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Understanding past extinction processes is an important and currentmatter, and regres-
sion methods in the domain of survival analysis can be applied to fossil data. The chief
goal of this study is to relate genus-level lifetimes to ancient environmental conditions
(e.g., sea level and surface temperatures or carbon dioxide concentration). The Cox pro-
portional hazards model was used to characterize the extinction risks of marine genera,
enabling quantitative and graphical comparisons between selected taxonomic groups
over geologic time. The environment was confirmed to be a significant factor, and both
age-dependent coefficients and time-dependent covariates were required to accommo-
date the data. The Cox model analyzed in this study provides new insights into the
extinction patterns of marine biota over the past 538.8 million years (Ma). Previous
works focusing on specific groups at certain geologic times suggest that the extinction
risk is related to taxa age, taxonomic group, and, in some particular cases, geologic time.
Here, this idea is confirmed for a larger taxonomic group, during a larger time span
(ca. 530 Ma), providing a more complete and complex scenario than previous works.
After applying survival analyses, conjoint effects were observed between taxa and their
age, their time of existence, and the prevailing environmental conditions found at any
particular moment.

Key Words: Age-dependent extinction risk; Cox model; Hazard; Sepkoski com-
pendium.

1. INTRODUCTION

The retrospective analysis of extinction, particularlymass extinction, is analogous to how
current worldwide environmental changes are reshaping the evolution of life on Earth. To
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properly understand the potential of the modeling approach to be subsequently developed
here, some biological and geologic concepts should first be outlined. In ecology, the term
extinction refers to the complete disappearance—the death of the last individual—of a
species (IUCN2019). Although there are some cases where humansmay have been involved
in ancient extinction (Burney and Flannery 2005; Sandom et al. 2014), the vast majority
of them (99%) occurred prior to human appearance, and fossil and geologic records are
the only data available to study them. In paleobiology, extinctions are recognized when
selected taxa (e.g., species, genera, or class) no longer appear in the fossil record, and mass
extinctions are said to occur when over 60% genera are lost in an average lapse of 2 million
years (My) (Barnosky et al. 2011).

What exactly triggers extinction is difficult to determine. In modern times (1500
onward, Flemming andMacPhee 1999), overexploitation, environmental stress (e.g., climate
change), and habitat modification and loss are the main precursors of extinction. Although
similar biotic and abiotic covariates could have triggered past extinctions, determining the
relationship between causes and effects using fossil evidence is far more complicated. Cli-
mate change has been assumed to be themain cause of large extinctions. However, important
environmental factors, such as sea level change, which has an effect on onshore–offshore
depth (Alroy 2010b; Alroy et al. 2008; Harrison 2002), temperature, CO2 concentration,
enhancedvolcanic activity, extraterrestrial impacts, ocean acidification, and even someastro-
nomical cycles, should also be considered (Rohde andMuller 2005; Bond andGrasby 2017).
Recent studies have suggested that biotic interactions also play a key role in the evolution of
ecosystems, although they are still difficult to characterize (Fraser et al. 2021; Spiridonov
and Lovejoy 2022). Hence, the idea of a single-cause model for explaining past extinctions
is dismissed, but a multifactorial event that simultaneously affected different ecosystems
in multiple ways is considered the main cause of past biodiversity crises, including major
worldwide events (Bond and Grasby 2017).

Because fossil data, themost important source of past biota information, have beenwidely
used and scrutinized, they are generally susceptible to various problems (e.g., Raup 1972;
Alroy 2010a; Chao and Jost 2012; Payne and Heim 2020). Fossilization itself is a manifest
haphazard phenomenon that depends on the kind of organism (those with hard parts are
more likely to fossilize), habitat (which could present differences in preservation potential),
and the conjunction of complex sedimentary processes that facilitate fossilization. For that
reason, the fossil record is considered incomplete and, in many cases, biased. One of the
most remarkable biases observed in the fossil record is the sampling bias on account that not
all stratigraphic levels have been homogeneously sampled for several reasons (e.g., sampling
availability). Other important biases are the Signor–Lipps effect, which highlights the idea
that the start and end dates of each genus range (represented by its first and last organism)
may not have been preserved (Signor et al. 1982), and the Pull of the Recent bias, based on
the greater fossilization probability (overestimation) toward the present.

Even though the fossil record is indisputably incomplete (Benton 2009), and despite
the biases still linked to it, it has been demonstrated that geologic factors do not affect the
evolutionary signal of this record (Benton 1995 and references therein). Moreover, some of
these biases have already been proven false, as occurs with the Pull of the Recent megabias,
which only affects 5% of the Neogene bivalves, and similar percentages have been observed



Role of Taxa Age and Geologic Range

in other groups, including tetrapods (Benton 2016). This means that even considering these
biases, the fossil record still provides valuable data that enable the study of past ecosystems.
In fact, many paleodiversity studies employ taxa richness data—with or without corrections
to the methodological biases of paleobiological databases (Alroy 2010a)—to detect sudden
changes in biodiversity. Similar studies also enable the observation of important evolutionary
trends such as the decline in the background extinction pattern from the early Paleozoic to
the present (Raup and Sepkoski 1982) or the recognition of the well-known Big Five mass
extinctions.

Nevertheless, analysis of the fossil record still poses challenges, exemplified by the
contrasting results obtained on analyses on the dynamics of past biotic crises on Earth. Van
Valen (1973) suggested that extinctions remained constant through time and taxa longevity,
whereas (Hagen et al. 2018 and references therein) showed that extinctions are indeed related
to taxa age.

In the present study, the marine fossil record was correlated to ancient ecosystems during
thePhanerozoic Eon (from 538.8±0.2million years ago (Ma) to the present) by considering
abiotic (environmental) and biotic variables, as previously reported (e.g., Fan et al. 2020;
Song et al. 2021). Aiming to characterize the relationship between ancient life and past
conditions, a sensible statistical model considering the interpretable components was devel-
oped. This statistical formulation was based on survival analysis, which enables the study
of lifetimes—more generally, time until the occurrence of a landmark event—by examining
distributional differences as a function of covariates. It is used in many health and industrial
reliability contexts; however, it can also be applied to characterize taxa longevity.

Namely, the Cox regression model, which considers the species or genera’s lifetimes
(in My), multiple covariates (e.g., sea level and group membership) that are associated
with their range (i.e., the interval of geologic time over which a species existed), and
censored observations (i.e., extant species that appear in the fossil record but have not
yet become extinct), was adopted. Exploiting concepts and models originating in survival
analysis allowed for an alternative viewpoint, enabling probabilistic statements regarding
lifetimes, a visualization of the progression of survival in time as related to covariates in
time, group comparisons, and uncertainty quantification. The results obtained by the Cox
analysis are helpful to contextualize the current biodiversity crisis by building a detailed
past analog as well as testing the feasibility and full potential of survival analysis to study
fossil data.

The use of Cox regression in the study of extinction is not entirely new. A few studies
have used this model in survival analysis to examine past (Doran et al. 2006; Abelson 2019)
and extant (Drake 2006) biotas. Previous approaches considered covariates that do not vary
in geologic time and considered specific taxon in a limited time span, such as Cenozoic
carnivorous (Abelson 2019) or Mesozoic to Cenozoic planktonic foraminifera (Doran et al.
2006). However, we aimed to apply the Cox model to a diverse and representative group
of marine biotas during the Phanerozoic considering multiple, time-varying covariates that
represent conditions that genera were subjected to during their lifetime. In addition, non-
homogeneous relationships with genera’s ages were allowed. This innovative formulation
resulted in a more elaborate and complex Cox model that enables the examination of life-
times in two dimensions: geologic time and taxon age.
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2. CONCEPTS AND DATA

2.1. FOSSIL DATA

The first accessible paleontological database was created by John Sepkoski and collab-
orators during the 1980s and 1990s. These authors first presented a compendium of marine
families (Sepkoski 1982, 1992) that, after two decades, resulted in a genus-level marine
compendium (Sepkoski 2002) built using secondary data (bibliographic data) of marine
genera and their relative chronostratigraphic ages. Both compendia have been extensively
used in previous studies. Some preliminary works applied time series analysis to search for
harmonic components or cycles in biodiversity curves of genus richness (Raup and Sepkoski
1984). Althoughmany researchers have focused on assessing the processes of diversification
(origination) and extinctions of marine metazoans (Etter 2007 and references therein), the
above compendium also gave rise to studies of the anatomical and ecological constraints of
biota (Bambach et al. 2002) aswell as evaluations ofmacroevolutionary processes (Jablonski
2005).

After these first attempts, new statistical methods were developed to reduce the sam-
pling bias of the fossil record and to discuss how to correct biodiversity curves (Alroy et al.
2001; Alroy 2010a; Chao and Jost 2012). These approaches, along with the need to study
more detailed directories (i.e., species level), resulted in the proposal of other databases
such as the Paleobiology Database (PaleoDB, https://paleobiodb.org). This paleontological
directory was created in the late 1990s and has been maintained by a number of interna-
tional paleontologists. Although the Sepkoski compendium and PaleoDB are the preferred
databases in many analytical studies, important institutions such as the International Com-
mission on Stratigraphy (ICS, https://statigraphy.org) have proposed their own directories,
i.e., the Geodiversity Database (GBDB, https://geobiodiversity.com).

Here, the Sepkoski compendium (Sepkoski 2002) was used. It contains over 36,000
entries of genus-level marine fossil data and provides the first and last appearance datum
of each genus (FAD and LAD, respectively). A calibration with absolute ages (in Ma) was
later included in the compendium and is based mainly on the chronostratigraphic data from
Ogg et al. (2004). These data allow for inferring genera longevity as well as building rich-
ness distribution graphs of the marine Phanerozoic biota (Fig. 1). Although it has been
extensively used, this database still contains many flaws: Taxonomic mistakes are com-
mon, singleton taxa (genera whose FAD and LAD occur in the same temporal interval)
are abundant (+15, 797 cases), and chronostratigraphic ages are outdated. These consider-
ations make rigorous statistical modeling challenging since inference on the status of past
life must be addressed with probabilistic approaches with a myriad of sources of variation
and uncertainty.

The data bits used are the FAD and LAD of each genus, which is represented in the
analysis as TF and TL, respectively. The interval TF to TL is the range, and the lifetime
of a particular genus (i.e., duration, longevity, or age at extinction) is calculated by L =
TF − TL. The symbol t is used to indicate the subject’s age (in My), while T refers to
the date of a rock or the geologic time (in Ma). Singleton taxa provide valuable data in
particular cases (Fitzgerald and Carlson 2006), but to avoid misinterpretations, they were

https://paleobiodb.org
https://statigraphy.org
https://geobiodiversity.com
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Figure 1. Genera richness (total and by group) during the Phanerozoic Eon. “All” sums the total number of the
six groups considered. The shaded time intervals delimit the periods of the five recognized mass extinctions. The
bottom strip contains nomenclature for geologic eras and periods. Cm, Cambrian; O, Ordovician; S, Silurian; D,
Devonian; C, Carboniferous; P, Permian; Tr, Triassic; J, Jurassic; K, Cretaceous; Pg, Paleogene; Ng, Neogene; Q,
Quaternary.

ignored, as is customary in recent analyses (e.g., Casanovas-Vilar et al. 2010). Extant genera
that have unknown (unrealized) extinction data were flagged as censored observations and
were retained. Finally, some of the biases described and commented on in this work were
disregarded at the outset given that the essential concern was to establish regressionmethods
to incorporate covariates in the analysis of the fossil record.

2.2. COVARIATES RELEVANT TO EXTINCTION

As mentioned above, a number of environmental factors are thought to have influenced
past extinctions in the marine realm. Here, only a few abiotic and biotic covariates are
applied in the study and are described below (Fig. 2).

Sea levels. The sea levels were determined from a variety of data sources (Harrison 2002).
The long-range and short-range variations were studied using frequency spectra, and
relationships were obtained based on the continental phenomena, temperature changes,
and ice age cycles. The sea level curve for the past 590 Ma is known as the Exxon/Haq
curve (Haq et al. 1987), which was illustrated and commented on by Harrison (2002)
and is considered here as one of the time-varying covariates that is denoted by s(T ).

Sea surface temperature (SST) and CO2. Temperature and the concentration of carbon
dioxide (CO2) are well-known indicators of past climates on the geologic scale, and
their effect on the Earth’s biota has been extensively studied (Hautmann 2012; Song
et al. 2021). These works established that abrupt sea surface temperature changes have
strongly affected ancient marine biota. Thus, the covariate SSTdiff (SST difference),
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Figure 2. Set of time-varying covariates used in the present study. All variables have been standardized for conve-
nience. Shaded areas over geologic time represent the spans of the five recognized mass extinctions. Abbreviations
for geologic eras and periods are given in the caption of Fig. 1.

denoted by d(T ), is considered here as the difference in SST between geologic times
T and T − 1. The covariate CO2 is intentionally omitted in the models to be described
below because of its high correlation with SST.

Sinusoid cycles. Time series analysis of the Sepkoski compendium showed that since the
Cambrian Period, two significant cyclic components with periodicities of 62 and 140
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My absorbed most of the observed variation in the detrended biodiversity curves of
the marine fossil record (Rohde and Muller 2005). Although the origin of these cycles
remains speculative, current hypotheses for explaining the 62-My cycle suggest that it
correlates particularly well with mass extinctions. Diverse environmental processes may
be involved, including changes in the continental margins, sedimentation, and internal
rhythmic oscillations of the marine biota. In contrast, the 140-My cycle has been associ-
ated with astronomical events occurring on the order of every 108 years, particularly the
passing of the solar system through the spiral arms of the MilkyWay Galaxy, which may
have increased the flux of comets and cosmic rays directed at Earth, thereby influencing
extinction events (Raup 1986; Raup and Sepkoski 1984; Rohde andMuller 2005). These
cycles are denoted in the analysis by p62(T ) and p140(T ), which have an amplitude of
20 and phases of −20 and 40, respectively.

Evolutionary fitness. The concept of the “general optimization of fitness” (herein referred
to as fitness) is understood as an increasing trend in the performance of the evolutionary
process, i.e., evolution becomes progressively more effective. This idea was first intro-
duced by Raup and Sepkoski (1982), but it has rarely been addressed in the literature.
The notion of increasing fitness is based on two observations: (1) a negative trend in the
total extinction rate of Earth’s biota from the Cambrian Period to the present and (2) a
net increase in the total diversity during the same time lapse. The combination of these
factors would lead to overall prolonged survival. Since no theoretical or functional math-
ematical form has been found in the literature to quantitatively describe this concept, the
form e(T ) = (T +250)−1 was adopted. Although fitness was conceived as an increasing
feature, our choice of a specific function solely aimed to illustrate the methodology.

Taxonomic groups. It has been well established that taxa do not behave homogeneously
in regard to extinction (e.g., Alroy 2010c; Marshall 2010), suggesting that all analyses
should consider different taxonomic groups when possible. Here, six high taxonomic
groups are considered: PhylumBrachiopoda (clam-likemarine invertebrates) and classes
Trilobita (marine arthropods), Gastropoda (snails), Cephalopoda (e.g., nautilus), Bivalvia
(true clams), and Anthozoa (corals). Similar groups were chosen in a previous analysis
(e.g., Alroy et al. 2001; Alroy 2010c), since they represent the vast majority of the
compendium (more than 50% of the genera) but also because they are well-known and
well-represented groups in the fossil record. The remaining entries constitute a seventh
group, considered the reference group, allowing the inclusion of the whole compendium
when estimating model parameters. If records belong to one of G groups and a reference
group, the usual representation based on G dummy indicator variables g1, . . . , gG is
used: All dummies were set to 0 for the reference group, whereas gi = 1 if and only if a
record belongs to the i th group of interest. The relationship (Fig. 1) between the number
of records—the richness or biodiversity—per group of interest and of all the genera
together during the Phanerozoic Eon showed an increasing trend in genera richness
of marine biota in all six groups. This finding portrays the notion of an exponentially
increasing trend of biodiversity established bymany studies (Benton 2016 and references
therein). However, a decline in biodiversity was observed during the fivemajor extinction
events.
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2.3. DATA AVAILABILITY

The compendium of fossil data used in this study was published as Sepkoski (2002),
which includes a CD-ROM (4 3/4 in.). Also, see http://strata.geology.wisc.edu/jack/. The
sea level datawere a smoothed version ofHaq et al. (1987), Harrison (2002)with a resolution
of 1 Ma. The sea surface temperatures and carbon dioxide concentrations were found in the
online supplementary materials of Song et al. (2019). The data used, as well as the R script
for the fitting of the Cox model, diagnostic residual analyses, and production of plots, can
be found at https://github.com/lpsosa/Fossils.

3. FORMULATION AND RESULTS

3.1. APPROACH BASED ON SURVIVAL ANALYSIS

It was observed that the Sepkoski compendium provides lifetime data—possibly
censored—since each genus is associated with FAD and LAD. Letting t represent the taxon
age (My) and T the geologic time (Ma), the genus lifetime is represented by L with a
distribution function of F(t) and density of f (t). The survival function of a subject in a
particular time t is defined as S (t) = P (L ≥ t), while the hazard function, a convenient
characterization for an individual’s survival, is defined as the function

h(t) = lim
δt→0

{
P(t ≤ L < t + δt | L ≥ t)

δt

}
= − S′(t)

S(t)
= f (t)

S(t)
.

The hazard function is related to the instantaneous death rate or imminent extinction of a
subject who has survived up to age t . An approximation for a small δt is given by

P(t ≤ L < t + δt | L ≥ t) ≈ δt × h(t). (1)

One minus this last probability (for an implicitly determined value of δt), expressed as a
proportion, has been described as survivorship in some paleobiological literature (Raup
1986; Hammer and Harper 2006). The terms survival and hazard are recognized in other
paleobiological studies (e.g., Drake 2006; Doran et al. 2006) since these are also formulated
in the context of survival analysis, albeit with a different approach than the one we adopted.

3.2. EXPLORATORY ANALYSIS

This work aimed to understand how survival functions (or equivalently, hazard func-
tions) vary as geologic time T progresses. One approach to address this issue was to select
individuals who represent the situation at a fixed time T and then look at survival times
for that subset of individuals. This strategy only applies in this section. Different counting
methods and criteria for choosing a subset of individuals at time T have been discussed
(Alroy 2010a; Raup 1978). The range through criterion was used, giving rise to the subset
of cases for which T is covered by the subject’s range, a subset termed risk set in Doran

http://strata.geology.wisc.edu/jack/
https://github.com/lpsosa/Fossils
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et al. (2006). The total number of individuals for each T coincides with the genera richness
(Fig. 1).

Once the individuals in the risk set have been determined, the Kaplan–Meier standard,
a nonparametric estimator, was applied to assess the survival function of the aggregated
species at T . For this preliminary analysis, no grouping was applied, and no covariates were
considered. Censoring occurred and was appropriately taken into account by the Kaplan–
Meier estimate, especially when T approached the present day. Raup (1978) applied this
notion of sub-setting data by taking subsets at time T to observe changes over time but
discretizing over stratigraphic periods. In contrast, the Kaplan–Meier approach considers
a continuous timescale devoid of stratigraphic naming conventions and explicitly handles
censored lifetimes, which is not apparent in the treatment of survivorship in Raup (1986)
and Hammer and Harper (2006).

The results obtained by applying the Kaplan–Meier estimator confirm an increasing
survival trend from past (538.8±0.2Ma) to present (0Ma) biota, suggesting time-dependent
survival (Fig. 3). During certain geologic times (e.g., T = 150 Ma), the survival values
vary depending on the taxon’s age t , as young taxa (e.g., 0–50 My old) are more likely
to survive than older genera (e.g., 200–300 My old), also suggesting an age-dependent
survival of the marine metazoans. It is also worth noting that an increase in general survival
is apparent immediately after a mass extinction. Some authors considered that the rapid
aftermath diversification of the surviving biota represents a well-known macroevolution
process (e.g., Jablonski 2005; Hull 2015). Figure3 is in concordance with the notion of
evolutionary fitness described in the bibliography (Raup and Sepkoski 1982). However, that
agreement pertains to a rough or low-resolution relationship, and it will be interesting to
investigate whether finer details can be perceived, especially by associating them with past
environmental conditions.

3.3. COX REGRESSION

The purpose of the Cox model (see Collett 2015) is to evaluate the effect of various
risk factors on survival, S(t), via its hazard function, h(t). Allowing the incorporation of
covariates, the Cox analysis presents more detailed hazard results than the Kaplan–Meier
analysis. First, a straightforward association between a lifetime and covariates could be as
simple as the time of its first appearance. Then, if a lifetime L corresponds to a record
having value TF and belongs to a certain group, the covariates in the model would be s(TF),
d(TF), p62(TF), p140(TF), e(TF), and g1, . . . , g6 concatenated into a vectorX of length 11. A
function h0 (t), called the baseline hazard function, represents the hazard function when the
covariates all take on a value of zero. The Cox model in its most elementary form postulates
the hazard function for L to be proportional to h0(t) and is given by

h (t,X) = h0 (t) exp

(
β1s(TF) + β2 p62(TF) + β3 p140(TF) + β4e(TF) + β5d(TF) +

6∑
i=1

β5+i gi

)
.

The term within the exponential function that is positively related to hazard is called the
linear predictor. In this model, no assumptions are made about the specific form of the
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Figure 3. Kaplan–Meier estimates of survival evolving over geologic time. The vertical axis represents the
genera age (from younger to older), while the horizontal axis corresponds to the geologic time (from past to
present). Abbreviations are given in the caption of Fig. 1. Vertical lines delimit the spans of the five known mass
extinctions.

base hazard function h0 (t); hence, the estimation of the regression parameters is enabled
using the notion of partial likelihood. The values of parameters βk regulate the impact of
the covariates on the hazard function: A positive value of the coefficient βk would imply a
negative impact on the hazard function since increasing the value of the associated covariate
would increase the hazard and, conversely, a negative valuewould show a decrease in hazard,
increasing the probability of survival.

A somewhat more elaborate system of covariates (time-varying) is postulated if instead
of considering s(TF), i.e., a single value of sea level to be associated with a given individual,
one considers the function s(T ) during the whole of the genus’s exposure to sea level during
its range. For example, the sea level covariate related to a genus that first appeared at geologic
time TF and has lived for t years is the function s′(t) = s(TF − t). A generalization of the
Cox model may be written as

h
(
t,X′) = h0 (t) exp

(
β1s

′(t) + β2 p
′
62(t) + β3 p

′
140(t) + β4e

′(t) + β5d
′(t) +

6∑
i=1

β5+i gi

)
.

A simple way to encode time-dependent covariates is to consider subintervals (Therneau
and Grambsch 2000) with a length of 1 My. The general idea is to extend each original
individual record to cover all the 1-My periods during a genus’s range. Multiple records
are created for each genus, one each to contain a vector holding the current values of the
covariates at each 1-My period. For parameter estimation in the model, we rely on the
survival (Therneau 2021) package within R (R Core Team 2021). The function coxph
in this package defines a parameter (cluster) that recognizes this extended data format
so that records originating from a common genus are treated appropriately.
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A more elaborate formulation of the Cox regression, in which its parameters are also
allowed to be functions of t , can also be considered. The model allowing for time-varying
covariates and coefficients is

h
(
t,X′) = h0 (t) exp

(
β1(t)s

′(t) + β2(t)p
′
62(t) + β3(t)p

′
140(t) + β4(t)e

′(t)

+β5(t)d
′(t) +

6∑
i=1

β5+i (t)gi

)
. (2)

The interpretation of the time-varying parameters is that the corresponding covariate has
differing effects on the hazard depending on the genus age. Time-dependent parameters are
functions, so parametrizations or simplifications incorporating piecewise constant functions
of t are the first feasible approach. The varying heights of these functions constitute separate
parameter values for each covariate. Graphical exploratory techniques and statistical tests
(Therneau andGrambsch 2000)were applied to suggest whether time-dependent parameters
are required and over what ranges of t values a parameter βk(t) may be approximated by a
piecewise constant function. The final results of this first-stage analysis are implicitly shown
in Table 1.

The computer implementation of these piecewise constant parameters involves append-
ing a column to extended data coding specific age intervals that correspond to constant
parameter values. The function survSplit is designed to split the extended dataset into
time-dependent parts in which there is some variation in the coefficients. For parameter
estimation, the function coxphmust be invoked with a special syntax (involving a colon in
the model definition) to specify stratifying by age intervals (Therneau and Grambsch 2000).

A second series of techniques based on residual analyses and graphical procedures (Chap-
ter 4 Collett 2015) was also applied to examine the adequacy of Cox proportional hazard
models and to evaluate the nested levels of complexity that have been previously described.
The conclusion, by examining the results based on deviance and the so-called martingale
and the Cox–Snell residuals, the (2) model is adequate in reflecting the intricacies found in
the data: Genera lifetimes were related to both time-dependent covariates and parameters.

Parameter estimation is achieved by partial likelihood, and an important point to be made
is that in this formulation, no data subsets were selected for estimation purposes at each
T . Instead, all data points were involved together in a likelihood function by relationships
with covariates, which depend on T . Parameters (Table 1) with large standard errors relative
to their estimates were not significantly nonzero (i.e., a confidence interval is prone to
include 0). However, the following general interpretations hold true. Only the sinusoid
of wavelength 62 and SSTdiff appeared to have age-independent effects on hazard. The
remaining parameters, including all parameters identifiedwith groupmembership, described
effects that vary with age to differing degrees.

In some cases, sign reversals occur, meaning that for one age range, hazard increases,
but for another, it decreases. The estimates of exp(β) are multiplicative constants that
scale hazard per unit covariate. For example, for all groups, increasing the sea level by
one unit decreased hazard upon multiplying by 0.998 for very old genera (> 72 My)
but increases hazard for younger genera (multiplying by factors > 1). Similarly, the very
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Table 1. Estimates, standard errors, and hazard multipliers per unit covariate for parameters in the Cox model
(2) with both time-varying parameters and covariates. A covariate may include a set of ranges for age
because a stepwise function was used to approximate the time-varying coefficient β(t) for that covariate.
The wavelength 62 sinusoid and SSTdiff did not require steps, according to the diagnostic procedures
applied. The p-value for the test that a parameter is zero is also shown

Age (t) range Covariates Estimated β Estimated exp(β) Standard error p-value

(0, 9] Sea level 0.002 1.002 < 0.001 < 0.001
(9, 26] 0.0006 1.000 < 0.001 0.003
(26, 72] 0.0004 1.000 < 0.001 0.075
(72, 530] −0.001 0.998 < 0.001 < 0.001
(0, 530] Sinusoid, wavelength = 62 −0.001 0.998 < 0.001 0.010
(0, 6] Sinusoid, wavelength = 140 0.004 1.004 0.001 < 0.001
(6, 17] −0.002 0.997 0.001 0.008
(17, 42] −0.005 0.994 0.001 < 0.001
(42, 530] 0.001 1.001 0.001 0.349
(0, 6] Fitness −469 < 0.001 24.467 < 0.001
(6, 17] −380 < 0.001 20.169 < 0.001
(17, 42] −441 < 0.001 21.282 < 0.001
(42, 72] −312 < 0.001 33.773 < 0.001
(72, 530] −350 < 0.001 39.417 < 0.001
(0, 530] SSTdiff 0.106 1.112 0.005 < 0.001
(0, 5] Trilobita 0.943 2.568 0.054 < 0.001
(5, 11] 0.648 1.913 0.065 < 0.001
(11, 20] 0.839 2.314 0.073 < 0.001
(20, 30] 0.809 2.246 0.112 < 0.001
(30, 42] 0.738 2.093 0.164 < 0.001
(42, 530] 1.335 3.802 0.157 < 0.001
(0, 5] Brachiopoda 0.244 1.276 0.056 < 0.001
(5, 11] 0.557 1.746 0.050 < 0.001
(11, 20] 0.682 1.978 0.054 < 0.001
(20, 30] 0.703 2.020 0.074 < 0.001
(30, 42] 0.859 2.362 0.089 < 0.001
(42, 530] 0.913 2.494 0.083 < 0.001
(0, 5] Gastropoda −0.571 0.564 0.083 < 0.001
(5, 11] −0.435 0.646 0.069 < 0.001
(11, 20] −0.342 0.709 0.067 < 0.001
(20, 30] −0.050 0.950 0.074 0.498
(30, 42] −0.143 0.866 0.090 0.110
(42, 530] 0.256 1.292 0.056 < 0.001
(0, 5] Cephalopoda 1.325 3.763 0.049 < 0.001
(5, 11] 1.040 2.829 0.059 < 0.001
(11, 20] 0.796 2.217 0.078 < 0.001
(20, 30] 0.666 1.947 0.113 < 0.001
(30, 42] 0.661 1.937 0.145 < 0.001
(42, 530] 0.966 2.628 0.114 < 0.001
(0, 5] Anthozoa −0.478 0.619 0.098 < 0.001
(5, 11] 0.184 1.202 0.070 0.008
(11, 20] 0.369 1.447 0.070 < 0.001
(20, 30] 0.350 1.419 0.090 < 0.001
(30, 42] 0.470 1.601 0.106 < 0.001
(42, 530] 0.576 1.780 0.079 < 0.001
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Table 1. (Continued )

(0, 5] Bivalvia −0.570 0.565 0.096 < 0.001
(5, 11] −0.344 0.708 0.077 < 0.001
(11, 20] −0.060 0.940 0.068 0.375
(20, 30] −0.044 0.956 0.083 0.592
(30, 42] 0.132 1.142 0.091 0.147
(42, 530] 0.207 1.230 0.061 < 0.001

young genera of Anthozoa underwent less hazard than older genera in the same group.
Furthermore, although some parameter arrays were monotonic with age (sea level and Bra-
chiopoda/Bivalvia groups), itwasmore common for this not to be the case. In some instances,
the age-tiered parameters represented low–high–low or high–low–high profiles. Allowing
for free parameters using the device based on piecewise constant functions enabled us to
discover this finding.

3.4. EXPLORATORY PLOTS BASED ON HAZARD

Once the specific model has been discerned and validated and its parameters have been
estimated, a few derived plotting devices may provide discovery and understanding in the
present context. First (Fig. 4), a group is fixed, and the linear predictor is examined with
synchronized covariatesX′ so that a genus of this group with an assumed age t (My since its
first appearance) is exposed to conditions at geologic time T . This is a theoretical construct
approximated by plugging parameter estimates into (2). For example, if a 20-My-old trilobite
had been present at geologic time T , the linear predictor addresses the risk it would have been
subject to, even if no trilobites were present at time T because they were either extinct or
had not yet emerged. Differences between young and old genera hypothetically transplanted
to live in distinct geologic times can be visualized in this manner. Similar to Fig. 3, this
is a two-dimensional representation—a contour plot—having dimensions of age (t) and
geologic time (T ) but originating from a parametric model involving explanatory variables
and group membership.

According to Fig. 4, all taxa analyzed showed a negative trend in log(predictor) values,
i.e., hazard, suggesting that younger biotas are more likely to survive extinction than past
biotas. However, this trend is not as clear-cut as was previously observed using the Kaplan–
Meier estimate for survival (Fig. 3) since these results are more complex and complete,
probably due to the number of environmental covariates introduced. Considering this, the
results allow greater detail to be observed in the risk pattern of the selected biota, con-
firming that the hazard is not solely time- and age-dependent but also depends on the taxa
analyzed (i.e., taxa-dependent). An examination of Fig. 4 reveals that, in particular, the
Cephalopoda and Trilobita groups were subject to greater hazard than the other taxonomic
groups considered. Moreover, each group presented an apparent age pattern in their hazard
distribution.

These patterns were not regular among taxa or within one taxon, since the hazard varied
throughout its range. To further investigate this, a second plotting device, which evaluates
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Figure 4. Groupwise contour plots on the (T, t) plane displaying the behavior of the linear predictor for hazard
with estimated parameters in theCoxmodel.A lighter shade depicts a higher hazard,while darker shading represents
a lower hazard. Superimposed vertical lines delimit the five recognized mass extinctions. The range for t ends
at 80 because the largest observed lifetime that is found to be relevant from diagnostic procedures is 72; then,
coefficients with constant behavior are observed.
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the hazard values of a taxon at selected representative ages, was applied. The resulting plot
(Fig. 5) enables the visualization of the variations in the hazard (i.e., extinction risks) of each
selected taxon during the Phanerozoic Eon while considering ages that represent immature,
young, mature, and old genera. The results confirm that the hazard is not monotonous
for taxa, as was preliminarily observed in Fig. 4, but varies depending on the time of
its occurrence (T ) and its age (t). The Trilobita and Cephalopoda genera showed more
resilience (lower hazard), mature, and older genera, while younger taxa were more resilient
in the Brachiopoda, Gastropoda, Bivalvia, and Anthozoa genera. This trend was quite steady
during most of their ranges but could be disrupted in some particular events (e.g., Trilobita
at T = 200 Ma).

A description of cohort behavior in relative terms is afforded by a third graphical device.
Let Ni (T ) be the number of genera present at geologic time T for the i th group, X′

j be the

set of covariates associated with the j th genus, and N (T ) = ∑6
i=1 Ni (T ). Figure6 shows

a set of groupwise plots of

Ni (T )−1 ∑Ni (T )
j=1 h

(
t j ,X′

j

)

N (T )−1
∑N (T )

k=1 h
(
tk,X′

k

) , (3)

where the sum in the numerator is limited to genera in the i th group,whereas the denominator
includes the union of all genera in the six groups of interest. The plotted quantity amounts
to the ratio of average hazards in each group in reference to the average hazard in all
groups. This ratio is relevant because the baseline hazard h0(t) drops out, leaving only
linear predictors and estimated parameter values. This third device allows a comparison
of the mean hazard among groups over geologic time. Note that the ratios of the average
hazard of cephalopods, gastropods, and trilobites consistently showed the highest values
(Fig. 6). Moreover, the studied taxa showed an increasing trend in their hazard ratios from
the Cambrian Period (538.8 ± 0.2 Ma) to the present, with apparent stabilization after the
last mass extinction at 66 Ma (K/Pg boundary). This trend suggests that although all groups
analyzed show a decreasing hazard trend (Figs. 4 and 5), there is a larger difference between
the groups with higher risk and those with lower risk over time.

4. DISCUSSION AND CONCLUSION

The Sepkoski compendium (Sepkoski 2002) was analyzed using the Cox regression
model to characterize the extinction patterns of ancient biotas. Previous analyses of the
Sepkoski compendium have largely used FAD and LAD data to infer genus longevity and
to characterize diversification periods as well as extinction events (Etter 2007). Here, we
implemented the Cox regression model in the realm of survival analysis, emphasizing a
hazard function for extinction.While previous survival analyses have applied the Coxmodel
to a single taxonomic group in a short time span (Doran et al. 2006; Abelson 2019), here
the statistical model involved the complete Sepkoski compendium, composing of >36,000
entries of marine metazoan genera found during the whole Phanerozoic Eon (from 538.8±
0.2 million years ago (Ma) to the present). Moreover, the model included a multifactorial
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Figure 5. Groupwise evolution of hazards evolving as a function of geologic time (Ma) at selected ages (My).
Four ages are plotted for each group, corresponding to sample lifetime quantiles of orders 0.05, 0.25, 0.75, and
0.95. (For example, 25% of trilobites became extinct before age 4.0 My, and 95% of them did so before 37.1 My.)
Shaded areas over geologic time delimit the spans of the five recognized mass extinctions.
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Figure 6. Average hazard per group evolving in geologic time relative to the average hazard over all six groups
combined. The horizontal solid line is the reference ratio 1. Shaded areas over geologic time represent the spans
of the five recognized mass extinctions. Abbreviations are given in the caption of Fig. 1.

approach, thus relevant environmental covariates that may have affected the marine biota
during the past 538.8 Ma (i.e., SST, CO2 concentration, 62- and 140-My cycles, and sea
level) and six relevant taxonomic groups were considered. Employing a bivariate function
of taxon age (t) and geologic time (T ) and including covariates, this new approach using
the Cox model provided a more thorough description of past extinction events with a fresh
perspective.

4.1. PALEOBIOLOGICAL SETTING

Regarding how andwhen past taxa became extinct, Van Valen (1973) proposed the law of
constant extinction (LCE), which states that no link exists between the age of a lineage and
its risk of extinction (i.e., constant hazard in t). This implies that long-lived genera (older
genera t) have the same risk (or hazard) of becoming extinct as short-lived genera (younger
genera t). In contrast to the LCE, it has been demonstrated that the risk of extinction of a
given taxon changes as a function of its age, whether decreasing, because long-lived taxa
are better equipped to endure environmental disturbances (e.g., Silvestro et al. 2020), or
increasing, since newly formed species may be less ecologically specialized (e.g., Doran
et al. 2006). To address this idea, the term age-dependent extinction or ADE was proposed
in the literature (e.g., Doran et al. 2006; Alexander et al. 2016).

Further analyses with ADE in mind have determined that extinctions not only depend on
the taxa age but also vary according to the taxonomic group and taxonomic level, such as
genus or species (e.g., Hagen et al. 2018), and finally, that selective extinction shifts through
time (Crampton et al. 2016).

The results obtained after the Cox analyses on the six taxonomic groups of Sepkoski’s
compendiumare in linewith previousADE studies, verifying that the extinction risk depends
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on taxa age but also confirming that the hazard varies among all the taxa selected in the study
(taxa-dependent). As shown in Fig. 4, a time-dependent extinction risk was also observed.
Here, all studied taxa show smaller hazard values for recent genera than past genera, which
agrees with the declining trend observed that background extinction (Raup and Sepkoski
1982) is related to the ecological differentiation observed over time (Knope et al. 2020).
However, the decline in the hazard trend observed from the deep past to the present is not
constant within a taxon or between taxa.

A detailed view of the age influence within each group is presented in Fig. 5. Bivalvia,
Gastropoda, Brachiopoda, and Anthozoa display young resilient taxa, as was also claimed
by Silvestro et al. (2020); however, classes Trilobita and Cephalopoda showmature resilient
taxa. Likewise, Fig. 5 indicates that despite a clear trend observed in all groups, mature or
young resilient taxa are also linked to geologic time, since in some periods, the trend is
inverted (e.g., Trilobita at T = 200 Ma). This shift in the extinction mode was previously
observed in Graptolites during the Ordovician and Silurian Crampton et al. (2016) but is
confirmed here in the six major groups of marine metazoans.

According to Figs. 4 and 5, the hazard trend is affected not only by the taxon age (t) but
also by the covariates present during each geologic time (T ). This confirms that extinction
proneness differs over time in all the marine groups analyzed during the Phanerozoic Eon,
probably due to the large-scale environmental phenomena that involved some or all of
the covariates used in this study. The proposed model, which, contrary to previous works,
has been applied in a large and diverse selection of marine metazoans during the whole
Phanerozoic, indicates that the extinction risk, taxon age, time of existence, and covariates
produced a joint effect; as a result, it is impossible to isolate each factor, and thus, the
interpretation of the results must also be simultaneous.

In summary, these results suggest that the extinction patterns are more complex than
originally conceived by Van Valen; thus, the LCE is still extensively discussed (e.g., Hagen
et al. 2018 and references therein) and worthy of further investigation. As such, the relation-
ship between taxon age and extinction risk remains one of the main tenets of biodiversity
today (Benton 2016).

4.2. STATISTICAL SETTING

A number of limitations in the modeling approach are evident. Although geologic dat-
ing and taxonomy are both conceptually subject to uncertainties (albeit not systematically
quantified), they have not been explicitly taken into account. Likewise, the function adopted
for describing fitness is not empirically driven, and the covariates included are only those
readily available. More sophisticated yet noncompiled covariates are potentially possible,
such as themean bodymass (Payne andHeim 2020) or carbon and oxygen excursions (Bond
and Grasby 2017).

As in any regression model, the plausibility of errors in variables, i.e., that the covariates
contain measurement error, is most likely present (Prentice 1982). However, our analysis
did not incorporate this. The use of the Bayesian methods to address this complication is
a viable possibility, requiring a deep subject matter understanding for the specification of
priors (Pan et al. 2022).
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Further technical challenges are present in this context. The first challenge is the treatment
of the considerable number of singletons so that they are not fully ignored; thus, the analysis
that is performed is conditional on positive longevity. The Coxmodel readily accommodates
right censoring for extant taxa. However, double censoring in the sense of a missing FAD
and LAD is a matter of greater complexity that entails methods to impute missing values or
to enable estimation under this circumstance, especially in the presence of time-dependent
covariates and parameters.

As mentioned, the sampling of geologic strata is highly heterogeneous. Quantifying the
sampling effort is a particularly complex endeavor in the study of extinction. Even if it were
clear-cut, the sampling effort is not a covariate in the same sense when implementing Cox
regression. This concept is not an influential factor in the longevity of a species but rather a
characteristic of data acquisition, i.e., the process implemented by paleobiologists to search
for fossils. The explicit incorporation of the sampling effort would be important to examine
its effects on parameter estimation and uncertainty. There is an argument called weights

in the coxph R function that could be fed with a proxy of the sampling effort as a means
to reduce the influence of data points stemming from scarce exploration. An additional,
potentially confounding factor is preservation bias, i.e., the fact that a dead organismmay not
always turn into a fossilized specimen. This also poses amodeling challenge, as preservation
probabilities may also depend on covariates.

Although residual-based validation was performed on the fitted model, it was not as
thorough as simpler versions of the Cox model. A methodological cost related to validation
was paid, as insufficiencies in the fit are not readily detected by plotting the residuals versus
explanatory variables. However, in the most complex Cox model, for each genus, multiple
values for each covariate occur as it varies over time. It is not clear what value of covariate
to use for that purpose. The methodology for validating Cox models when they have been
complicated by coefficients that are dependent on t as well as covariates that depend on T is
recognized as an open problem (Therneau and Grambsch 2000). Estimation of the baseline
hazard in this more elaborate situation is also unresolved.

Having adopted the notion of hazard to describe the mechanics of past extinctions (the
past 538.8 My), the question of how to compare the estimated hazard obtained by the Cox
model with an estimated hazard, presumably attributable to human impacts and obtained
from the analysis of modern species (last 500 years), has been posed. Although selected
covariates formodern timesmay be determined, the answer is not evident for several reasons.
The main point is that the Coxmodel has been applied to data at the genus level, whereas the
behavior of modern genera has not yet been observed on the same evolutionary timescale.
A sensible comparison in terms of hazard would entail transforming from genus to species
as well as rescaling time. Determining the uncertainty of statistical inferences would be an
important issue to develop, but this comparison with regard to Cox models with differing
timescales and sampling units also appears to be an open problem.
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