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M A J O R A R T I C L E

Role of T Cells in Innate and Adaptive Immunity
against Murine Burkholderia pseudomallei Infection

Ashraful Haque,1 Anna Easton,1 Debbie Smith,1 Anne O’Garra,2 Nico Van Rooijen,4 Ganjana Lertmemongkolchai,5

Richard W. Titball,3 and Gregory J. Bancroft1

1Immunology Unit, Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, and 2National Institute

for Medical Research, Mill Hill, London, and 3Defence, Science and Technology Laboratory, Salisbury, United Kingdom; 4Department of Molecular

Cell Biology, Vrije Universiteit, Amsterdam, The Netherlands; 5Department of Clinical Immunology, Khon Kaen University, Khon Kaen, Thailand

Antigen-specific T cells are important sources of interferon (IFN)–g for acquired immunity to intracellular

pathogens, but they can also produce IFN-g directly via a “bystander” activation pathway in response to

proinflammatory cytokines. We investigated the in vivo role of cytokine- versus antigen-mediated T cell

activation in resistance to the pathogenic bacterium Burkholderia pseudomallei. IFN-g, interleukin (IL)–12,

and IL-18 were essential for initial bacterial control in infected mice. B. pseudomallei infection rapidly generated

a potent IFN-g response from natural killer (NK) cells, NK T cells, conventional T cells, and other cell types

within 16 h after infection, in an IL-12– and IL-18–dependent manner. However, early T cell– and NK cell–

derived IFN-g responses were functionally redundant in cell depletion studies, with IFN-g produced by other

cell types, such as major histocompatibility complex class IIint F4/80+ macrophages being sufficient for initial

resistance. In contrast, B. pseudomallei–specific CD4+ T cells played an important role during the later stage

of infection. Thus, the T cell response to primary B. pseudomallei infection is biphasic, an early cytokine-

induced phase in which T cells appear to be functionally redundant for initial bacterial clearance, followed

by a later antigen-induced phase in which B. pseudomallei–specific T cells, in particular CD4+ T cells, are

important for host resistance.

Burkholderia pseudomallei, the causative agent of me-

lioidosis, is a gram-negative bacterium that is endemic

in areas of Southeast Asia and northern Australia [1].

Clinical manifestations vary from acute infection to

chronic localized pathologic symptoms to latent infec-

tion that can reactivate decades later [2]. There is no

vaccine, and mortality in acute cases can exceed 40%,

with 10%–15% of survivors relapsing despite prolonged

treatment [2]. Although serologic evidence of exposure
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to B. pseudomallei is found in the majority of children

living in areas where the organism is endemic [3], it is

not known what immune mechanisms or defects confer

resistance versus susceptibility to active disease. B. pseu-

domallei is classified as a class B potential agent for

biological warfare and terrorism. A better understand-

ing of immune responses to B. pseudomallei is needed

for the generation of a novel vaccine or immunother-

apeutic approaches for melioidosis.

B. pseudomallei is a facultative intracellular pathogen

that, like Listeria monocytogenes, resides in the host cell

cytosol after lysis of the phagosome [4, 5]. Individuals

with severe melioidosis have elevated concentrations of

many serum cytokines, such as interferon (IFN)–g, in-

terleukin (IL)–12, and IL-18 [6], and restimulation of

peripheral blood mononuclear cells from recovering

patients generates an antigen-specific IFN-g immune

response to B. pseudomallei [7]. We and others have

developed mouse models to study the immunological

mechanisms of protection against B. pseudomallei [4,

8–10]. Using cytokine neutralizing monoclonal anti-
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Figure 1. Susceptibility of 57BL/6 mice deficient in interferon (IFN)–g

interleukin (IL)–12p35, IL-12p40, or IL-18 to Burkholderia pseudomallei

infection. The data depict the survival of (A) various gene knockout (KO)

mice or (B) mice treated with anti–IL-18 receptor (R) antibody (Ab) vs.

isotype control Ab–treated C57BL/6 mice, ( mice/group), infectedn p 5–6

intraperitoneally with cfu of B. pseudomallei strain 576 per mouse.61 � 10

Data are representative of at least 2 separate experiments with similar

results.

bodies (MAbs), we have shown that IFN-g is essential for re-

sistance to B. pseudomallei [9]. These clinical and experimental

observations indicates that B. pseudomallei is a potent activator

of cell-mediated immunity; but, to date, the in vivo source(s)

of IFN-g and the role of T cells in resistance to infection have

not been defined.

In other models of primary infection, multiple cell types

produce IFN-g [11–14]. NK cells, NK T cells, and macrophages

can contribute to early resistance through IFN-g production

[15–17]. Antigen-specific T cells play well-documented roles in

IFN-g–dependent protection against intracellular pathogens

[18–20]. However, there is growing evidence that conventional

T cell receptor (TCR) a/b+ CD4+ and CD8+ T cells can also

produce IFN-g in the absence of cognate antigen in response

to IL-12 and IL-18 [21–25]. However, the relative importance

in vivo of these 2 pathways of T cell activation has not pre-

viously been examined in any model of infection. We previously

demonstrated that B. pseudomallei and L. monocytogenes stim-

ulate T cells (and NK cells) to produce IFN-g in an IL-12– and

IL-18–dependent manner in vitro [23]. We investigated cyto-

kine-mediated T cell (and NK cell) production of IFN-g in

vivo after B. pseudomallei infection and determined its impor-

tance for the initial control of bacterial growth. In addition,

we tested the hypothesis that antigen-specific T cells may be

detected later during infection and whether they contribute to

resistance against primary melioidosis.

MATERIALS AND METHODS

Bacterial strains and culture conditions. B. pseudomallei

strain 576, isolated from a patient with melioidosis in Thailand,

was obtained from Ty Pitt (Health Protection Agency, London,

UK) [26–28]. Bacteria were cultured in tryptone soy (TS) broth

or TS agar. Bacteria were grown statically for 24–48 h at 37�C,

collected by centrifugation, washed in PBS, and frozen at �80�C

in PBS that contained 30% glycerol. Dead B. pseudomallei strain

576 organisms were prepared by g-irradiation (6500 Gy) of

30% glycerol stocks. Once they were confirmed as nonviable

by plating, bacteria were washed, resuspended in RPMI 1640

medium (Sigma), and stored at �80�C. All procedures using

live bacteria were performed under Advisory Committee on

Dangerous Pathogens category 3 containment.

Mice. Female 8–10-week-old C57BL/6 (B6), B6 IFN-g�/�,

B6 IL-12p35�/�, B6 IL-12p40�/�, B6 mMT, and B6 rag1�/� mice,

bred at the London School of Hygiene and Tropical Medicine

(LSHTM), were housed under specific pathogen–free condi-

tions, with free access to food and water. Mouse experiments

were performed in accordance with the Animals (Scientific Pro-

cedures) Act of 1986 and were approved by the local ethical

review committee.

Antibodies and in vivo cell depletion. Anti-CD4 (YTS191)

and anti-CD8 (YTS169) MAbs and isotype control Mac-5 an-

tibodies were obtained from Roman Lukaszewski (Defence Sci-

ence and Technology Laboratory, Salisbury, UK). Mice were

administered 500 mg of MAb intraperitoneally (ip) 4 days before

infection and 250 mg 1 day before infection. Depletion was

maintained by further administration of 250 mg of MAb every

3 days after infection. NK cells were depleted by the intravenous

(iv) injection of 25–30 mL of rabbit anti-asialoGM1 polyclonal

antibody per mouse (endotoxin levels, 380 ng/mL; Cedarlane

Labs) 1 day before infection. The efficiency of depletions in

the spleen at the time of infection and time points thereafter

was 199% for CD4+ T cells with YTS191, 197% for CD8+ cells

with YTS169, and 198% for NK cells with anti-asialoGM1, as

verified by flow-cytometric analysis of splenocytes with non-

competing anti-CD4 MAb RM4-5, anti-CD8 MAb 53–6.7, and

anti-NK1.1 (BD Biosciences). Macrophages were depleted by iv

administration of clodronate liposomes. The efficiency of sple-

nic F4/80+ macrophage depletion was 199% at day 3 after treat-

ment and 190% at day 7 after treatment. [29, 30]. Clodronate

was a gift from Roche Diagnostics. Clodronate liposomes were

prepared as described elsewhere [30]. The MAbs anti–b-galac-

tosidase (isotype control, GL117), anti–IL-12 (C17.8; provided

by Helena Helmby, Department of Infectious and Tropical Dis-

eases, LSHTM, and originally obtained from G. Trinchieri, Na-

tional Institute of Allergy and Infectious Diseases, Bethesda,

Maryland [31]), and anti–IL-18 receptor (R) (TC30-28E3; pro-

vided by Anne O’Garra, National Institute for Medical Re-

search, London, UK, and originally produced at DNAX Re-

search Institute, Palo Alto, CA [32]), were administered (1 mg)

ip 6 h before infection.

Infection of mice. Bacteria were thawed, diluted in PBS,
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Figure 2. Induction of an early, transient, splenic interferon (IFN)–g response from multiple cell types after Burkholderia pseudomallei infection.

C57BL/6 mice ( ) were injected intraperitoneally with saline or cfu of B. pseudomallei strain 576. A, IFN-g production at 16 or 40 h7n p 5 1 � 10

after infection in splenocytes, analyzed directly ex vivo by intracellular cytokine staining. B, IFN-g–producing splenocytes phenotyped by flow-cytometric

analysis 16 h after infection: NK cells (CD3�
�NK1.1+), NK T cells (CD3�

+NK1.1+), T cells (CD3�
+ NK1.1�), and others (CD3�

� NK1.1�). C, Proportion

of splenic NK cells (CD3�
�NK1.1+) and T cells (CD3�

+ NK1.1�) making up the total IFN-g response at 16 h after infection. Nos. in each quadrant

indicate the percentage of gated cells in that quadrant. Data are representative of at least 5 independent experiments.

and administered ip (0.2 mL). For each infection, the inoculum

was plated onto TS agar plates to confirm the inoculation dose.

Determination of organ bacterial burden. Spleens were

aseptically removed and homogenized in sterile PBS or RPMI

1640 (Sigma) by passing them through 70-mm cell strainers,

using a syringe plunger. Dilutions of tissue homogenates were

plated onto TS agar and incubated at 37�C; colonies were enu-

merated after 24 h.

Preparation and stimulation of murine splenocytes in vitro.

Spleens were removed aseptically, and splenocyte suspensions

were produced by passing them through sterile 70-mm cell

strainers. Erythrocytes were lysed, and cells were washed and
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Figure 3. Interleukin (IL)–12– and IL-18–dependent early interferon

(IFN)–g production by T cells and NK cells during Burkholderia pseudomal-

lei infection. C57BL/6 mice ( mice/group) were treated with anti–n p 5

IL-12 antibodies (Abs), anti–IL-18-receptor (R) Abs, or isotype control Abs

1 day before intraperitoneal injection with cfu of B. pseudomallei71 � 10

strain 576 per mouse. At 16 h after infection, spleens were removed,

and T cells (CD3�
+NK1.1�) (A) and NK cells (CD3�

�NK1.1+) (B) from

individual mice were analyzed for IFN-g production by intracellular cy-

tokine staining. Graphs indicate the percentage of each cell type producing

IFN-g. Horizontal lines indicate median percentages per group. *P ! .05;

*** . Data are representative of 2 independent experiments.P ! .0001

Figure 4. Increased bacterial organ loads early after infection with Burk-

holderia pseudomallei in mice deficient in interferon (IFN)–g but not in mice

deficient in either T or NK cells. The data depict splenic bacterial burdens

in mice ( mice/group) deficient in IFN-g (A), CD4+/ CD8+ T cells (B),n p 5

NK cells (treated with anti-asialoGM1) (C), or B and T cells (rag1�/�) (B

and C) after intraperitoneal infection with cfu of B. pseudomallei61 � 10

strain 576. The cross in panel A illustrates that these mice all died of

infection on day 2, before splenic bacterial burdens could be determined

in this particular experiment. The dotted line in each graph illustrates the

detection limit of 100 cfu/spleen. Data are representative of 2 independent

experiments. Ab, antibody; NS, not statistically significant.

resuspended in RPMI 1640 (Life Technologies) supplemented

with 10% fetal calf serum (FCS), 10 mmol/L l-glutamine, 200

U/mL penicillin, 200 mg/mL streptomycin, and 50 mmol/L 2-

mercaptoethanol. Cells were plated in U-bottom 96-well plates

( cells/mL), restimulated, and incubated for 18–24 h62.5 � 10

at 37�C in 5% CO2.

Flow-cytometric analysis for cell-surface marker and intra-

cellular IFN-g staining. Cells intended for intracellular IFN-

g staining were treated with brefeldin A (10 mg/mL; Sigma) for

3 h. Cells were washed in 1% FCS-PBS, and nonspecific an-

tibody binding was blocked with anti-CD16/32 (1mg/mL, 2.4G2;

BD Biosciences). MAbs used for cell-surface staining were fluo-

rescein isothiocyanate (FITC)–anti-CD4 (RM4-5), FITC–anti-

CD8 (53–6.7), FITC–anti-7/4, FITC–anti-CD11b (M1/70.15)

(Caltag Laboratories), phycoerythrin (PE)–anti-NK1.1 (PK136),

PE–anti-CD49b (DX5), PE–anti-Gr1 (RB6-8C5), PE–anti-F4/

80, FITC-0 and peridinin-chlorophyll-protein–anti-CD3� (145-

2C11), and allophycocyanin (APC)–anti-CD11c (HL3) (BD

Biosciences). Cells were stained with antibodies, washed twice,

and fixed for 20 min in 2% paraformaldehyde. Cells were per-

meabilized in 0.1% saponin–1% FCS-PBS, incubated with

APC– or PE–anti–IFN-g (0.5 mg/tube) (XMG1.2; BD Biosci-

ences), washed twice, and fixed overnight in 2% paraformal-

dehyde. Cells were analyzed using a FACScalibur instrument

with CellQuest software (version 3.3; BD Biosciences) under

category 3 aerosol biocontainment.

Statistical analysis. Survival curves were compared using

log rank Kaplan-Meier tests. Student’s t test was used for all

other statistical tests. was considered to be statisticallyP ! .05

significant.

RESULTS

Necessity of IFN-g, IL-12, and IL-18 for protection against

primary B. pseudomallei infection. C57BL/6 mice are rela-

tively resistant to B. pseudomallei ip infection [4, 8], which

results in rapid phagocytosis and transport of bacteria to the

spleen [33, 34], so this was chosen as an appropriate route for

the assessment of resistance to B. pseudomallei infection. In-

fection with cfu of B. pseudomallei strain 576 per mouse61 � 10

did not result in any deaths within the first 20 days of infection.

C57BL/6 mice cleared most bacteria from the spleen within the

first few days of an ip infection, but they ultimately died and

had abscesses that contained B. pseudomallei in multiple organs.

The natural resistance of C57BL/6 mice made them a suitable

model for the study of mechanisms of host resistance to pri-

mary B. pseudomallei infection.

To identify host factors controlling initial resistance, C57BL/

6 or isogenic IFN-g�/�, IL-12p35�/�, or IL-12p40�/� mice were

infected with B. pseudomallei and monitored for survival. Wild-

type mice died starting 30 days after infection, whereas IFN-

g�/�, IL-12p35�/�, and IL-12p40�/� mice all died within the

first 4 days of infection (figure 1A). To address the importance

of IL-18 in resistance, C57BL/6 mice were treated with anti–

IL-18R antibodies or with an isotype control antibody before

infection. Blockade of the IL-18R rendered C57BL/6 mice more

susceptible to B. pseudomallei infection than mice given isotype-

matched control antibodies ( ); anti–IL-18R–treated miceP ! .01



374 • JID 2006:193 (1 February) • Haque et al.

Figure 5. Initial control of Burkholderia pseudomallei in the spleen in

the absence of both T and NK cell–derived interferon (IFN)–g. A, Splenic

bacterial burdens 2 days after intraperitoneal (ip) infection with 61 � 10

cfu of B. pseudomallei strain 576 per mouse in individual C57BL/6 and

isogenic rag1�/� mice treated with control serum or depleted of NK cells

with anti-asialoGM1 ( mice/group). B, No. of IFN-g–producing sple-n p 5

nocytes from individual mice ( mice/group) 16 h after ip infectionn p 5

with cfu of B. pseudomallei strain 576 per mouse. Horizontal lines71 � 10

in each group indicate median values. *** . Data are representativeP ! .0001

of 2 independent experiments NS, not statistically significant.

died starting 3 days after infection, with a median survival time

(MST) of 13 days, compared with 140 days for isotype anti-

body–treated mice (figure 1B). Together, these results demon-

strate that IFN-g and the IFN-g–inducing cytokines IL-12 and

IL-18 are essential for initial resistance to B. pseudomallei.

Rapid IL-12– and IL-18–dependent T cell– and NK cell–

derived IFN-g responses in vivo induced by B. pseudomallei

infection. To investigate the cellular source(s) of the protec-

tive IFN-g response, splenocytes were harvested from saline-

treated or B. pseudomallei–infected mice, incubated in brefeldin

A (in the absence of any in vitro stimulation), and assayed for

IFN-g production by flow-cytometric analysis. Control cells

from mice injected with saline exhibited negligible levels of

IFN-g production at all time points (figure 2A). Splenocytes

from mice infected with cfu/mouse for 16 h displayed71 � 10

strong IFN-g production; ∼1.3% of recovered splenocytes pro-

duced IFN-g (figure 2A). Splenic IFN-g responses after infec-

tion with cfu/mouse were qualitatively identical but of61 � 10

a lower magnitude than responses to infection with cfu/71 � 10

mouse (data not shown). The magnitude of the IFN-g response

at 16 h after infection was markedly reduced by 40 h after

infection (figure 2A). Flow-cytometric analysis at 16 h after

infection indicated that the majority of IFN-g–producing cells

were NK cells (CD3�
�/NK1.1+), with additional contributions

from T cells (CD3�
+/NK1.1�), NK T cells (CD3�

+/NK1.1+),

and CD3�
�/NK1.1� cells (figure 2B). Approximately 1% of T

cells and ∼80% of NK cells produced IFN-g at 16 h after in-

fection (figure 2C).

To investigate the dependency of in vivo IFN-g responses on

IL-12 and IL-18, C57BL/6 mice were treated with anti–IL-12 or

anti–IL-18R MAbs before infection. Intracellular cytokine stain-

ing at 16 h after infection revealed that the splenic T cell IFN-

g response was reduced by 91% after IL-12 neutralization (P !

) and by 35% after IL-18R blockade ( ) (figure 3A)..0001 P ! .05

Similarly, a 93% ( ) and 16% ( ) reduction in theP ! .0001 P ! .05

NK cell–derived IFN-g response occurred with IL-12 and IL-

18R blockade, respectively (figure 3B). Thus, B. pseudomallei in-

fection induces a rapid, transient, splenic IFN-g response in vivo

that is primarily derived from NK cells and T cells and is strongly

IL-12 dependent but weakly IL-18 dependent.

Functional redundancy of T cell– and NK cell–derived IFN-

g for initial control of B. pseudomallei infection. To de-

fine the contribution of each IFN-g–producing cell type to

resistance, we studied bacterial clearance from the spleens of

mice after the depletion of IFN-g, T cell subsets, or NK cells.

C57BL/6 mice had bacteria in their spleens at day 141 � 10

after infection; this decreased to 100 bacteria by day 3 (figure

4A). As was predicted by the in vivo survival data (figure 1),

IFN-g�/� mice were unable to control bacterial replication, hav-

ing 100-fold more bacteria in their spleens by day 1, and all

of them died of infection by day 2 (figure 4A).

In contrast, T and B cell–deficient rag1�/� mice, which had

been depleted of both CD4+ (199% depletion) and CD8+ (197%

depletion) T cells by MAbs, and NK cell–depleted (with anti-

asialoGM1; 198% depletion) mice were as proficient as C57BL/

6 mice at controlling bacterial growth in the spleen (figure 4B

and 4C). Surprisingly, the combined depletion of both T cells

(197% depletion) and NK cells (199% depletion by anti-

asialoGM1 treatment of rag1�/� mice) also had no effect on

the efficiency of bacterial clearance at 48 h after infection (figure
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Figure 6. Major histocompatibility complex (MHC) class IIint, clodronate-sensitive macrophages as an in vivo source of early interferon (IFN)–g. A,

Spleen cells from rag1�/� mice ( mice/group), infected intraperitoneally for 16 h with cfu of Burkholderia pseudomallei strain 576 per7n p 5 1 � 10

mouse, analyzed by flow-cytometric analysis for F4/80 and MHC class II expression. B, Splenic F4/80+ cells analyzed by flow-cytometric analysis for

susceptibility to depletion by clodronate-containing liposomes in uninfected rag1�/� mice ( ) treated with saline or clodronate-containing liposomen p 5

7 days before infection. C, Saline and clodronate-treated mice ( ), infected as described in panel A, and their NK cell–derived IFN-g responsesn p 5

16 h later. Data are representative of 2 independent experiments showing similar results.

5A). The determination of IFN-g responses at 16 h after in-

fection revealed a 76% reduction in total IFN-g–producing

splenocytes after NK cell depletion in C57BL/6 mice (figure

5B), which is consistent with the frequency of these cells de-

termined by direct assay in figure 2B. NK cell depletion of

rag1�/� mice reduced the IFN-g response by 95% (figure 5B).

Therefore, although IFN-g production is essential for pre-

venting rapid death, there is extensive redundancy in the source

of this cytokine, and as little as 5% of this response is sufficient

to provide initial control of B. pseudomallei replication in vivo.

Macrophage production of IFN-g after infection with B.

pseudomallei. Despite the elimination of both NK cells and

T cells, anti-asialoGM1–treated rag1�/� mice expressed low but

detectable numbers of NK1.1� IFN-g–producing cells (figure

5B and data not shown), which suggests that IFN-g production

by nonlymphoid cells might compensate for the loss of T cells

and NK cells in these mice. Further phenotyping of these sple-

nocytes from B. pseudomallei–infected rag1�/� mice identified

major histocompatibility complex (MHC) class IIint F4/80+ cells

and MHC class IIint F4/80� cells as 2 further sources of IFN-

g (figure 6A). In contrast, we observed no IFN-g production

by MHC class IIhi dendritic cells (DCs) (figure 6A) or any cells

expressing CD11c, CD11b, or Gr1 (data not shown). The treat-

ment of rag1�/� mice with clodronate-containing liposomes 7
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Figure 7. Increased susceptibility to Burkholderia pseudomallei later

in primary infection in mice deficient in T cells but not B cells. C57BL/

6 mice and C57BL/6 rag1�/� mice (A) or C57BL/6 mice and C57BL/6 mMT

mice (B) were infected intraperitoneally with cfu of B. pseudo-61 � 10

mallei strain 576 per mouse and monitored for survival. C, C57BL/6 mice

( mice/group), treated with anti-CD4+– and/or anti-CD8+–depletingn p 10

antibodies or the isotype antibody (Mac-5), infected with cfu/55 � 10

mouse of B. pseudomallei strain 576, and monitored for subsequent sur-

vival. * ; ** ; and *** vs. Mac-5. Experiments wereP ! .05 P ! .001 P ! .0001

performed twice with similar results (minimum of 5 mice/group). NS, not

statistically significant.

Figure 8. Detection of Burkholderia pseudomallei (Bps)–specific T cells in the spleens of infected mice. C57BL/6 mice ( ) were infectedn p 5

intraperitoneally with cfu of Bps strain 576 per mouse. Control mice ( ) were injected with pyrogen-free saline. Ten days, later spleen61 � 10 n p 5

cells from infected and control mice were stimulated in vitro overnight with dead B. pseudomallei strain 576 in the presence or absence of cyclosporin

A (CsA). Interferon (IFN)–g production by CD3�
+CD4+ and CD3�

+CD8+ T cells was assessed by intracellular cytokine staining. Data indicate the mean

response from 5 individual mice � 1 SE and are representative of 2 independent experiments showing similar results.

days before infection (which generated spleens lacking marginal

zone and red pulp macrophages but not DCs; data not shown)

eliminated 190% of F4/80+ cells, which suggests that MHC class

IIint F4/80+ cells are phagocytic (figure 6B). Furthermore, clo-

dronate treatment 7 days before infection reduced by 89% the

amount of IFN-g produced by individual NK cells 16 h after

infection; this was measured as a decrease in the geometric

mean � SD IFN-g fluorescence from in control229.4 � 31.4

mice to in clodronate-treated mice (figure 6C).25.8 � 15.7

Taken together, these data suggest that B. pseudomallei infec-

tion stimulates macrophages to produce IFN-g in vivo and that,

in the absence of macrophages, the efficiency of IFN-g pro-

duction by NK cells is substantially reduced.

Protective role of T cells during the later phase of B. pseu-

domallei infection. Although T cells were dispensable for the

initial control of B. pseudomallei, we investigated their role

during later stages of infection. rag1�/� mice, which lack B and

T cells, died of infection more rapidly (MST, 13 days) than did

wild-type mice (MST, 26 days; ) (figure 7A). In con-P p .002

trast, mMT mice, which lack B cells, were as susceptible as wild-

type mice, which indicates that B cells are not essential for

primary resistance (figure 7B). To compare the contributions

of CD4+ and CD8+ T cell subsets in this protection, mice were

depleted of CD4+ T cells (CD4�) with 199% efficiency, CD8+

T cells (CD8�) with 197% efficiency, or both (CD4�/8�) before

infection and for 50 days after infection (figure 7C). The MST

was 58 days for control antibody–treated mice, 22 days for CD4�

mice ( ), and 20.5 days for CD4�/8� mice (Pp .0004).P p .0373

Although CD8� mice had a shorter MST than did control mice

(58 vs. 32.5 days), this was not statistically significant (Pp .1996).

Thus, T cells contribute to resistance against B. pseudomallei dur-

ing the later stages of infection, with CD4+ T cells, rather than

CD8+ T cells, playing the dominant role under these conditions.

To test whether infection with B. pseudomallei primes anti-

gen-specific T cells, splenocytes from C57BL/6 mice, obtained

10 days after infection, were restimulated in vitro with killed

B. pseudomallei (1 bacterium/10 splenocytes) and analyzed for

IFN-g production. An IFN-g response to dead bacteria was

observed in splenocytes from infected but not uninfected mice,

with CD4+ and CD8+ T cells producing IFN-g (figure 8). The

majority of this IFN-g response was inhibited by the addition

of cyclosporin A (figure 8), which blocks TCR-mediated but

not cytokine receptor–mediated T cell activation [35]. Taken
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together, these data indicate that primary infection with B.

pseudomallei primes populations of antigen-specific CD4+ and

CD8+ T cells and suggests that CD4+ T cells, in particular, play

an important role in protection against infection.

DISCUSSION

We used a mouse model of infection with B. pseudomallei to

study the role of T cells and IFN-g in protection against primary

infection. The results presented here on gene-knockout mice

are consistent with those of our previous antibody depletion–

based studies in confirming the absolute requirement for IFN-

g within the first 24 h of infection for the control of bacterial

replication [9]. In addition, the results of our studies of IL-

12p40�/� mice, which lack functional IL-12 and IL-23, sug-

gested that either or both of these cytokines is essential for host

resistance. The equivalent susceptibility of IL-12p35�/� mice

confirms that IL-12 is essential for early host resistance. Using

anti–IL-18R–blocking antibodies, we also demonstrated that

IL-18 plays an important role in primary resistance to B. pseu-

domallei infection. Thus, innate immunity against B. pseudo-

mallei shares many features with IFN-g–mediated resistance to

other intracellular bacteria, including Salmonella species and L.

monocytogenes [32, 36, 37].

The rapid in vivo impact of depleting either IFN-g per se

or IFN-g–inducing cytokines correlated with the presence of

IFN-g–producing spleen cells in infected mice within 16 h of

exposure. It is likely that the magnitude of the early splenic

IFN-g response to B. pseudomallei infection, which was detected

directly ex vivo without the need for in vitro stimulation, was

dependent not only on the dose but also on the bacterial strain

used, given that different B. pseudomallei strains, which vary

in virulence, also vary in the magnitude of cytokine responses

they elicit [38]. Early during infection, the dominant source of

IFN-g was NK cells, with additional contributions from T cells,

NK T cells, and macrophages. In each case, this was strictly

dependent in vivo on the cytokines IL-12 and, to a much lesser

extent, IL-18. The phenomenon of multicellular sources of early

IFN-g has also been reported for Salmonella species [39], al-

though the cell types responsible differed from those we ob-

served with B. pseudomallei, which perhaps reflects variations

in experimental design.

Remarkably, depletion of 95% of the early IFN-g response (by

removal of both T and NK cell populations) did not hinder

initial bacterial control. Significant redundancy therefore exists

between the various cellular sources of innate IFN-g, and the

minimum threshold of IFN-g needed for initial bacterial clear-

ance can be attained even in mice deficient in both T and NK

cells. These findings clearly show the in vivo importance of other

cell types, such as MHC class IIint F4/80+ macrophages, which

may compensate for the loss of T and NK cells as initial sources

of IFN-g during B. pseudomallei infection. This is consistent with

other reports of macrophage-derived IFN-g providing early pro-

tection against infection with Listeria and Chlamydia species [15,

16, 40]. MHC class IIint F4/80� cells also produced IFN-g during

infection, but the precise lineage of these cells remains unknown.

In contrast, Gr1hi neutrophils and MHC class IIhi CD11c+ DCs

did not produce IFN-g under these conditions. Interestingly,

clodronate treatment also severely reduced IFN-g production by

NK cells, which suggests that macrophages (but not DCs) play

a dual role in the early IFN-g response to B. pseudomallei in-

fection by acting as a source of IFN-g and as an indirect inducer

of IFN-g production by other cell types, presumably through the

production of IL-12 and IL-18.

We have previously shown in vitro that dead B. pseudomallei

organisms induce IFN-g secretion by splenic NK cells and a/

b TCR+ T cells. The T cell response was both IL-12 and IL-18

dependent and occurred within 12 h after exposure of previ-

ously uninfected spleen cells to the pathogen [23]; these find-

ings were mirrored by those of the present vivo studies. We

and others proposed that IFN-g derived from this cytokine-

mediated bystander T cell response could contribute to innate

resistance against intracellular pathogens [23, 25, 41]. Indeed,

the potential protective effects of such cells were seen when

they were adoptively transferred into IFN-g�/� recipients [41].

The data presented here, of infection in immunocompetent

wild-type (rather than transgenic or knockout) mice, suggest

that bystander T cell activation does, indeed, occur in vivo.

However, prior depletion of these cells had no effect on initial

control of bacterial growth. Therefore, bystander T cell acti-

vation, at least for primary melioidosis, is not obligatory for

host survival. It is possible, however, that, in other models of

infection, bystander T cell–derived IFN-g could constitute a

greater proportion of the total IFN-g response and may not

be compensated for by other cell types.

In contrast to the functional redundancy of bystander T cell

responses, we found that antigen-specific T cell responses to

B. pseudomallei clearly contributed to resistance against B. pseu-

domallei during the later phase of infection. We believe that

their protective role is directed toward macrophage activation

rather than toward B cell help, given that B cell–deficient mMT

mice had MSTs that were equivalent to those of wild-type con-

trol mice. Although antibody can clearly be protective against

B. pseudomallei infection [42, 43], our data demonstrate that

it is not essential for primary resistance.

Considerable effort is now being focused on the generation

of vaccination and immunotherapeutic approaches to reduce

the incidence of melioidosis in countries where this infection

is endemic and to protect against potential bioterrorism ex-

posure. Mouse models of melioidosis will be critical for the

determination of appropriate vaccination strategies, antigen

discovery, and preclinical testing of candidate vaccines. The data

presented here define, for the first time (to our knowledge),
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the role of T cell–mediated immunity in this model. Our results

suggest that safe and effective subunit vaccines against B. pseu-

domallei should target the generation of IFN-g–secreting T cells

for optimal protection against this important disease.
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