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Abstract: The evolution of the ‘mantle – moving deformable continents’ system has been studied by numerical expe-

riments. The continents move self-consistently with the mantle flows of thermo-compositional convection. Our model 

(two-dimensional mantle convection, non-Newtonian rheology, the presence of deformable continents) demonstrates 

the main features of global geodynamics: convergence and divergence of continents; appearance and disappearance of 

subduction zones; backrolling of subduction zones; restructuring of mantle flows; stretching, breakup and divergence 

of continents; opening and closing of oceans; oceanic crust recirculation in the mantle, and overriding of hot mantle 

plumes by continents. In our study, the continental crust is modeled by active markers which transfer additional vis-

cosity and buoyancy, while the continental lithosphere is marked only by increased viscosity with neutral buoyancy. 

The oceanic crust, in its turn, is modeled by active markers that have only an additional buoyancy. The principal result 

of our modeling is a consistency between the numerical calculations and the bimodal dynamics of the real Earth: the 

oceanic crust, despite its positive buoyancy near the surface, submerges in subduction zones and sinks deep into the 

mantle. (Some part of the oceanic crust remains attached to the continental margins for a long time.) In contrast to the 

oceanic crust, the continental crust does not sink in subduction zones. The continental lithosphere, despite its neutral 

buoyancy, also remains on the surface due to its viscosity and coupling with the continental crust. It should be noted 

that when a continent overrides a subduction zone, the subduction zone disappears, and the flows in the mantle are 

locally reorganized. The effect of basalt-eclogite transition in the oceanic crust on the mantle flow pattern and on the 

motion of continents has been studied. Our numerical experiments show that the inclusion of this effect in the model 

considerably alters the pattern of mantle flows and leads to distinct changes in the evolution of continents. Moreover, 

a new effect arises – bulging of heavy material (eclogitized former oceanic crust) at the core-mantle boundary, where-

from it arises with the mantle plumes on the surface of the Earth. 
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Аннотация: В численных экспериментах изучена эволюция системы мантия – движущиеся деформируемые континенты. Континенты движутся самосогласованно с мантийными течениями термокомпозиционной конвекции. Определены основные черты глобальной геодинамики – схождение и сжатие континентов, воз-никновение и исчезновение зон субдукции, бэкроллинг зон субдукции, перестройка мантийных течений и растяжение континентов с их последующим расхождением, раскрытие и закрытие океанов, а также рецирку-ляция океанической коры в мантии. Континентальная кора смоделирована активными маркерами, имеющи-ми добавочную вязкость и плавучесть, тогда как континентальная литосфера – маркерами только с повы-шенной вязкостью, имеющими нейтральную плавучесть. Океаническая кора, в свою очередь, смоделирована активными маркерами, имеющими плавучесть. Принципиальный результат – соответствие численных рас-четов реальной двухмодовости динамики Земли: океаническая кора, несмотря на свою положительную пла-вучесть у поверхности, погружается в зонах субдукции и уходит глубоко в мантию. (Часть океанической коры остается налипшей на окраинах континентов и не тонет, сохраняясь на длительное время.) В отличие от нее, континентальная кора не субдуцирует в зонах субдукции. Континентальная литосфера, несмотря на свою нейтральную плавучесть, за счет вязкости и сцепления с континентальной корой также остается на поверх-ности. При этом при «наезде» континента на зону субдукции происходит ее исчезновение и локальная пере-стройка течений в мантии. Изучено влияние перехода базальт – эклогит в океанической коре на структуру мантийных течений и движение континентов. Установлено, что включение в модель эффекта этого перехода существенно меняет картину мантийных течений и положения континентов. Кроме того, появляется новый эффект – возникновение скоплений остатков океанической коры на дне мантии. Вещество океанической ко-ры накапливается на дне мантии неоднородно, образуя несколько скоплений. Поднимаясь вместе с плюмами, вещество океанической коры вновь оказывается на поверхности Земли. 
 
Ключевые слова: численное моделирование; термокомпозиционная конвекция; континент; маркер;  океаническая кора; рециркуляция; бэкроллинг 

 
 

 

 

 

 
1. INTRODUCTION 

 

The effect of continents on mantle convection has 

been studied for several decades. Already early works 

[Trubitsyn et al., 1999; Gurnis, 1988] showed that the 

presence of continents in the model considerably chan-

ges the mantle convection pattern. Continents moved 

by mantle convection themselves change the convec-

tion and create a supercontinental cycle, including the 

convergence of all continents into a supercontinent and 

its subsequent disintegration accompanied by radical 

restructuring of all the mantle flows. In the early stu-

dies, continents were modeled by a heat-insulating line 

on the surface without a specified thickness, then by 

incompressible rectangles. 

In [Bobrov, Trubitsyn, 2008], the movements and 

mixing of the submerged oceanic lithosphere material 

in the mantle and its subsequent rise to the surface 

were determined in the successive stages of the calcu-

lated supercontinental cycle. Simultaneously, the fields 

of viscous maximum shear stresses and the orienta-

tions of their axes were calculated from the obtained 

fields of mantle material flows. The oceanic lithosphere 

was modeled by passive tracers; the number of tracers 

in the model was small. In the works mentioned above, 

the continents were considered to be undeformable. 

Later on, various models were used to model the 

continents. In [Butler, Jarvis, 2004], an axisymmetric 

spherical model of a mantle with immobile continent 

modeled by a high-viscosity region and subduction of 

an oceanic plate near an active continental margin is 

considered. 

In subsequent years, the continents have been mod-

eled by active tracers, which allowed to take into ac-

count the deformation and buoyancy of the continents. 

In [Trubitsyn et al., 2007], subduction of the oceanic 

and continental crust into the mantle was simulated by 

the method of active tracers. Their model shows that 

the oceanic crust (both normal and thickened) sub-

merges in subduction zones together with the oceanic 
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lithosphere. In its turn, the buoyant continental crust 

does not sink in the subduction zones. This model has 

several shortcomings: the square area of computation, 

low Rayleigh numbers, and Newtonian rheology in the 

entire design area (softening of the substance at high 

stresses is not taken into account). Actually, the princi-

pal conclusions published in [Trubitsyn et al., 2007] are 

correct, although based on the estimations from the 

parameters that differ significantly from the real pa-

rameters of the Earth. 

In [Bobrov, Baranov, 2011], a continent simulated by 

tracers with increased viscosity and zero buoyancy was 

added to the two-dimensional model of mantle convec-

tion. It was assumed that the continent moved self-

consistently with mantle currents. Stress fields were 

also calculated at different stages of the evolution of 

the system. 

Magni et al. [2013] considered various modes of 

lithosphere subduction, such as delamination of the 

continental lithosphere and slab detachment. The cal-

culations were performed using the well-tested Citcom 

program for a two-dimensional Cartesian model (li-

mited to the upper mantle) with the aspect ratio of 1 to 

5. The continents were modeled by active tracers with 

positive buoyancy and increased viscosity. A short-

coming of their model is that it does not consider a 

phase boundary at a depth of 410 km; moreover, a 660 

km phase boundary is also absent since the model is 

limited to the upper mantle. 

The spherical model considered in [Yoshida, 2012] 

includes deformable continents, which are more rigid 

than low-viscosity zones, i.e. young orogenic belts and 

suture continental zones. It is shown that the weak 

low-viscosity continental margins play an important 

role, partly protecting the platform areas from stret-

ching by the convecting mantle and so ensuring their 

longevity. For continental areas, the yield stress was 

assumed to be infinite, so they did not have the proper-

ty of plastic softening at high stresses. The yield stress 

of the oceanic lithosphere was assumed equal to 100 

MPa. The transport and recycling of the oceanic crust 

material in the mantle was not considered in [Yoshida, 

2012] (the tracers were introduced only for the conti-

nental areas). 

In our study, considerable attention is paid to the 

role of a heavy eclogitized material and its effect on  

the pattern of mantle convection.  

Numerous studies have been aimed at computer 

modeling of thermochemical convection and conside-

red the role of both the heavy component (eclogite) 

sinking into the mantle in the subduction zones, and 

the light fraction that results from differentiation  

and ascends in the mantle from the core-mantle 

boundary.  

The role of the heavy component was numerically 

investigated, in particular by Lobkovsky and Kotelkin. 

In the series of papers, models of various geometry 

were considered: the two-dimensional Cartesian model 

[Lobkovskii et al., 2014]; the model of the thin conic ring 

in the equatorial plane [Lobkovsky, Kotelkin, 2004]; and 

the spherical model [Lobkovsky, Kotelkin, 2015]. They 

consecutively introduced more and more new factors 

into their model and thus refined it to represent more 

details. 

An important element of the model is the presence 

of phase boundaries at the depths of 410 and 660 km. 

The latter boundary plays a particularly important role, 

since it is an endothermic transition, that is, to some 

degree (depending on the parameter of the problem – 

the slope of the phase equilibrium curve) prevents the 

passage of mantle streams. In the computer experi-

ments, Lobkovsky and Kotelkin obtained the pheno-

menon of intermittent convection: during some stages 

the convection in the upper mantle and the convection 

in the lower mantle took place almost separately, 

which led to substantial cooling of the upper mantle. 

Due to its weight, the cooled material passed the 660 

km barrier and began to sink quite rapidly into the 

lower mantle, thus causing the convection in the whole 

mantle. With the appropriate choice of parameters, 

Lobkovsky and Kotelkin achieved consistency between 

their results and the duration of the geologically ob-

servable cycles. Their model shows that the heavy 

component (eclogite) plays a significant role: it partici-

pates in the descending thermal flows, intensifying 

them, so the avalanches in the thermochemical convec-

tion occur more often than in case of the purely ther-

mal convection.  

In the Lobkovsky model, a powerful global descen-

ding flow emerges at the stage of global convection and 

pulls together the material above the flow to make a 

supercontinent on one side of the planet, and an as-

cending superplume occurs on the other side. Based on 

this process termed ‘overturn’, Lobkovsky et al. pro-

posed a fundamental explanation for the division of the 

Earth into the oceanic and continental hemispheres. 

The above-mentioned studies should not be regar-

ded as providing the final answers to the issues of con-

vection in the Earth’s mantle. As the authors them-

selves point out, some important factors have not yet 

been taken into account. In the spherical model, the 

viscosity of the entire volume of the mantle material is 

assumed to be constant. For the same reason, the mo-

del does not take into account the viscosity jump at the 

depth of the 660-km boundary. Because of this, the 

flow velocities in the upper and lower mantle in the 

model should have close values (as in the animation to 

[Lobkovsky, Kotelkin, 2004]), which seems unlikely. In 

addition, the inclusion of this viscosity jump in the 

model should, apparently, influence the process of 

‘overturn’. Due to the high viscosity of the lower mantle 

(in the real Earth, the viscosity jump at the 660-km 
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boundary is 30:1 or more), an avalanche would pro-

gress more slowly, and its penetration would take 

place for a longer time and less intensively. 

In contrast to the two-dimensional Cartesian model 

[Lobkovskii et al., 2014], in the Lobkovsky spherical 

model, continents do not have an effective viscosity 

exceeding the viscosity of a homogeneous mantle. The 

continents are simulated by numerous (~105) tracers 

transferring the property of buoyancy (but not of con-

tinental viscosity and strength). As a consequence, low-

viscosity tracers, in our opinion, too easily combine in-

to continents and the supercontinent with their subse-

quent dispersion; these aggregations are round-

shaped. Nevertheless, despite these simplifications, a 

fundamental conclusion in the qualitative form was 

obtained about the reasons of the difference in the con-

tinental and oceanic hemispheres of the Earth. Further 

development of this model seems very promising. 

In our present work, we consider a two-dimensional 

Cartesian model and numerically investigate the evolu-

tion of mantle flows, temperatures, viscosity fields, and 

the displacement of the material during the motion of 

two continental plates on the surface of the convective 

mantle. Non-Newtonian rheology of the material is ta-

ken into account. Two continents of different sizes are 

superimposed on the mantle flows calculated with the 

thermal Rayleigh number Ra=2×107. The continental 

crust and the continental lithosphere, as well as the 

oceanic crust, are modeled by active tracers. They play 

an important role – firstly, they show the movement of 

the material in the course of evolution. For deformable 

continents, this makes it possible to take into account 

such effects as compression, stretching of continents, 

their local thinning and thickening, that is, those pro-

cesses that take place in reality. The modeling of conti-

nents by rigid rectangles or lines does not allow for 

these processes to be taken into account. Secondly, 

tracers are defined here as active, i.e. as transferring 

the properties of a given material: its viscosity (which 

determines either the preservation of the compactness 

of this part of the material (at its high viscosity) or its 

disintegration); and its density in relation to the sur-

rounding material, what determines its buoyancy. 

The viscosity of the material in the model depends 

on the temperature, and also, in the oceanic area to 

depths of 150 km, on the stresses at a given point. 

Namely, the effective viscosity drops abruptly when the 

critical value of the applied stress is reached. This 

property of the drop in the viscosity of the material 

when the critical value of the maximum shear stress is 

reached (non-Newtonian viscosity, quasi-plastic beha-

vior) plays a very important role. Due to such rheology, 

bending of thick rigid oceanic plates (in the region of 

high stresses) and their subduction becomes possible. 

This property is one of the main factors determining 

the base features of mantle convection. 

The model assumes that the viscosity of the conti-

nents is higher than the temperature viscosity of the 

corresponding oceanic area. 

It is, of course, evident that the situation in reality is 

much more complicated. Very interesting results were 

obtained, in particular, from the regional models with 

kinematic boundary conditions [Burov et al., 2014]. 

The advantage of the global dynamic model under 

consideration is its coverage of the entire mantle as a 

whole. Unlike regional models, the global model does 

not require to formally introduce any closely located 

vertical side walls of the regions and, accordingly, to 

impose artificial boundary conditions (which some-

times do not even vary with time). Obviously, these fac-

tors can influence the derivable results. 

The phase boundaries in the mantle at the depths of 

410 and 660 km are taken into account in our mode-

ling, since a number of works have shown their essen-

tial role. In our model, the density of material abruptly 

changes at these boundaries. The upper/lower mantle 

boundary at 660 km also is considered as the position 

of the jump in mantle viscosity. 

As found in a number of studies, for example, in 

[Tosi, Yuen, 2011; Bobrov, Baranov, 2016], the presence 

of these boundaries leads to a number of effects, such 

as the ‘two-storied’ form of ascending plumes, with 

some delay of the material immediately underneath the 

660-km boundary; immersed slabs ‘lying’ on this bor-

der, which are of frequent occurrence; and, in general, 

the impeded passage across the 660-km border in both 

directions. Further, the difference in the viscosities of 

the upper and lower mantle leads to the fact that the 

flow velocities in the upper mantle are about 4 times 

higher than in the lower mantle, and the flows are  

oriented (mainly) subhorizontally. These significant 

subhorizontal upper-mantle flows may transfer the  

upgoing plumes to thousands of kilometers away from 

the place where they passed the 660-km boundary. In 

this case, the forms of the transfer of the plumes  

may be different. If, for example, a large-scale mantle  

flow comprises a group of plumes, the lateral plumes  

are strongly affected by the flows and drawn to sides,  

while the central ones ascends almost vertically. All  

these effects, of course, also affect other geophysical 

fields. 

 

 

2. THE EQUATIONS AND THE MODEL 

 

We use the Cartesian 2D model. It is assumed that 

the mantle is heated from the core and by the decay of 

the radioactive isotopes uniformly distributed in the 

mantle. 

The 2D fluid convection equations for the coordi-nates х and z in the dimensionless form are as follows. 
The continuity equation is 
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∂Vx/∂x+∂Vz/∂z = 0, (1) 
 

the momentum transfer equations are 
 

–∂p/∂x+∂τxx/∂x+∂τxz/∂z = 0 (2) 
 

and 
 

–∂p/∂z+∂τxz/∂x+∂τzz/∂z = –RaT+RacC+Raph∆Γ, (3) 
 

the heat transfer equation is 
 

∂T/∂t+Vx∂T/∂x+Vz∂T/∂z = ∂2T/∂x2+∂2T/∂z2+H, (4) 
 

and the transfer equation for the concentration C of  

the material is  
 

∂C/∂t+Vx∂С/∂x+Vz∂С/∂z =  

= (κd/κ)(∂2С/∂x2+∂2С/∂z2). (5) 
 

Here, Ra = αρ0g∆TD3/κη0 is the thermal Rayleigh 

number; Rac = ΔρgD3/κη0 is the compositional Rayleigh number; ∆ρ=ρ1–ρ0 is the density difference of con-

sidering material and the mantle material; Raph=  

=δρgD3/(κη0) is the phase Rayleigh number that cha-

racterizes the effect of the density jump δρ upon phase 

transition. Γ(x, z) is the volumetric fraction of the second phase 

(which has a higher density). The gamma function  

is defined through the hyperbolic tangent. Function  ∆Γ=Γ(x,z)–Γ0 (where Γ0 is the phase distribution func-tion undisturbed by the convection) is ∆Γ = 1 in the re-

gion where the phase boundary is elevated relative to 

undisturbed level h0, and ∆Γ = –1 in the region where 

the phase boundary is lowered.  

The Earth mantle is described in general by the  

following parameters [Schubert et al., 2001]: the coe-

fficient of thermal expansion α=2×10–5 K–1; gravita-

tional acceleration g=9.8 m/s2; ρ=4600 kg/m3; the  

coefficient of thermal diffusion κ=10–6 m/s2; the refe-

rence kinematic viscosity ν0=η0/ρ=0.5×1018 m/s2;  

the dimensionless thermometric density of the heat 

sources H=15 [Lowman et al., 2004]; and the drop in 

the superadiabatic (potential) temperature between 

the core/mantle boundary and the surface, ΔT, which  

is assumed to be 2500 K in our calculations. The scaling 

factors for the mantle are D = 2850 km for the length 

and κ/D=1.08×10–3 cm/yr for velocity; t0=D2/κ=266 Ga; 

and σ0 = κη0 /D2 = 0.235×103 Pa. These values give the 

Rayleigh number Ra= =(αgΔTD3)/(κν0)≈2×107. We  

note that Ra is determined here through the tempera-

ture difference ΔT between the lower and upper 

boundaries. In our model, γ410=1.6 MPa/K, δρ410/ρ0=  

=0.07; γ660=–1.3 MPa/K and δρ660/ρ0=0.09 [Fei et al., 

2004]. With these parameters, the Rayleigh num- 

bers are Raph410=δρ410 gD3/(κρν0)≈2.8×107; Raph660= 

=δρ660 gD3/(κρν0)≈4×107. The values of dimensionless γ are 0.035 for the transition at the depth of 410 km 

and –0.025 for the transition at the depth of 660 km. At 

Ra=2×107, the dimensionless time interval of 1×10–5 

corresponds to 2.7 Ma. 

In more details the equations are described in 

[Bobrov, Baranov, 2011, 2016]. 

The deviatoric viscous stress tensor has the follow-

ing components: 
 τxx = 2η∂Vx/∂x,  (6) τzz = 2η∂Vz/∂z,  (7) τxz = η (∂Vx/∂z+∂Vz/∂x),  (8) 
 

where η is the dimensionless dynamic viscosity at a 

given point. 

In the general form, the viscosity depending on 

temperature and strain rate of the material at a given 

point is described by the following formula [Simon et 

al., 2009]: 
 η = A – 1/n [ė](1–n)/n exp[(Ea + PV)/(nRT)]. (9) 
 

Here, T and P are dimensional temperature and 

pressure; R is the universal gas constant; А is the coef-

ficient before the exponent (pre-exponential factor); n 

is the nonlinearity index; ė is the second invariant  

of the strain rate tensor; Ea and V are the activation  

energy and activation volume, respectively. The term  

[ė](1–n)/n describes the plastic character of the de-

formations. In the present work we use a model with  

a simplified temperature dependence of viscosity  

(Arrhenius’s law):  
 ηT = exp(2E/(T+Tbot)−2E/(Tref+Tbot)), (10) 
 

where the dimensionless parameter E, which is con-

nected with activation energy, determines the viscosity 

range in our model; T is the dimensionless superadia-

batic temperature; Tref is assumed to be 0.5; and the 

temperature at the mantle bottom is Tbot = 1. 

In the present study, E=ln104.5=10.36, which cor-

responds to the activation energy (431 kJ/mole)  

[Yoshida, 2010]. This value is approximately the activa-

tion energy of wet olivine [Karato, Wu, 1993]. In our 

model, the jump in viscosity at the boundary with the 

lower mantle is assumed to be 50. Thus, in our model  
 ηT = exp(20.72/(T+1)–20.72/(0.5+1)) 
 

for the upper mantle, and  
 ηT = 50 exp(20.72/(T+1)–20.72/(0.5+1)) (11) 
 

for the lower mantle. 

 

Considering the oceanic lithosphere (above 150 km), 

in addition to Arrhenius’ law, the plastic character of 

the deformations should be also taken into account, by 

the condition  
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η litho = min(τ/2ė, ηT ), if ηT ≥30, (12) 

 

where ė is strain-invariant at a given point: 

 

ė = (0.5 ė ij ė ij )1/2, где ė ij = ∂V i/∂x j+∂V j/∂x i, (13) 
 τ is the effective yield stress [Yoshida, 2010]. 

In our study, we assume τ to be 50 MPa in dimen-

sion form, which falls in the interval that favors the 

generation of relatively rigid plates [Trubistyn, 2012; 

Moresi, Solomatov, 1998]. The strength of the conti-

nents in our calculations is assumed to be 10 times 

greater than the strength of the oceanic lithosphere. 

Thus, we have the continental strength (yield stress) 

equal to 500 MPa. Note that in [Yoshida, 2010, 2012] 

the strength of continents is taken to be infinite; [Magni 

et al., 2013] assumes a value of up to 400 MPa. With the 

continental yield stress value used in our study, there is 

no massive sinking of continents into the mantle in the 

zones of strong descending flows. At lower values of 

the yield stress of continents, such a run-off in the 

model can occur. 

In our model, the thickness of the continental crust 

is 40 km, and the continental lithosphere (including the 

crust) is 150 km thick. The continental crust in the 

model has a positive buoyancy (the density difference 

between the continental crust and the mantle is 2800–

3200=–400 kg/m3), which corresponds to the Rayleigh 

number Rac1=–4×107. 

Below we consider two versions of buoyancy of the 

oceanic crust. In the first version, an oceanic crust with 

the thickness of 7 km is modeled by active tracers with 

positive buoyancy (the density difference of the mate-

rials of the oceanic crust and mantle is 3000–3200= 

=–200 kg/m3), which corresponds to the Rayleigh 

number Rac3=–2×107. The basalt-eclogite phase tran-

sition is not taken into account. 

In the real Earth, at a pressure exceeding 2.5 GPa 

[Sobolev et al., 2007], the oceanic crust basalt trans-

forms into eclogite with a density of approximately 

3400 kg/m3. The second version of our calculations 

takes into account this transition, and the buoyancy  

of the oceanic crust in our model becomes negative 

from the depth of 80 km (the density difference is 

3400–3200=200 kg/m3), which corresponds to the 

Rayleigh number Rac3 = 2×107. Thus, Rac3 in the ocea-

nic crust changes sign at a depth of about 80 km. 

The continental lithosphere has neutral buoyancy. 

Indexes 1, 2 and 3 denote the tracers of the substances 

of the continental crust, the continental lithosphere, 

and the oceanic crust, respectively. Concentrations of 

C1,2,3 can vary during the process of movement and 

mixing of the material from 1 to 0.  

The viscosity of the continents is assumed to be in-

creased in comparison with the temperature viscosity of the corresponding oceanic region ηT. For the conti-

nental crust, the viscosity is taken in dimensionless quantities equal to ηT+1000×С1, for the continental lithosphere it is ηT+500×С2. Thus, the viscosity of the 

substance is transferred by the continental tracers (in-

dices 1 and 2). The buoyancy of the substance in this 

version of the model is transferred by the tracers of the 

continental and oceanic crust (tracers 1 and 3). 

The calculations in our study are conducted by the 

2D Citcom code [Moresi, Gurnis, 1996; Zhong et al., 

2000] with some updates and the automated graphics 

developed by A. Evseev. This code has been widely 

used and thoroughly tested. For each time instant, the 

momentum transfer equation and the heat transfer 

equation were solved. The thermal convection was cal-

culated with the Rayleigh number Ra=2×107. The nu-

merical finite element solution was computed in a box 

area with the aspect ratio L:D=5:1 on a uniform 

401×201 grid, i.e., with the horizontal resolution of  

36 km and the vertical resolution of 15 km. In the 

course of the computations, the model achieved the 

regime that is inherent to the assumed parameters (the 

systematical trend of the solution disappears). The pa-

rameter of artificial compressibility (tole_compressibi-

lity) was assumed to be 5×10–6, and the accuracy of the 

Uzawa algorithm was 1×10–5. This combination of the 

parameters is optimal from the standpoint of the accu-

racy and performance [Brooks, Hughes, 1982; Hughes, 

1987; Moresi, Gurnis, 1996]. The parameters of the al-

gorithm are described in more detail in the above-

mentioned papers. 

 

 

3. Results and discussion 

 

3.1. OCEANIC CRUST WITH POSITIVE BUOYANCY 

 

Figures 1–11 show the results for eleven successive 

stages of the convection. In each figure, the following 

fields are shown from top to bottom: the distributions 

of temperature and velocity, logarithmic viscosity, and 

the distribution of the three types of tracers in the cal-

culation area (tracers of the continental crust are 

shown in red, the continental lithosphere is green, and 

the oceanic crust is blue. 

The dimensionless time of stage 1 is assumed to be 

zero. The dimensionless times of stages 1–11 are t1=0; 

t2=2.63×10–4; t3=4.16×10–4; t4=8.88×10–4; t5=1.36×10–3; 

t6=1.82×10–3; t7=2.34×10–3; t8=3.01×10–3; t9=3.11×10–3; 

t10=3.25×10–3; t11=3.52×10–3, respectively. In the dimen-

sional units, these values correspond to t1=0 Ma;  

t2=70 Ma; t3=110 Ma; t4=236 Ma; t5=361 Ma; t6=483 

Ma; t7=623 Ma; t8=802 Ma; t9=828 Ma; t10=864 Ma;  

t11=935 Ma, respectively. The calculation of this evolu-

tion required 6800 time-steps. 

Our modeling shows the following characteristic 

stages:  
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Fig. 1. Mantle model (viscoplastic 

rheology), t=0. Spatial distribution 

patterns (from top to bottom): di-

mensionless temperature and flow 

velocities; dimensionless viscosity 

(logarithmic viscosity scale); the 

spatial distribution of the three 

tracer fields: tracers of the conti-

nental crust are shown in red, the 

continental lithosphere is green, 

and the oceanic crust is blue.  

 

Рис. 1. Модель мантии с вязко-пластической реологией, на-чальный момент времени (t=0). Представлены поля (сверху вниз): пространственное рас-пределение безразмерной тем-пературы и скоростей течений; пространственное распределе-ние безразмерной вязкости (шкала вязкости логарифмиче-ская); поля маркеров трех типов: маркеры континентальной ко-ры показаны красным цветом, континентальной литосферы – зеленым, океанической коры – синим. 

Fig. 2. Mantle model, t=70 Ma. See 

Fig. 1 for the legend. 

 

Рис. 2. Модель мантии, второй мо-мент времени (t=70 млн лет). Обо-значения те же, что и для рис. 1. 
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Fig. 3. Mantle model, t=110 Ma. 

See Fig. 1 for the legend. 

 

Рис. 3. Модель мантии, третий момент времени (t=110 млн лет). Обозначения те же, что и для рис. 1. 
 

Fig. 4. Mantle model, t=236 Ma. 

See Fig. 1 for the legend. 

 

Рис. 4. Модель мантии, t=236 млн лет. Обозначения те же, что и для рис. 1. 
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Fig. 5. Mantle model, t=361 Ma. 

See Fig. 1 for the legend. 

 

Рис. 5. Модель мантии, t=361 млн лет. Обозначения те же, что и для рис. 1. 
 

Fig. 6. Mantle model, t=483 Ma. See 

Fig. 1 for the legend.  

 

Рис. 6. Модель мантии, t=483 млн лет. Обозначения те же, что и для рис. 1. 
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Initial moment, t=0. Continents are introduced in 

the model. Due to the impact of the mantle flows, the 

continents begin to move to the left in the model. 

Fig. 2: t=70 Ma. The left slow-moving continent has 

almost stopped (as it reached the boundary of the cal-

culated region). By this time, an inclined slab has 

formed under its edge (and the edge itself thickened). 

Fig. 3: t=110 Ma. As soon as the left-side continent 

stopped, the motion of the right-side continent slowed 

down. Due to this slowing-down, the motion of the oce-

anic lithosphere material is hindered by the stalled 

plate, which leads to creation of a descending flow, i.e. a 

new subduction zone, behind it (x=1.8÷2.0), or, in other 

variants, at some distance behind it. The closure of the 

ocean is almost maximal. 

Fig. 4: t=236 Ma. Maximum convergence of the con-

tinents. The slab, formed by the oceanic plate between 

the continents, broke away under its own gravity 

(x=0.8÷0.9, z=0.5÷0.8), and subduction ceased. Thus, 

the scenario of slab detachment during the collision of 

two continents is realized, as described in [Davies,  

von Blanckenburg, 1995; Duretz et al., 2011; van Hunen, 

Allen, 2011]. The left-side continent experienced a total 

compression of ~10 % as compared to its initial state. 

Then the opening of the ocean begins. The tempe-

rature and viscosity fields at this stage demonstrate 

that a portion of the cold oceanic lithosphere has al-

ready broken off and is now plunging into the lower 

mantle. 

Fig. 5: t=361 Ma. The opening of the ocean con-

tinues. The field of the tracers shows the role of the 

660-km phase boundary: sinking of the oceanic crust is 

hindered when it passes this border, and the oceanic 

crust either lies on the phase boundary or is divided 

into two segments (right- or left-side subduction, re-

spectively). The upper mantle flows begin to transfer 

the upper portion of the subducted oceanic crust into 

the opening ocean area (x=1.0÷1.3, z=0.07÷0.20). 

Fig. 6: t=483 Ma. The portion of the oceanic crust 

remaining in the upper mantle has been already up-

lifted to the surface in the opening ocean area 

(x=1.2÷1.3). An intensive descending mantle flow has 

been formed to the right of the right-side continent 

(x=3.2÷3.8). Large velocity vectors show that it is the 

main driving force at this stage. The opening of the 

ocean between the continents is quite intense. Due to 

the impact of the slab formed at this stage, the right-

ward motion of the right-side continent has also in-

creased from 0.6 cm/yr in the previous stage to about 

5.4 cm/yr. The slab retreats from the approaching  

continent to the right (the effect of backrolling) and 

moves slower that the continent. 

 

Fig. 7. Mantle model, t=623 Ma. See 

Fig. 1 for the legend. 

 

Рис. 7. Модель мантии, t=623 млн лет. Обозначения те же, что и для рис. 1. 
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Fig. 8. Mantle model, t=802 Ma. 

See Fig. 1 for the legend. 

 

Рис. 8. Модель мантии, t=802 млн лет. Обозначения те же, что и для рис. 1. 
 

Fig. 9. Mantle model, t=828 Ma. See 

Fig. 1 for the legend. 

 

Рис. 9. Модель мантии, t=828 млн лет. Обозначения те же, что и для рис. 1. 
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Fig. 10. Mantle model, t=864 Ma. 

See Fig. 1 for the legend. 

 

Рис. 10. Модель мантии, t=864 млн лет. Обозначения те же, что и для рис. 1. 
 

Fig. 11. Mantle model, t=935 Ma. 

See Fig. 1 for the legend. 

 

Рис. 11. Модель мантии, t=935 млн лет. Обозначения те же, что и для рис. 1. 
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Fig. 7: t=623 Ma. Opening of the ocean stops. Its size 

reached 7500 km (analogue of the Atlantic Ocean). 

During the entire period of opening, the left-side conti-

nent slowly stretches. The oceanic crust remaining in 

the upper mantle noticeably rises up due to convection 

in the upper mantle. The right-side continent overrided 

the slab and broke the upper-mantle portion of this 

slab, and the velocity of the continent decreased by an 

order of magnitude. The remnant slabs are located 

deep in the lower mantle (x=3.0÷3.6, z=0.1÷0.4). Simul-

taneously, at the continental sides, descending mantle 

flows formed, while the continent itself was shortened. 

The right-side descending flow is smaller and lies on 

the 660-km boundary for some time. The left-side  

descending flow (x=3.5÷3.7) is very intense and con-

tinues to develop. It should be noted that an intensive 

descending flow in our model occurred thrice – it ap-

pears behind the moving continent at the moments 

when the continent motion is abruptly decelerated: 

t=110 Ma, t=623 Ma, and t=935 Ma. 

Fig. 8: t=802 Ma.The left-side continent was sepa-

rated from the left-side border of the calculation area 

80 Ma before this stage. The right-side continent sur-

rounded by subduction zones is under compression. 

The left-side ocean is opening; practically in the middle 

(x=0.7) the mid-oceanic ridge appeared, and here the 

recycled oceanic crust is transferred to the surface. At 

the front edge of the left-side continent, there is a 

fragment of the oceanic crust (x=2.08÷2.15, z=0.9÷1). 

This fragment joined the continent at an early stage of 

the evolution. Thus, the oceanic crust, attached to the 

continent during subduction, can remain at the surface 

for a long time (in the model, the full time of the nu-

merical experiment is ~1 billion years). The right-side 

ocean is closing. The subduction zone (x=3.1÷3.2) lo-

cated in the closing ocean retreats to the right-side con-

tinent that is surrounded by the subduction zones and 

experiences compression.  

Fig. 9: t=828 Ma. Active opening of the left-side 

ocean continues, and the velocity of the left continent 

reaches 9 cm/yr. 

The left-side continent with the subduction zone 

reaches the mantle plume located in front of it 

(x=3.0÷3.1). In the continental convergence region, 

there are three subduction zones, which are later com-

bined into one. 

Fig. 10: t=864 Ma. The moment of the continental 

collision. The left-side continent with the subduction 

zone destroyed the mantle plume in the closing ocean. 

In this case, a group of three subduction zones in 

continental convergence region is combined into a  

single intensive mantle flow. Note that a similar phe-

nomenon occurs in case of the Philippine oceanic plate 

that is surrounded by subduction zones. 

In the region (x=0.8÷1.0), there is a mid-oceanic 

ridge on the surface, where, as can be seen in the  

figures, the recycled oceanic crust is transferred to the 

surface. 

The left-side continent sharply slowed down during 

the collision. The subduction starts at its left edge. This 

effect occurs in this model for the third time. 

Fig. 11: t=935 Ma. The rightward movement of the 

continents as a whole slows down as they approach  

the wall of the computational area. Now the continents 

are surrounded by subduction zones. The third subduc-

tion zone is located at the junction of the two conti-

nents.  

Stretching in the left-side continent is initiated by a 

mantle flows underneath this continent. Note that in 

the upper part of the plunging slab, the values of the 

maximum shear stresses can reach values up to 

200000 in dimensionless form, i.e. up to 50 MPa in di-

mensional form. Thus, the yield stress limit adopted in 

our model is reached in these region, which results in 

quasiplastic deformation of the material. 

Summarizing the above-described results, we con-

clude that the model demonstrates all the basic ele-

ments of the modern theory of floating continents.  

The positive buoyancy of the oceanic crust slows 

down its plunging, as well as the subduction of the  

oceanic slab (due to the viscous cohesion), if the crust 

does not detach from the slab.  

In the areas where the oceanic crust thickness is 

comparable with the continental one (up to 30 km), the 

subduction of the slab slows down sharply. This effect 

is observed for basaltic plateaus in the ocean, such as, 

for example, the Ontong-Java plateau [Taira et al., 

2004]. In detail, the dependence of crustal subduction 

on the crustal thickness and buoyancy was studied in 

[Trubitsyn et al., 2007]. 

The small thickness and low buoyancy of the ocea-

nic crust as compared to the continental one explains 

the fundamental distinction in its evolution. The ocea-

nic crust sinks in subduction zones, and only partially 

remains at the sides of the continents. The continental 

crust, on the contrary, practically does not subduct  

due to its large thickness and higher buoyancy (the 

density difference of the continental crust and the  

mantle is 2800–3200=–400 kg/m3, and for the oceanic 

crust it is –200 kg/m3). Thus, the oceanic crust exists 

on the surface for no more than 200 Ma (before the  

closure of the ocean), while the continental crust can 

exist for billions of years. 

Our results show the constantly arising oscillations 

of the process (fluctuations in the shape of the flows, in 

their velocities, in heat flow, etc.), which vary in fre-

quency. Using the experimental data on liquids [Dob-

retsov et al., 1998; Kirdyashkin et al., 2000] obtained the 

(scaled) results which were correlated with the charac-

teristic durations of the Wilson supercontinental cycle. 

For this purpose, the hydrodynamic homochronicity 

criterion Ho=ut/l was introduced, where u is the  
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characteristic flow velocity, t is the period of tempera-

ture pulsations, and l is the thickness of the layer. For 

experiments with viscous fluids at Rayleigh numbers 

(6.8×105÷1.0×106), the estimate Ho=7.2 was obtained 

[Kirdyashkin et al., 2000]. 

Let us consider our results from this point of view. 

Taking the characteristic values from our calculations: 

u=4 cm/yr; tchar=500 million years – time comparable 

with the duration of the Wilson cycle; l=2900 km – the 

thickness of the mantle, we obtain Ho=7; the evaluation 

shows a good stability of this value for a wide range of 

models. Of course, there are shorter-period oscillations, 

in particular, with quasiperiodicity of 10–40 million 

years, associated with the emergence of individual 

plumes and the immersion of slabs. 
 

3.2. TRANSITION OF BASALT-ECLOGITE IN THE OCEANIC CRUST 

 

In this version of our calculations, the basalt-

eclogite phase transition is included, i.e. Rac3 of the 

oceanic crust changes sign at a depth of about 80 km, 

and so oceanic crust becomes heavier than the sur-

rounding mantle.  

The calculations show a number of differences from 

the previous version. Figures 12–19 show some cha-

racteristic stages.  

The initial stages during the first 250 Ma develop 

almost identically; then significant discrepancies begin 

to occur. 

Unlike the first version of the model, where after 

250 million years, a new ocean begins to open between  
 

 
 

Fig. 12. Mantle model (viscoplastic rheology of the oceanic lithosphere and eclogitization of the oceanic crust), t=236 Ma. 

Spatial distribution patterns (from top to bottom): dimensionless temperature and flow velocities; dimensionless viscosity 

(logarithmic viscosity scale); the spatial distribution of the three tracer fields: tracers of the continental crust are shown in 

red, the continental lithosphere is green, and the oceanic crust is blue.  

 

Рис. 12. Модель мантии с вязкопластической реологией и эклогитизацией, t=236 млн лет. Представлены поля (сверху вниз): пространственное распределение безразмерной температуры и скоростей течений; пространствен-ное распределение безразмерной вязкости (шкала вязкости логарифмическая); поля маркеров трех типов: марке-ры континентальной коры показаны красным цветом, континентальной литосферы – зеленым, океанической коры 
– синим. 
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Fig. 13. Mantle model (viscoplastic 

rheology and eclogitization), t=490 

Ma. See Fig. 12 for the legend. 

 

Рис. 13. Модель мантии, t=490 млн лет. Обозначения те же, что и для предыдущих рисунков. 
 

Fig. 14. Mantle model (viscoplastic 

rheology and eclogitization), t=635 

Ma. See Fig. 12 for the legend. 

 

Рис. 14. Модель мантии, t=635 млн лет. Обозначения те же, что и для предыдущих рисунков. 
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Fig. 15. Mantle model (viscoplastic 

rheology and eclogitization), t=710 

Ma. See Fig. 12 for the legend. 

 

Рис. 15. Модель мантии, t=710 млн лет. Обозначения те же, что и для предыдущих рисунков. 
 

Fig. 16. Mantle model (viscoplastic 

rheology and eclogitization), t=845 

Ma. See Fig. 12 for the legend. 

 

Рис. 16. Модель мантии, t=845 млн лет. Обозначения те же, что и для предыдущих рисунков. 
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Fig. 17. Mantle model (viscoplastic 

rheology and eclogitization), t=875 

Ma. See Fig. 12 for the legend. 

 

Рис. 17. Модель мантии, t=875 млн лет. Обозначения те же, что и для предыдущих рисунков. 
 

Fig. 18. Mantle model (viscoplastic 

rheology and eclogitization), t=935 

Ma. See Fig. 12 for the legend. 

 

Рис. 18. Модель мантии, t=935 млн лет. Обозначения те же, что и для предыдущих рисунков. 
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almost converged continents begins, here it does not 

occur (Fig. 12, t=236 Ma). 

Until t=490 Ma, the continents remain almost con-

verged and inactive. The gradual extension of the left-

side continent by ~10 % takes place later on. Then a 

new ocean begins to open to the left of both continents, 

similar to the previous version. 

Thus, the model without eclogitization shows  

the opening of the first ocean between continents at  

t=240 Ma and the second ocean to the left of both con-

tinents at t=720 Ma. According to the model with ac-

count of eclogitization, only the second ocean occurs: 

its opening begins at t=635 Ma. 

It seems that the opening of the (first) ocean be-

tween the continents is impeded by a subvertically 

plunging strip of the eclogitized heavy oceanic crust 

beneath the suture of these continents (see Fig. 13: 

t=490 Ma, x=0.5÷1.1, z=0÷0.7). Hence, the sensitivity of 

the results to eclogitization is evident. 

In the process of opening of the ocean, the gap  

between the two continents is completely closed 

(t=710 Ma), and the oceanic crust becomes sandwiched 

between continents.  

Fig. 16: t=845 Ma. The recycled oceanic crust from 

the lower mantle begins to transfer to the surface in the 

opening ocean (blue tracers). Thus, the phenomenon of 

recirculation of the oceanic crust in the mantle [Chris-

tensen, Hofmann, 1994; Sobolev et al., 2007] is numeri-

cally confirmed. 

Simultaneously, an important new effect arises: at 

the bottom of the lower mantle, two small clusters 

formed, containing the heavy material of the eclo-

gitized oceanic crust. The upward movement of this 

heavy material occurs with difficulty (as seen in all 

subsequent stages of the calculation). The reason is the 

negative buoyancy of eclogite. In the previous version, 

the basalt-eclogite phase transition is not taken into 

account, so that there is no bulging of heavy material at 

the mantle bottom. Due to its positive buoyancy, the 

oceanic crust material is easily transferred to the sur-

face of the Earth. 

Fig. 17: t=875 Ma. The right-side continent reaches 

the mantle plume located in front of it. The descending 

flows fall sub-horizontally to the 660-km boundary. 

The continent finally destroys the mantle plume  

(t=935 Ma), overriding it by the subduction zone. 

 
 

Fig. 19. Mantle model (viscoplastic rheology and eclogitization), t=990 Ma. See Fig. 12 for the legend. 

 

Рис. 19. Модель мантии, t=990 млн лет. Обозначения те же, что и для предыдущих рисунков. 
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When the movement of the united continents slows 

down, a slab appears behind them (t=990 Ma). 

Summarizing, we can conclude that the above-

discussed versions of the model taking into account 

eclogitization of the oceanic crust and without eclogiti-

zation, show both different and common features  

of development. Common phenomena are: the opening 

of a new ocean; backrolling of the subduction zone  

(t=845 Ma ÷ 875 Ma); overriding the mantle plume 

(see t = 875 Ma ÷ 935 Ma); the emergence of slabs be-

hind the continents experiencing decelerated motions 

(t=990 Ma). 

Some authors (e.g. [Yoshida, 2010, 2012; Magni et al., 

2013]) do not take into account the buoyancy of the 

oceanic crust and the basalt-eclogite phase transition 

and consider this effect insignificant. One may assume 

that the influence of buoyancy of such a thin (7 km) 

layer of the oceanic crust material is insignificant. 

However, our calculations show that the inclusion of 

the basalt-eclogite transition effect in the oceanic crust 

significantly alters the pattern of mantle flows and the 

positions of continents. Moreover, the model with eclo-

gitization shows a new effect – bulging of heavy mate-

rial (eclogites, i.e. portions of the former oceanic crust) 

at the mantle bottom. These bulges move along the 

core-mantle boundary under the influence of the  

mantle convection, in the direction from slabs to  

mantle plumes. The process of their formation is con-

nected with local plumes: the ascending plumes collect 

the material located on the bottom to the left and to the 

right of them and causes bulging. In the models and 

calculations that do not take the ‘basalt-eclogite’ transi-

tion into account, this phenomenon is absent. 

Thus, our numerical experiments show that the  

inclusion of basalt-eclogite transition in the model  

considerably alters the evolution of mantle convection 

with continents. Moreover, a new effect arises – bulging 

of heavy material (eclogites, i.e. portions of the former 

oceanic crust) at the mantle bottom. The bulging  

forms several piles that are gradually brought upward  

by the plumes and thus appear on the surface of  

the Earth. 

 

 

4. CONCLUSION 

 

The main results of our numerical experiments in-

clude the following: 

1. Our model of the two-dimensional mantle convec-

tion with non-Newtonian rheology in the presence of 

deformable continents demonstrates and allows to 

analyze all the basic elements of the modern theory  

of floating continents: convergence and compression  

of continents; the emergence of subduction zones; 

stretching, breakup and divergence of continents; 

opening and closing of the oceans; backrolling of sub-

duction zones; overriding of hot plumes by moving 

continents, and the recirculation of the oceanic crust in 

the mantle.  

2. The model with the parameters accepted for our 

study shows considerable shortening (up to ~10 %) 

and thickening of the continents during their collision, 

as well as extension and thinning at other stages of 

their evolution. Stretching takes place only in the con-

tinental region located above the ascending mantle 

flow. The other regions of this continent may experi-

ence shortening in the same period of time.  

3. When the moving continent slows down due to 

continental collision, it becomes an obstacle to the sub-

horizontal mantle flow behind it, and a descending flow 

(i.e. a new subduction zone) begins to form behind the 

continent. The new subduction zone may occur either 

at the edge of the continent or at some distance from  

it. Thus, the model predicts the moment when a new 

subduction zone arises. 

4. The calculations based on the model with real pa-

rameters show that the continental crust does not sink, 

while the oceanic crust, despite its positive buoyancy at 

the surface, plunges into the mantle. This fundamental 

difference between the continental crust and the oce-

anic crust is the basis of the dual modes (the difference 

between continents and oceans) in the Earth geody-

namics.  

5. The phenomenon of recirculation of the oceanic 

crust in the mantle has been numerically confirmed. At 

the same time, some part of the oceanic crust remains 

attached to the continental margins for a long time. 

6. The effect of buoyancy of the thin (7 km) oceanic 

crust layer is significant. According to our calculations, 

the effect of eclogitization is important for convection 

in the entire mantle. The inclusion of basalt-eclogite 

transition in the model show an additional new effect – 

bulging of heavy material (eclogitized remnants of the 

oceanic crust) at the core-mantle boundary, wherefrom 

it can be transferred upward by the mantle plumes and 

thus appear on the surface of the Earth. 

Of course, the processes in reality are much  

more complicated. In the future numerical experi-

ments, we plan to include new additional factors in the 

model. 
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