. The 

notation Iij denotes the intensity with the polarizers along directions i and j in the laboratory 

frame of reference.  

The method of Jen et al involves the measurement of Raman intensity with the 

director in two configurations; with the director parallel and perpendicular to the incident 

polarization.  

         (7.1) 

    

Where, r is the ratio of the differential polarizability 𝑟 = 𝛼𝑥𝑥́𝛼𝑧𝑧́ = 𝛼𝑦𝑦́𝛼𝑧𝑧́ . The equation 

above has the three expressions used to determine three variables P2, P4 and r.  In order to 
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determine r the depolarization ratio (Riso) in the isotropic phase where P2 and P4 drop off 

to zero is evaluated and solved for r. Jen et el assume the r so calculated in the isotropic 

phase is the same in the nematic phase as well. The authors provide the justification for 

the assumption based on the reasoning that the near neighbor correlations are not affected 

by a phase transition. Being a molecular property, they argue that the value of r should be 

governed mainly by near neighbor correlations. We will show below that this assumption 

may be flawed and is critical to the measurements of the value of P4.  

 

Figure 7.1 Order parameters P2 and P4 measured by the method of Jones et al and 

Jen et al 

Figure 7.1 shows the data of P2 and P4 as obtained by the conventional method of 

Jen et al for 5CB. In accordance with several previous reports we also find that the values 

of P2 are in good agreement with theory. However, the values of P4 so determined are 

significantly lower than the theoretical expectations and for certain values of temperature 

even negative values were calculated.  

 The method of Jones et al measures the spectrum of depolarization ratio as a 

function of the angle which the director makes with the incident polarization as it varies 

from 0 to 360 degrees at fixed intervals. They derive the expression derive for the intensity 

as a function of the director angle with the polarizers. 
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Figure 7.2 a) Intensity data measured by Raman scattering experiments for parallel 

and perpendicular polarizers (b) Experimental profile of the depolarization ratio (c) 

Simulations of the profile of the depolarization ratio for different values of differential 

polarizability 

We note that in the method of Jones et al, the intensity profile of the depolarization 

ratio is curve fitted with the expression they derive.  In their procedure the value of r in the 

nematic phase is treated as a fitting parameter free to take values different from that 

calculated in the isotropic phase. We take a closer look at the intensity profiles of the data 

generated by using the method of Jones et al below. We see in Figure 7.2a that there is a 

twofold symmetry in the intensity measured with parallel polarizers and a fourfold 

symmetry in the intensity data of perpendicular polarizers. This is consistent with the 

expectation from the intensity equation of Jones et al. A characteristic experimental profile 

of the depolarization ratio R(θ) is shown in Figure 7.2b. While the global minima of this 

profile is at 0o, 180o and 360o, we observe that there are local shallow minima in between 
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the two peaks in the intensity profile.  This is a universal feature that we observed for all 

liquid crystals we performed experiments on including LCLCs. This feature of the 

observed experimental profiles proves to be quite useful in bringing about some of the 

important aspects regarding the value of the differential polarizability.  

Using the expression of Jones et al we simulate intensity profiles for different 

values of r. This is shown in Figure 7.2c. In this Figure, we note that when compared to the 

experimental intensity profile (shown in dotted lines), the simulated profiles which use 

values of r greater than -0.2, do not even qualitatively capture the profile. The shallow 

minimum in the intensity profile is only captured for values of r = -0.2. This is an important 

consideration because in the conventional method of Jen et al, the value of r, which was 

measured in the isotropic phase was around -0.03.  

 Role of differential polarizability 
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Figure 7.3 Order parameter data for the three liquid crystal 5CB, 8CB and E7 a) P2 

for 5CB b) P4 for 5CB c) P2 for E7 d) P4 for E7 e) P2 for 8CB f) P4 for 8CB  

With this understanding of how P2 P4 and “r” affect the depolarization spectrum we 

can ask a question about the method of Jones et al: If it is the better statistics that leads to 

better estimate of P4 or would the method of Jen et al work equally well provided there was 

an apriori way to determine the value of “r”. To answer that, we calculate using the values 

of depolarization ratio at angles equal to 0o and 90o, but instead of using the value of “r” 

from the isotropic phase as was the case in the old method of Jen et al we use “r” obtained 

from the fitting procedure of Jones et al. The results are shown in Figure 7.3 and it is evident 
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from the plots that for all the three liquid crystalline materials 5CB, 8CB and E7 the results 

obtained from the two methods are nearly identical. This leads us to believe that it is the 

accurate determination of the value of “r” which is the important variable in the problem, 

as opposed to better statistics which makes the method of Jones et al successful.  

These results also bring to light the lack of theoretical attention in determining the 

value of r in the nematic phase. The conventional argument that r being a molecular 

property should not vary much across the nematic-isotropic transition might require a 

revisit 106,107. It has been suggested that anisotropy of the local fields in the nematic phase 

can lead to different molecular properties 115. The authors of that paper show that when a 

liquid crystal with a small optical anisotropy in the refractive index is used, the 

conventional method is suitable in determining P4. The argument being that, the low 

anisotropy in the refractive index would result in negligible anisotropy of the local fields 

in the nematic phase. Hence, the assumption of having the same r in both the nematic and 

isotropic phase would hold true, leading to accurate determination of the order 

parameters using the conventional method. However, for conventional nematics this 

assumption might not always hold. The value of r in the nematic phase that is obtained 

from curve-fitting procedure of Jones et al is around ~ -0.2 in the nematic phase. it is 

significantly different from the value in isotropic phase which is around -0.03. This also 

bodes well with the idea that anisotropy of local fields might be an important 

consideration in determining some molecular properties in the nematic phase. While we 

do not have a clear way to think about the physics behind the different values of the r in 

the two phases, preliminary theoretical calculations using density function theory by our 
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collaborators in Mc Gill university seem to indicate that the different dihedral angle in the 

two phases could account for the observed phenomenology. 

 Conclusion 

We put forward the idea that the accurate determination of the ratio of the 

differential polarizability is the main reason for the discrepancy of the values of P4 

calculated by the conventional method of Jen et al. When the values of “r” calculated from 

the fitting procedure were used as opposed to “r” calculated from the isotropic phase, the 

results using the method of Jen et al were in excellent agreement with theory. Further the 

discontinuity of “r” at Tni highlights the need for furthere theoretical attention to this 

problem which can aid future experiments.   
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CHAPTER 8. MACROSCOPIC ALIGNMENT OF LYOTROPIC 

CHROMONIC LIQUID CRYSTALS USING PATTERNED 

SUBSTRATES 

In this chapter we describe experiments and analysis pertaining to the homogeneous planar 

alignment of LCLCs. The experiments in this chapter were performed by collaborators in KAIST. 

We provide the analysis for their experiments and provide an outlook and guidelines for future 

experiments that seek to align LCLCs using tessellated patterns, which is the most ubiquitous 

method in the literature on aligning LCLCs.   

 Introduction 

Lyotropic chromonic liquid crystals (LCLCs) are fundamentally different from 

thermotropic liquid crystals in the sense that the aspect ratio of the constituent units is 

dependent both on temperature and concentration 18,48,49,116-119. The constituent units of 

LCLCs have flat aromatic cores with water-soluble peripheral groups that enable them to 

spontaneously assemble into long anisotropic structures in aqueous solutions.  LCLCs have 

the added appeal of being water soluble, hence avoiding the complications of using volatile 

solvents for processing 120,121. Further, aligned LCLCs have many interesting properties 

like dichroism due to their anisotropy of molecular structure. Monodomains of LCLCs on 

patterned surfaces can preserve their defect free structure when dried from the solution 

state, opening up many applications like use as polarizing sheets, water based organic 

electronics and bio sensing applications 46,120-123.  
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For using LCLCs in the aforementioned applications, it is essential that there exists a 

reliable way to obtain defect free monodomains over large areas. In addition, monodomains 

of LCLCs are essential to carry out fundamental studies for measuring the physical 

properties of ordered phases such as order parameters, elastic constants, and the anisotropic 

viscosities 18,46,124. Aligning lyotropic systems and polymeric nematics has historically 

been rather difficult, thus limiting studies aimed at elucidating fundamental properties.  

Most conventional methods used for aligning small molecule thermotropic materials are 

not as effective in aligning these systems. There are a few examples, however, in the 

literature of polymeric systems that have been aligned using non-traditional methods 125-

127. Pressure driven extensional flow was used to align solutions of poly(1,4- phenylene-

2,6-benzobisthiazole) in methane sulfonic acid. The extruding flow produces alignment of 

the nematic at the bounding surfaces, which in this case was a rectangular capillary. The 

alignment can be rationalized with the argument that the velocity of the front at the center 

of capillary is much greater than at the edges, resulting in the so-called “fountain flow” 

where the fluid at the center spills out to the edges of the capillary 127,128.  Solutions of poly-

benzyl glutamates have also been aligned to produce monodomains and the elastic 

constants, various viscosities  could be determined 125.   

LCLCs bear similarity with polymeric nematics in the sense that the structural units 

leading to the formation of the nematic phase are long semiflexible rods.  Curiously both 

LCLCs and polymeric nematics are notoriously hard to align using conventional techniques 

129,130. A possible explanation for this is that the anchoring energy (W) provided by 

conventional rubbing techniques is not sufficiently high for aligning LCLCs and polymeric 

nematics. Another curious aspect about both polymeric nematics and LCLCs is that the 
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value of the twist elastic constant is significantly lower than the bend and splay elastic 

constants 18. We believe that the lower energy of twist deformation becomes very relevant 

in the anchoring energy calculations of LCLCs and polymeric nematics on grooved 

surfaces because it is possible that the bend and splay deformations relieve some of the 

energy cost via a twist mode, thus resulting in a lower effective anchoring energy. Hence 

there is a need for developing techniques that can provide for anchoring energies that are 

significantly higher than those that are used to align thermotropic materials.  

Despite the fact that LCLCs have been studied for over a decade or two, reliable 

methods for forming stable monodomains are few. Homogeneous alignment of chromonic 

liquid crystals has been obtained by using an azo-polymer thin film that was irradiated with 

linearly polarized light 131, by the normal rubbing process as well as evaporating a SiOx 

layer 130 has been reported.  Superfine abrasive has been used to rub glass substrates and 

achieve planar anchoring of LCLCs providing weak anchoring 18,132. Rubbed layer of 

polyamide has also been used to align LCLCs 19. Very recently alignment of LCLCs has 

been demonstrated using rubbing and topographic patterns using nanoimprinting 62,133 . 

Interestingly when molecular grooves are small enough, LCLCs align perpendicular to the 

rubbing direction 133. Nanoimprinting is used to generate micro-channels which align 

LCLCs along the direction of the channels 62. Further, several interesting features in the 

biphasic regime are reported by the same authors when LCLCs are confined in these 

tessellated patterns. 

Berreman’s theory predicts that the anchoring energy increases monotonically as a 

function of the amplitude (A) of the grooves used to align nematics 134. This was our 

motivation initially for creating large amplitude patterns using secondary sputtering 
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lithography (SSL). The failure of conventional rubbing techniques to align LCLCs seems 

to suggest that the amplitude of grooves created by rubbing is not large enough to align 

LCLCs 135. We have shown in a prior publication that the most common thermotropic 

liquid crystal, 5CB is well-aligned on surface patterned bifunctional ITO substrates using 

SSL 136. In this report we use SSL to fabricate nano-sized line patterns of high aspect ratio 

(ca.15), leading to a tessellated surface that provides sufficiently high anchoring energy for 

aligning LCLCs. We note that the experimental part is similar to the previously reported 

work using nanoimprinting 62. The anchoring strength is varied by controlling the height 

and amplitude of the tessellated patterns (varying qA).  An extension of the Berreman 

theory is used to calculate the anchoring energy. Our study provides a guideline for future 

experiments on LCLCs for the range of anchoring energies that can provide stable and 

good alignment. With the analysis presented here we contextualize some of the results 

present in the literature on aligning LCLCs in terms of the anchoring energy (via qA) and 

the quality of alignment.   

 Fabrication of high aspect-ratio tessellated patterns 

Fabrication of the template began with spin coating a thin polystyrene (PS) film (8 wt% 

of PS (MW=18,000 g/mol, Sigma Aldrich) solution in anhydrous toluene (Sigma Aldrich)) 

on an ITO surface. A pre-patterned poly(dimethylsiloxane) (PDMS) mold with a 

wavelength (2π/λ) of grooves equal to 500 nm and depth 600 nm was put on the PS coated 

surface and heated above the glass transition temperature to drive the PS polymer into the 

spaces of the mold patterns by capillary force. After cooling to room temperature, the mold 

was removed and PS line arrays were formed on the substrate (Fig. 8.1 a). The PS layer 

that remained on the bottom of the imprinted structure was subsequently removed by 
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O2/CF4 reactive-ion etching (RIE) operated at a flow of 40/60 sccm, a chamber pressure of 

20 mTorr, and an RF power of 80 W (Fig. 9.1 b). The target material layer, ITO, exposed 

at the bottom was etched by Ar+ ion milling process using the PS layer as a mask, thereby 

generating line wall structures along the PS pattern shape (Fig. 8.1c). The PS remaining on 

top of the target material pattern was completely removed by secondary O2 RIE operation 

at a flow of 100 sccm (Fig. 8.1d). The line amplitude and the wavelength of the pattern can 

be controlled by employing numerous etching conditions to produce high resolution ITO 

line patterns over a 5 mm x 5 mm area.  

 

Figure 8.1 Scheme of the fabrication of LC cells using secondary sputtering 

lithography. (a) Line patterns are transferred from the PDMS mold to spin-coated 

PS substrates. (b) Residual PS layer is etched by RIE. (c) Formation of ITO walls by 

secondary sputtering llithography. (d) Removal of the PS template using O2 plasma, 

resulting in ITO line patterns. (e) Control of the cell gap with PS micro-beads and 

NOA 63. (f) Upper substrate is placed parallel to the bottom substrate. NOA 63 is 

cured by UV rays. (g) The cell is filled with SSY using capillary force 

The structural integrity of the patterns was tested using atomic force microscopy 

(AFM) and scanning electron microscopy (SEM) imaging. Fig. 8.2a and Fig. 8.2b show 

the 2D images of a substrate, observed using the noncontact mode of AFM and SEM. In 
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these representative images, the height of the patterns as measured by AFM was 250 nm 

and the width of lines is around 20 nm from SEM imaging. Fig. 8.2c to Fig. 9.2f show 

polarized optical microscope (POM) images of the cells filled with Sunset Yellow FCF 

(SSY) and disodium cromoglycate (DSCG). After sealing the cell with UV curable 

polymer (Norland Optical Adhesive 63), the cells are heated above the nematic-isotropic 

transition temperature (TNI) to erase any effects of flow induced alignment.  

 Polarized optical microscopy observations 

 

Figure 8.2 Alignment of SSY on patterned surfaces. (a) AFM images of the line 

patterns showing the periodicity and the amplitude of patterns. (b) An SEM image of 

the patterns. (c) SSY under crossed polarizers with the director parallel to the 

polarizer. (d) SSY with the director making an angle of 45° with the polarizers. (e) 

DSCG under crossed polarizers with the director parallel to the polarizer. (f) DSCG 

with the director making an angle of 45° with the polarizers. (g) Schematic of the 

alignment of the chromonics along the length of the patterns  
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It is clear from Fig. 8.2 that the cells show a 90o periodicity under crossed polarizers 

and have the maximum intensity when the sample makes an angle 45o with the polarizers. 

This confirms that the alignment caused by the line patterns is efficient in aligning LCLCs. 

Further to test the efficacy of the method, another LCLC, DSCG, was filled into the 

patterned structures (Fig. 9.2e and Fig. 9.2f). The cell with DSCG is fabricated with 

substrates having a groove height of 180 nm and the wavelength of the grooves is 500 nm. 

The behavior of DSCG is similar to SSY in the POM images and shows very good 

alignment on the surface of the periodic patterns. 

 Using an extension of Bereman’s theory to explain the experimental 

observations 

To better understand the alignment and to get an estimate of the anchoring strength 

created by the patterns, we employed Berreman’s theory as a first approximation. In his 

seminal work, Berreman modeled the grooves to be sinusoidal and assumed that the 

amplitude of the grooves was much smaller than the period (wavelength) of the grooves 

134. Berreman also used a single constant approximation to estimate the cost of the elastic 

deformation. None of these assumptions is strictly valid in our experiments. We note that 

the Berreman theory gives an accurate estimate of the energy only when the amplitude of 

the grooves is comparable to the wavelength (q = 2π/λ ) of the pattern but overestimates 

the energy for (qA> 1) 100. The approximation of qA<<1 is clearly invalidated in many 

experimental conditions (for example, when A= 300 nm and nm). We evaluate the 

impact of the approximation on the anchoring energy from the numerical calculations 

reported by Barbero, et al 100. 
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The surface profile in our studies can be treated as a two dimensional sinusoidal profile 

in the x-z plane given by   

z0 = A(1 + cos (qx))                                    (8.1) 

In a previous study, it has been shown that the bend and splay elastic constants of 

LCLCs are quite close to one another, which allows for simplification of the problem with 

a single constant approximation 18. The total cost of deformation, F, can then be written as: 
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Using the Leibnitz rule, it is straightforward to see that the solution of which 
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with boundary conditions given by: 

0lim  z   and 0 = arctan(qA sin (qx))   (8.4) 

When, qA< 1, the problem reduces to Berreman’s original treatment. However, in our 

case, that assumption is clearly invalid. Analytical treatment of the problem becomes 

untenable when qA~ 1, hence one has to resort to numerical methods as was done by 

Barbero, et al 100. We use their numerical results to estimate the anchoring energies for our 

experimental system. 
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Figure 8.3 Calculated values of anchoring energy as a function of qA. Accompanying 

POM images show the integrity of alignment at different qA values. Notice that when 

qA < 3, unaligned regions are present indicating that the alignment is not perfect  

As shown in Fig. 8.3, the values of the anchoring energies calculated from the 

Berreman’s theory are significantly overestimated in the cases where qA>1. A crucial result 

to note is that unlike the Berreman analysis, the anchoring energy obtained by the 

numerical procedure levels off at around qA= 3. Hence the anchoring energy cannot be 

increased indefinitely by just increasing the height of the patterns. Also the plot in Fig 9.3 

provides a rather convincing picture of why conventional rubbing techniques do not work 

well for aligning LCLCs. As can be seen in Fig 9.3, with the help of the accompanying 

POM images, we obtain good alignment when qA ~ 3. This result leads us to postulate that 

LCLCs cannot be aligned by conventional rubbing techniques as the amplitude of grooves 

caused by rubbing is much smaller than those used in our patterns 135. The anchoring energy 
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corresponding to qA~ 3 is 10-4 N/m. Anchoring energy around this value appears to be the 

cut off beyond which one can expect good homogeneous alignment of LCLCs. Comparing 

this with our previous results of using SSL to align 5CB, we note that the amplitude of the 

patterns needed to align LCLCs (A~250 nm) is much larger than what is needed to align 

thermotropic liquid crystals (A~100 nm) 13,136. This corresponds to the anchoring energy 

needed to align LCLCs (10-4 N/m) is an order of magnitude larger than that needed to align 

thermotropic liquid crystals (10-5 N/m). Further, using the same analysis we can explain 

the weak anchoring of LCLCs (~ 10-6 N/m) obtained by using superfine abrasive (qA <<1) 

27,132. This result again highlights the importance of the use of SSL to achieve the high 

aspect ratio patterns that are essential to achieve anchoring energies large enough to align 

LCLCs.    

 Conclusion 

In conclusion, we have successfully demonstrated a way to reliably align LCLCs using 

SSL.  The SSL technique is utilized to make patterns that impose a sufficiently high 

anchoring strength on the LCLCs to enable good alignment. We conclude that the 

anchoring strength imposed by this technique (10-4 N/m) is higher than what is obtained 

from conventional rubbing techniques thus enabling the alignment. We observe with the 

help of POM that anchoring strength of about 10-4 appears to be a cutoff strength below 

which perfect alignment of LCLCs is not possible. The value of 10-4 N/m would serve as a 

cut off anchoring energy which future experiments seeking to align LCLCs should try to 

attain to achieve good alignment. Also when the appropriate corrections to the Berreman’s 

theory are taken into consideration, it is noted that the anchoring energy using this 

technique levels off beyond (qA=3), suggesting one cannot achieve higher anchoring 
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strengths just simply by increasing the amplitude of the patterns. Further we postulate that 

the higher anchoring energy of LCLCs and polymeric nematics is related to their twist 

elastic constant being about an order of magnitude lower than the bend or splay. Future 

applications focusing on developing an aligned liquid crystal as a polarizer using SSL 

which can cover broad visible wavelength by mixing various LCLCs looks very promising. 

The technique of aligning LCLCs with patterns can also be extended to other fields like 

bio-sensors.  
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