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PURPOSE. Oxygen-induced retinopathy (OIR) is a model for
human retinopathy of prematurity (ROP). In OIR mice, this
study determined whether blockade of �-adrenergic receptors
(�-ARs) with propranolol influences retinal levels of proangio-
genic factors, retinal vascularization, and blood–retinal barrier
(BRB) breakdown.

METHODS. Propranolol was administered subcutaneously and
picropodophyllin (PPP) intraperitoneally. Intravitreal injec-
tions of vascular endothelial growth factor (VEGF) were per-
formed. Messengers of �-ARs, VEGF, its receptors, IGF-1 and
IGF-1R were measured with quantitative RT-PCR. VEGF con-
tent was determined with ELISA. �-ARs, hypoxia-inducible fac-
tor (HIF)-1�, occludin, and albumin were measured with West-
ern blot. Retinal localization of �3-ARs was determined by
immunohistochemistry. Retinopathy was assessed by scoring
fluorescein-perfused retinas, and plasma extravasation was vi-
sualized by Evans blue dye.

RESULTS. Hypoxia did not influence �-AR expression, except
that it increased �3-AR protein with dense �3-AR immunore-
activity localized to engorged retinal tufts. Hypoxia upregu-
lated VEGF, IGF-1, their receptors, and HIF-1�. Propranolol
dose-dependently reduced upregulated VEGF and decreased
hypoxic levels of IGF-1 mRNA and HIF-1�. Blockade of IGF-1R
activity with PPP did not influence propranolol’s effects on
VEGF. Retinal VEGF in normoxic mice or VEGF in brain, lungs,
and heart of the OIR mice were unaffected by propranolol.
Propranolol ameliorated the retinopathy score, restored occlu-
din and albumin, and reduced hypoxia-induced plasma extrav-
asation without influencing the vascular permeability induced
by intravitreal VEGF.

CONCLUSIONS. This is the first demonstration that �-AR blockade
is protective against retinal angiogenesis and ameliorates BRB
dysfunction in OIR. Although the relevance of these results to

infant ROP is uncertain, the findings may help to establish
potential pharmacologic targets based on �3-AR pharmacology.
(Invest Ophthalmol Vis Sci. 2011;52:155–170) DOI:10.1167/
iovs.10-5536

As understanding of the heterogeneous pathophysiology of
retinopathy of prematurity (ROP) has increased, emphasis

has shifted to more selective therapy that targets components
of the angiogenesis cascade. In this respect, increasing knowl-
edge of factors regulating retinal neoangiogenesis mostly orig-
inates from work in animal models of oxygen-induced retinop-
athy (OIR). Indeed, OIR is characterized by the abnormal
formation of new blood vessels which is similar to ROP.1

In the retina, the hypoxic condition increases the stability of
the inducible subunit of the transcription factor hypoxia-induc-
ible factor (HIF), HIF-1�.2 HIF-1� accumulation leads to the
subsequent transactivation of HIF which, in turn, upregulates
the expression of a variety of genes, including angiogenic
growth factors.3 Of them, vascular endothelial growth factor
(VEGF), insulin-like growth factor (IGF)-1, and their receptors
are involved in the pathologic blood vessel formation that
characterizes OIR and other proliferative retinopathies.1,4 In
particular, IGF-1 is critical in normal retinal vascular develop-
ment, and a lack of IGF-1 in the early neonatal period is
associated with the lack of vascular growth and proliferative
ROP.1 In this respect, IGF-1 has been demonstrated to increase
the stability of HIF-1� and its transcriptional activity5 and is a
potent inducer of VEGF.6,7

VEGF overexpression in the hypoxic retina causes a break-
down in the blood–retinal barrier (BRB),8 probably due to
downregulation of the tight junction protein occludin.9 The
decrease in occludin, in turn, results in the leakage of albumin
from many of the retinal blood vessels10 and in plasma extrav-
asation that can be visualized with increased leakage of Evans
blue, a dye that binds to serum proteins.11 In several species,
intravitreal VEGF injection can mimic some of the features
observed in OIR. In particular, intravitreal injection of VEGF
causes severe breakdown of the BRB that results in plasma
extravasation.12,13

In several systems, hypoxia has been shown to cause cat-
echolaminergic overstimulation that in turn alters signaling
pathways associated with �-adrenergic receptors (�-ARs).14

Although �-AR expression in the retina has been established,15

little is known about �-AR localization.16,17

There is some evidence that angiogenesis is controlled by
the adrenergic system through its regulation of proangiogenic
factors. Most of the evidence originates from solid tumors and
tumor cell lines, in which norepinephrine (NE) affects tumor
progression by upregulating VEGF.18,19 In addition, in human
umbilical vein endothelial cells, NE stimulates the production
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of VEGF.20 Finally, in neonatal rat cardiac myocytes, NE stim-
ulates angiogenesis by upregulating VEGF.21

Whether angiogenesis regulation by the adrenergic system
in the retina is mediated by �-AR modulation of proangiogenic
factors remains to be clarified. There are reports of prolifera-
tion and migration of human retinal endothelial cells stimulated
by �3-AR activation.22 In addition, in human choroidal endo-
thelial cells, the �-AR agonist isoproterenol leads to increased
levels of growth factors implicated in ocular diseases.23 On the
other hand, isoproterenol has been shown to inhibit diabetic-
like changes in the rat retina, suggesting that loss of �-AR
signaling may be a key factor in early diabetic retinopathy
(DR).24 In line with these findings, propranolol, a �-AR nonse-
lective antagonist, produces a dysfunctional electroretinogram
(ERG) that occurs with an increase in IGF-1R phosphorylation
and activation of VEGF in the rat retina.25 In rats with DR,
propranolol does not affect retinal levels of VEGF,26 whereas a
decrease in VEGF has been observed in the retinas of OIR rats,
in which a reduction of the intraocular pressure by the �-AR
antagonist timolol diminishes the severity of OIR.27

The effect of propranolol on ROP has not been studied so
far. Recent results have demonstrated the efficacy of propran-
olol against infantile capillary hemangioma, even though there
is no generally accepted concept of how propranolol actually
works in infantile hemangioma.28 There are also findings indi-
cating that infantile hemangiomas are associated with the de-
velopment of ROP in preterm infants.29

In the present study, we investigated the role of propranolol
in the regulation of retinal angiogenesis and vascular perme-
ability. In particular, we determined whether propranolol af-
fects retinal levels of proangiogenic factors, vascular leakage,
and retinal neovascularization in a mouse model of OIR. The
mechanisms of action of propranolol on angiogenesis were
also investigated.

MATERIALS AND METHODS

The PCR master mix (iQ SYBR Green Supermix) was from Bio-Rad

(Hercules, CA). Primers were obtained from MWG Biotech (Ebersberg,

Germany). A nucleic acid gel stain (GelStar) was from Cambrex (East

Rutherford, NJ). The rabbit polyclonal antibodies against �1- and �2-

AR; the goat polyclonal antibody directed to �3-AR, its blocking pep-

tide for preadsorbtion experiments; the goat IgG negative control; the

mouse monoclonal antibody against HIF-1�; picropodophyllin (PPP),

an inhibitor of IGF-1R phosphorylation; the goat polyclonal antibody

directed to albumin; and the rabbit anti-goat horseradish peroxidase–

labeled antibody were purchased from Santa Cruz Biotechnology

(Santa Cruz, CA). The rabbit polyclonal antibody directed to occludin

was obtained from Zymed Laboratory (South San Francisco, CA). The

secondary antibody Alexa Fluor 488 was from Molecular Probes (Eu-

gene, OR). The mouse anti-rabbit horseradish peroxidase–labeled an-

tibody was obtained from Cell Signaling Technology (Beverly, MA).

The enzyme-linked immunosorbent assay for the detection of VEGF

(Quantikine Mouse VEGF ELISA kit) and the human recombinant

VEGF165 were obtained from R&D Systems (Minneapolis, MN). The

enhanced chemiluminescence reagent (WBKLS0500) was from Milli-

pore (Billerica, MA). All other chemicals were obtained from Sigma-

Aldrich (St. Louis, MO).

Animals

Experiments were performed on 205 C57BL/6 mice of both sexes at

postnatal day (PD)17 (6 g body weight). In some experiments, mice at

PD12 and -14 were also used (12 animals for each age). Experiments

were performed in agreement with the ARVO Statement for the Use of

Animals in Ophthalmic and Vision Research and in compliance with

the Italian law on animal care No. 116/1992 and the EEC/609/86. All

efforts were made to reduce the number of animals used.

Model of Oxygen-Induced Retinopathy

In a typical model of OIR,30 litters of mice pups with their nursing

mothers were exposed in an infant incubator to high oxygen concen-

tration (75% � 2%) between PD7 and -12, before return to room air

between PD12 and -17. Oxygen was checked twice daily with an

oxygen analyzer (Miniox I; Bertocchi srl Elettromedicali, Cremona,

Italy). Individual litters were either oxygen or room air reared. Phar-

macologic treatments were performed in animals anesthetized by i.p.

injection of Avertin (1.2% tribromoethanol and 2.4% amylene hydrate

in distilled water, 0.02 mL/g body weight). All experiments were

performed at the same time of day, to exclude possible circadian

influences. The data were collected from both males and females and

the results combined, as there was no apparent difference between the

sexes.

Administration of Propranolol

The nonselective �-AR antagonist propranolol was given subcutane-

ously three times a day from PD12 to -16. Propranolol was used at

concentrations ranging from 0.02 to 20 mg kg�1 dose�1 and was

dissolved in citrate buffer. Sham injections were performed with that

vehicle. Intraperitoneal administration of propranolol at 20 mg kg�1

dose�1 was also performed. Its effect on VEGF messenger was not

significantly different from that obtained with propranolol adminis-

tered subcutaneously (data not shown).

Administration of IGF-1 Receptor Antagonist

To examine the involvement of IGF-1 in propranolol-induced effects on

hypoxic levels of VEGF, we used PPP, in agreement with previous

studies.6 PPP is a small molecule belonging to the cyclolignan family,

which inhibits phosphorylation of IGF-1R,31 known to mediate the

proangiogenic effects IGF-1.32 OIR mice untreated or treated with

propranolol from PD12 to -16 (20 mg kg�1 dose�1) received 20 mg

kg�1 i.p. injections of PPP in a 10-�L volume of DMSO two times a day

from PD12 to -16. Sham injections were performed with that vehicle.

At PD17, the retinas were analyzed for VEGF mRNA and protein

expression.

Intravitreal Injection of VEGF

Animals were anesthetized by i.p. injection of Avertin. At PD13, re-

combinant human VEGF165 (100 ng/1 �L) was injected into one eye,

and an equal volume of vehicle (sterile phosphate buffered saline [PBS]

with 0.025% bovine serum albumin [BSA]) wash injected into the other

eye. Injections were performed with a 31-gauge needle (Hamilton,

Reno, NV) through the corneal limbus into the vitreous cavity. Inser-

tion and infusion were directly viewed through an operating micro-

scope to prevent injury to the lens and retina. Propranolol (20 mg

kg�1) was administered subcutaneously three times a day from PD12

to -16. At PD17 retinas were analyzed for blood–retinal vascular leak-

age by using Evans blue dye.

Isolation of RNA and cDNA Preparation

After death, the tissues were rapidly dissected, immediately frozen in

liquid nitrogen, and stored at �80°C until analysis. Total RNA was

extracted (RNeasy Mini Kit; Qiagen, Valencia, CA), purified, resus-

pended in RNase-free water and quantified spectrophotometrically

(SmartSpec 3000; Bio-Rad). First-strand cDNA was generated from 1 �g

of total RNA (QuantiTect Reverse Transcription Kit; Qiagen).

Real-Time Quantitative RT-PCR

Quantitative real-time RT-PCR (QPCR) was performed according to Dal

Monte et al.33 QPCR primer sets were designed with Primer3 software

(�3-AR, VEGFR-1, VEGFR-2, and IGF-1)34 or were obtained from either

Primer Bank (�1-AR, �2-AR, VEGF and IGF-1R)35 or RTPrimerDB

(Rpl13a).36 Forward and reverse primers were chosen to hybridize to

unique regions of the appropriate gene sequence; their sequences are

listed in Table 1. Amplification efficiency was close to 100% for each
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primer pair (Opticon Monitor 3 software; Bio-Rad). Each target gene

was run concurrently with Rpl13a, a constitutively expressed control

gene. Samples were compared by using the relative threshold cycle (Ct

method).37 The increase or decrease (x-fold) was determined relative

to a control after normalizing to Rpl13a. All reactions were run in

triplicate. After statistical analysis, the data from the different experi-

ments were plotted and averaged in the same graph. Data are ex-

pressed as the mean � SE and originated from four samples for each

experimental condition. Samples refer to the mRNA extracted from

retina (two retinas for each sample) or brain, lung, or heart (20–30 mg

of tissue for each sample).

Enzyme-linked Immunosorbent Assay

The VEGF protein concentration in tissue lysates was determined by

ELISA. The measurement was performed on five samples for each

experimental condition. Samples refer to the protein extracted from

retina (two retinas for each sample) or brain, lung, or heart (30–40 mg

of tissues for each sample). Samples were placed in 10 mM Tris-HCl

(pH 7.6) containing 5 mM EDTA, 3 mM EGTA, 250 mM sucrose, 1 mM

phenylmethylsulfonyl fluoride, 1 �M peptistatin, 10 �g/mL leupeptin,

and 2 �g/mL aprotinin, and sonicated for 30 seconds at 50 Hz. Retinal

samples were lysed in 200 �L buffer, and nonretinal samples were

lysed in 500 �L buffer. The lysates were centrifuged at 22,000g for 15

minutes at 4°C. Protein concentration was determined according to

Bradford38 with BSA used as a standard. VEGF concentration was

determined spectrophotometrically (Microplate Reader 680 XR; Bio-

Rad) at 450 nm (correction wavelength set at 570 nm). In each

experiment, all samples and standards were measured in duplicate.

Data were collected as picograms VEGF per milligram total protein

and, after statistical analysis, were averaged in the same graph.

Western Blot Analysis

Mice were deeply anesthetized with Avertin. The chest was opened, a

catheter was inserted into the left ventricle, and a small incision was

made in the right atrium. One hundred milliliters of 0.15 M phosphate

buffer (PB) were infused until the blood ran clear. Then the mice were

killed, the eyes enucleated, and the retinas dissected. Western blot

analysis was performed on proteins extracted from three samples

(each containing four retinas) for each experimental condition. Briefly,

the retinas were homogenized in 10 mM Tris-HCl (pH 7.6) containing

5 mM EDTA, 3 mM EGTA, 250 mM sucrose, 1 mM phenylmethylsul-

fonyl fluoride, 1 �M peptistatin, 10 �g/mL leupeptin, and 2 �g/mL

aprotinin and centrifuged at 22,000g for 30 minutes at 4°C. The

supernatant was used for HIF1-� or albumin detection. The pellet was

resuspended in 20 mM HEPES (pH 7.4) containing 150 mM NaCl, 5 mM

EDTA, 3 mM EGTA, 4 mg n-dodecyl-�-maltoside, 1 mM phenylmethyl-

sulfonyl fluoride, 1 �M peptistatin, 10 �g/mL leupeptin, and 2 �g/mL

aprotinin, and centrifuged at 22,000g for 30 minutes at 4°C. The

supernatant was used for �-AR or occludin detection. Protein concen-

tration was measured according to Bradford38 with BSA used as a

standard. Forty micrograms of protein were resolved by SDS-PAGE and

then blotted onto polyvinylidene difluoride membrane. Specific anti-

bodies directed to distinct �-ARs (1:200 dilution), HIF-1� (1:100 dilu-

tion), occludin (1:250 dilution), and albumin (1:100 dilution) were

used in agreement with previous studies.2,10,39 The same membrane

was reblotted with an anti–�-actin antibody (1:2,500) as the loading

control. Mouse anti-rabbit horseradish peroxidase-labeled (1:5,000 di-

lution), rabbit anti-goat horseradish peroxidase-labeled (1:1,000 dilu-

tion), or rabbit anti-mouse horseradish-peroxidase–labeled (1:25,000

dilution) were used as secondary antibodies. Blots were developed

with the enhanced chemiluminescence reagent, and were stripped

between each assay. The optical density (OD) of the bands was eval-

uated (Quantity One software; Bio-Rad). The data were normalized to

the level of �3-actin. All experiments were run in duplicate. The

semiquantitative analysis of Western blot signals was based on three

independent blot analysis experiments. After statistical analysis, data

from the different experiments were plotted and averaged in the same

graph.

Immunohistochemistry

Retinal whole mounts were fixed for 1.5 hours in 4% paraformalde-

hyde in 0.1 M PB at 4°C. The fixed retinas were transferred to 25%

sucrose in 0.1 M PB and stored at 4°C. They were rinsed in 0.1 M PB

and incubated for 72 hours at 4°C in the �3-AR goat polyclonal

antibody directed against the mouse C terminus (1:200). Triton X-100

at 1% was added to the antibody diluted in 0.1 M PB at 1:100 (final

concentration, 1 �g/mL). After incubation, the whole mounts were

rinsed in 0.1 M PB and incubated overnight at 4°C in Alexa Fluor 488

at a dilution of 1:200 in 0.1 M PB containing 0.5% Triton X-100. Finally,

they were rinsed in 0.1 M PB, mounted on gelatin-coated glass slides,

and coverslipped with a 0.1-M PB-glycerine mixture. The specificity of

the goat �3-AR antibody was evaluated by the use of preimmune serum

instead of the primary antibody, by preadsorption with the corre-

sponding blocking peptide (3–5 �g/mL) and by the use of goat IgG

negative control (1 �g/mL) instead of the primary antibody. Immu-

nofluorescent materials were observed with confocal microscopy

(Laser Scanning Microscope Radiance Plus; Bio-Rad) with a �20

objective lens. Serial optical sections (1 �m apart) were scanned

TABLE 1. Primers Used for PCR Analysis

Gene Primer Sequence
Product

Length (bp)
Gene Bank

Accession No.

�1-AR Forward: CTCATCGTGGTGGGTAACGTG 215 NM_007419
Reverse: ACACACAGCACATCTACCGAA

�2-AR Forward: GGGAACGACAGCGACTTCTT 125 NM_007420
Reverse: GCCAGGACGATAACCGACAT

�3-AR Forward: CGCTACCTAGCTGTCACCAA 239 NM_013462
Reverse: TAGAAGGAGACGGAGGAGGA

VEGF Forward: GCACATAGGAGAGATGAGCTTCC 105 NM_009505
Reverse: CTCCGCTCTGAACAAGGCT

VEGFR-1 Forward: GAGGAGGATGAGGGTGTCTATAGGT 116 NM_010228
Reverse: GTGATCAGCTCCAGGTTTGACTT

VEGFR-2 Forward: GCCCTGCTGTGGTCTCACTAC 114 NM_010612
Reverse: CAAAGCATTGCCCATTCGAT

IGF-1 Forward: TTCAGTTCGTGTGTGGACCGAG 94 NM_010512
Reverse: TCCACAATGCCTGTCTGAGGTG

IGF-1R Forward: GTGGGGGCTCGTGTTTCTC 127 NM_010513
Reverse: GATCACCGTGCAGTTTTCCA

Rp113a Forward: CACTCTGGAGGAGAAACGGAAGG 182 NM_009438
Reverse: GCAGGCATGAGGCAAACAGTC
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through the thickness of each whole mount at the same predeter-

mined z-axis. The digital images were sized and optimized for

contrast and brightness with image-editing software (Photoshop;

Adobe Systems, Mountain View, CA).

Assessment of Retinal Vascularization

Fluorescein-conjugated dextran perfusion of the retinal vessels was

performed as previously described.33 Briefly, in anesthetized animals, a

median sternotomy was performed, and the left ventricle was perfused

with 2 mL of a 25-mg/mL solution of fluorescein-conjugated dextran in

0.15 M PB. The eyes were enucleated, the retinas were dissected, and

flat mounts were obtained and mounted in antifade medium (Vectash-

ield; Vector Laboratories, Burlingame, CA), vitreous side up under

coverslips. Whole mounts were viewed by fluorescence microscopy

(Eclipse E800; Nikon, Badhoevedorp, The Netherlands) and images

were acquired (DFC320 camera; Leica Microsystems, Wetzlar, Ger-

many). Neovascularization was evaluated with a retinopathy scoring

system that was adapted from published protocols (Table 2).33,40 Three

trained observers evaluated the number of clock hours with abnormal

vessels for each retina. The data were averaged and are expressed in

values ranging from 0 to 14.

Measurement of Retinal Vascular Leakage

The blood–retinal vascular leakage was evaluated using Evans blue dye

as described in another study.11 After the mice were deeply anesthe-

tized with Avertin, Evans blue dye, dissolved in normal saline (30

mg/mL), was injected through the femoral vein under microscopic

inspection, according to Tomasek et al.41 Immediately after Evans blue

infusion, the mice turned visibly blue, confirming their uptake and

distribution of the dye. The mice were kept on a warm pad to ensure

the complete circulation of the dye and were killed 2 hours after Evans

blue infusion. The eyes were removed and immediately immersed in

2% paraformaldehyde. After 2 hours, the retinas were dissected, and

flat mounts were obtained and mounted on glass slides. Retinal flat

mounts were analyzed by fluorescence microscopy (Eclipse E800;

Nikon) and images were acquired (DFC320 camera; Leica Microsys-

tems, Bannockburn, IL).

Statistical Analysis

Retinopathy scores were evaluated with the Kruskal-Wallis test for the

overall group and by the Dunn’s post hoc test for differences between

groups. Retinopathy score data are represented as the median (25th,

75th quartiles). All other data were analyzed with the Kolmogorov-

Smirnov test on verification of normal distribution. Statistical signifi-

cance was evaluated with unpaired t-test or with ANOVA followed by

the Newman-Keuls multiple-comparison test. The results are expressed

as mean � SE of the indicated n values (Prism; GraphPad Software, San

Diego, CA). Differences with P � 0.05 were considered significant.

RESULTS

�-ARs in the Retina

We verified whether hypoxia affects messenger and protein
expression of �1- �2-, and �3-ARs in the mouse retina. As
shown in Figure 1A, the predicted length of each QPCR prod-
uct was confirmed by agarose gel electrophoresis performed
on mRNA extracted from normoxic retinas (215, 125, 239, and
182 bp corresponding to the mRNA of �1-, �2-, and �3-AR and
Rpl13a). Five days of normoxia after hyperoxia (relative hyp-
oxia) did not influence �-AR mRNAs, which were similar to
those in control retinas. Semiquantitative Western blot demon-
strated that hypoxic levels of �1- and �2-ARs were not signif-
icantly different from control values, whereas retinal levels of
�3-ARs were significantly higher than those in control condi-
tions (�122%, P � 0.01; Fig. 1B). As shown in Figure 1C, �3-AR
levels were not significantly different from control values at
both PD12 (end of the period of hyperoxia) and PD14 (2 days
of normoxia), although a trend toward increased �3-AR expres-
sion was observed at PD14.

Immunohistochemistry was performed to localize �3-ARs to
the mouse retina and to confirm the results of Western blot
analysis. The antibody used in the present study has been used
in other immunohistochemical studies.42,43 The specificity of
immunoreactivity (IR) was evaluated with the use of preim-
mune serum instead of the primary antibody (data not shown)
and preabsorption tests using control antigen peptides. An
additional test for specificity of IR included the use of goat IgG
negative control. The controls for immunohistochemistry re-
sulted in the absence of IR as shown by the representative
images in the inner capillary plexus of the mid-peripheral
retina (Figs. 2A–C). In the normoxic retina of the PD17
mice, �3-AR-IR was found to be associated with both the
outer and the inner capillary plexus (Fig. 3). Five days of
normoxia after hyperoxia resulted in a dense �3-AR-IR that
was associated with engorged retinal tufts in the inner
capillary plexus (Fig. 4).

VEGF, VEGFR-1, VEGFR-2, IGF-1, and IGF-1R
in the Retina

We evaluated whether blockade of �-ARs with propranolol
might be related to variations in retinal levels of VEGF or IGF-1,
as well as their receptors, in the OIR model. In all experiments,
no effects were detected after vehicle treatment.

VEGF, VEGF Receptor Messengers, and VEGF Protein.
As shown in Figure 5A, the predicted length of each QPCR
product was confirmed by agarose gel electrophoresis per-
formed on mRNA extracted from normoxic retinas (105, 116,

TABLE 2. Retinopathy Scoring System

Points

Criteria 0 1 2 3 4

Blood vessel tufts None In �3 clock hours In 3–5 clock hours In 6–8 clock hours In 9–12 clock hours
Central avascular area None Mild, early zone 1

(inner 50% of
zone 1)

Moderate, throughout
zone 1 (outer 50%
of zone 1)

Severe, extending
to zone 2

—

Presumed extraretinal
neovascularization

None In �3 clock hours In 3–6 clock hours In �6 clock hours —

Retinal hemorrhage Absent Present — —
Blood vessel tortuosity None �1⁄3 of vessels 1⁄3-2⁄3 of vessels �2⁄3 of vessels —

Flat-mounted retinas were examined by fluorescence microscopy, and retinopathy was quantified by evaluating five criteria. Points received
for each criterion were summed, to obtain the retinopathy score. A higher score (range, 0–14) indicates more severe retinopathy. The scoring
system was adapted from previously published protocols.33,40
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114, and 182 bp, corresponding to the mRNA of VEGF,
VEGFR-1, VEGFR-2, and Rpl13a). In agreement with previous
results,33,44 hypoxic retinas displayed significantly increased
levels of VEGF, VEGFR-1, and VEGFR-2 mRNA (Figs. 5B–D,
insets). As shown in Figure 5B, VEGF mRNA levels were re-
duced significantly by propranolol at either 2 mg kg�1 or 20
mg kg�1 (�30% and �60%, P � 0.05 and P � 0.001, respec-
tively). In particular, the reduction of VEGF mRNA after pro-
pranolol at 20 mg kg�1 was significantly higher than that
obtained with 2 mg kg�1 propranolol (�50%, P � 0.01). In
contrast, a dose of 0.02 mg kg�1 did not significantly influence
VEGF messenger. As shown in Figures 5C and 5D, propranolol
at 20 mg kg�1 did not affect messengers of VEGF receptors.
VEGF content in the retina was analyzed by ELISA. Hypoxic
retinas displayed significantly increased levels of VEGF, as
quantitated by ELISA (Fig. 6, inset). VEGF levels in both nor-
moxic and hypoxic retinas are in the range of those measured
in other studies of the rodent retina (for references see Ref.
33). As shown in Figure 6, a dose-dependent decrease of VEGF
was observed after treatment with increasing concentrations of
propranolol with no effects at 0.02 mg kg�1, a decrease at 2 mg
kg�1 (�65% vs. the treatment with vehicle, P � 0.001) and a
further reduction at 20 mg kg�1 (�85% vs. the treatment with
vehicle, P � 0.001 and �60% vs. the treatment with propran-
olol at 2 mg kg�1, P � 0.001). Neither VEGF mRNA nor VEGF
content in the normoxic retina was influenced by propranolol
at 20 mg kg�1 (Fig. 7).

To determine whether HIF-1� is involved in the proprano-
lol-induced inhibition of VEGF expression, we evaluated
whether �-AR blockade is related to variations in retinal levels
of HIF-1� in the OIR model. As shown in Figure 8, the retinal
expression of HIF-1� significantly increased in the OIR mice
(�7.5-fold), compared with control littermates (P � 0.001).
Vehicle administration did not alter hypoxic levels of HIF-1�,
whereas treatment with propranolol at 20 mg kg�1 partially
restored retinal HIF-1� expression by decreasing its level to
�50% of that in the vehicle-treated mice (P � 0.001). HIF-1�
level after propranolol was higher than the respective nor-
moxia-exposed group (*P � 0.01; ANOVA).

IGF-1 and IGF-1 Receptor Messengers. As shown in
Figure 9A, the predicted length of each QPCR product was
confirmed by agarose gel electrophoresis (94, 127, and 182 bp
corresponding to the mRNA of IGF-1, IGF-1R, and Rpl13a).
Hypoxic retinas displayed increased levels of both IGF-1 and
IGF-1R (�70% and �50%, respectively, P � 0.05; Fig. 9B).
Normoxic levels of both IGF-1 and IGF-1R were unaffected by
propranolol at 20 mg kg�1 (data not shown). Propranolol at 20
mg kg�1 significantly decreased levels of IGF-1 mRNA (�45%,
P � 0.05), whereas it did not affect IGF-1R messenger (Figs.
9C, 9D).

IGF-1 and VEGF. Since propranolol reduced both VEGF
and IGF-1 expression and IGF-1 per se is a potent inducer of
VEGF,6,7 we determined whether these events were in parallel
or were causal by using PPP, which inhibits phosphorylation of
IGF-1R and blocks its downstream signaling.31 The OIR mice
were treated with vehicle or PPP (20 mg kg�1), either alone or
in combination with propranolol at 20 mg kg�1. We observed
that neither vehicle nor PPP administration affected the hy-
poxic levels of VEGF mRNA and protein, which were not
significantly different from those measured in untreated ani-
mals. We also observed that VEGF mRNA and protein expres-

FIGURE 1. �1-, �2-, and �3-ARs in mouse retinas. (A) The predicted
length of each QPCR product was confirmed by agarose gel electro-
phoresis performed on mRNA extracted from control retinas (at 215,
125, 239, and 182 bp, corresponding to the mRNA of �1-, �2-, �3-ARs,
and Rpl13a). �-AR mRNAs in normoxic (�) and hypoxic (f) condi-
tions are shown at PD17 which corresponds to 5 days of normoxia
after hyperoxia. Data were analyzed by the Ct method, with Rpl13a
used as the internal standard. Each histogram represents the mean �

SE of data from four samples. Each sample was the mRNA extracted
from two retinas. (B) Protein levels of distinct �-ARs in normoxic (�)
and hypoxic (f) conditions, as evaluated by Western blot, with �-actin
used as the loading control. Densitometric analysis showed that �3-AR
was increased by hypoxia at PD17 (*P � 0.01 vs. the respective
control; ANOVA followed by Newman-Keuls multiple-comparison post
test). (C) No effects were observed at PD12, which corresponds

to the end of hyperoxia, or at PD14 which corresponds to 2 days of
normoxia after hyperoxia. Each histogram represents the mean � SE of
data from three samples. Each sample was the protein extracted from
five retinas. Representative gels are also shown. N, normoxia; H,
hypoxia.
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sion in the PPP�propranolol-treated animals was not signifi-
cantly different from that in the vehicle�propranolol-treated
animals (Fig. 10).

VEGF Messenger and Protein in the Brain, Lungs, and
Heart. We evaluated whether propranolol at 20 mg kg�1

influences VEGF levels in either the brain or those organs, such
as lungs and heart, that are known to be targeted by � block-
ers.45–47 As shown in Figures 11A, 11C, and 11E, hypoxia did
not affect VEGF mRNA in brain, lungs, or heart. In neither
normoxic nor hypoxic conditions were VEGF mRNA levels
influenced by propranolol at 20 mg kg�1. Protein determina-
tion confirmed the messenger data. In fact, none of the organs
studied showed any effects of propranolol on VEGF protein, as
quantitated by ELISA (Figs. 11B, 11D, 11F).

Retinal Neovascularization

To investigate whether propranolol can reduce retinal neovas-
cularization, we treated the OIR mice with propranolol at 20
mg kg�1 and qualitatively and quantitatively analyzed pro-
pranolol’s effect on retinal neovascularization. To investigate
the antiangiogenic activity of propranolol on retinal neovascu-
larization in OIR, we performed fluorescence angiography.
Figure 12 shows the vascular pattern of flat mounts under
normoxic (Fig. 12A) and hypoxic (Fig. 12B) conditions, and
after the administration of either vehicle (Fig. 12C) or propran-
olol at 20 mg kg�1 (Fig. 12D) to the hypoxic mice. In agree-
ment with previous results,30 exposure to 75% � 2% oxygen
between PD7 and -12 resulted in the disappearance of existing
capillaries in the central retina, although the peripheral retina
remained vascularized. Recovery in room air until PD17 al-
lowed incomplete revascularization of the central avascular
portion with associated marked neovascularization at the bor-
der between the central avascular and peripheral vascularized
retina including the formation of engorged vessel tufts extend-
ing into the vitreous. Both vessel tufts and retinal hemorrhages

were drastically reduced by propranolol in the hypoxic mice.
We quantitatively determined the antiangiogenic effect of pro-
pranolol on retinal neovascularization, and we found that pups
treated with propranolol showed significant improvement in
the retinopathy score when compared to the oxygen- and the
oxygen�vehicle-treated animals (P � 0.05; Table 3), whereas
vehicle injections did not affect the retinopathy score. No
significant differences were found between the oxygen- and
the oxygen�vehicle-treated mice when compared to the pro-
pranolol-treated mice with respect to the different subscores,
except for blood vessels tufts and retinal hemorrhages. In
particular, propranolol treatment caused a significant decrease
in blood vessel tufts and retinal hemorrhages with respect to
untreated or vehicle-treated animals (P � 0.01 and P � 0.001,
respectively; Table 3).

Blood–Retinal Barrier

To assess the effects of propranolol on BRB, we first examined
the expression of the tight junction protein occludin in the
retina of the hypoxic mice (Fig. 13A). The results show that the
retinal level of occludin decreased in the hypoxic mice to
�35% of that in control littermates (P � 0.001). Vehicle ad-
ministration did not alter hypoxic levels of occludin, whereas
treatment with propranolol at 20 mg kg�1 partially restored
the expression of occludin, increasing its level to �77% of that
in control littermates (P � 0.001). The occludin level after
propranolol was lower than in the respective normoxia
(�23%, P � 0.001). To further determine the protective
effects of propranolol on BRB, we evaluated BRB integrity by
determination of vascular leakage of albumin into the retina.
The results show that the albumin content was 1.8-fold
higher in the retinas of the hypoxic mice than in the control
littermates (P � 0.001). Hypoxic levels of albumin were not
modified by vehicle administration, whereas administration

FIGURE 3. Immunohistochemical studies of the �3-AR distribution
pattern in the outer (A) and the inner (B) capillary plexus of the mouse
retina. These images are representative of the results obtained in three
whole mounts incubated with the goat polyclonal anti–�3-ARs. Scale
bar, 100 �m.

FIGURE 4. Retinal whole mounts showing capillary profiles immunore-
active for �3-ARs in control (A) and hypoxic (B) conditions. Hypoxic
retinas were characterized by dense �3-AR–immunoreactivity that was
localized to engorged retinal tufts in the inner capillary plexus. These
images are representative of the results obtained in three whole mounts
incubated with the goat polyclonal anti–�3-ARs. Scale bar, 100 �m.

FIGURE 2. Specificity evaluation of the
goat polyclonal antibody directed to �3-
ARs. Representative confocal images
from mouse retinal whole mounts
scanned at the level of the inner capillary
plexus with a �20 objective. These im-
ages are representative of the results ob-
tained in three whole mounts incubated
with the goat polyclonal anti–�3-ARs
(A), with the blocking peptide solution
(B), and in the presence of goat IgG
negative control instead of the primary
antibody (C). Scale bar, 100 �m.
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of propranolol at 20 mg kg�1 significantly decreased ex-
travascular leakage of albumin in the hypoxic mice (�30%,
P � 0.001; Fig. 13B). The albumin level after propranolol
was higher than the respective normoxic level (�25%, P �

0.01). To confirm the effect of propranolol on the BRB, the
vascular permeability of the retinal tissue was assessed qual-
itatively by Evans blue, in agreement with findings in an-
other study.11 The BRB was intact in the normoxic mice.
Thus, intravascular injection of Evans blue resulted in a
sharp outline of the retinal vessels, with the dye retained
within the vessel lumen and no detectable leakage into the
tissue parenchyma (Fig. 14A). In hypoxic retinas, there was
evidence of breakdown of the BRB with leakage of the dye
into the retinal parenchyma (Fig. 14B). Administration of
vehicle to the hypoxic mice produced no detectable change
in BRB leakage (Fig. 14C), whereas treatment with propran-
olol at 20 mg kg�1 gave an evident reduction of BRB break-
down (Fig. 14D).

FIGURE 5. Levels of VEGF, VEGFR-1 and VEGFR-2 mRNAs in mouse
retinas. (A) The predicted length of each QPCR product was confirmed
by agarose gel electrophoresis performed on mRNA extracted from

FIGURE 6. ELISA quantitation of VEGF protein levels in mouse retinas.
Vehicle did not affect the VEGF levels, whereas a dose-dependent
decrease of VEGF was observed after treatment with increasing con-
centrations of propranolol with no effects at 0.2 mg kg�1, a decrease
at 2 mg kg�1 (*P � 0.001 vs. vehicle-treated mice; ANOVA), and
reaching a maximum at 20 mg kg�1 (*P � 0.001 vs. vehicle-treated
mice and §P � 0.001 vs. 2 mg kg�1 propranolol-treated mice; ANOVA).
Inset: VEGF levels in normoxic (�) and hypoxic (f) conditions. Each
histogram represents the mean � SE of data from five samples. Each
sample was the protein extracted from two retinas.

normoxic retinas (105, 116, 114, and 182 bp corresponding to the
mRNA of VEGF, VEGFR-1, VEGFR-2, and Rpl13a). (B) Propranolol dose
dependently decreased VEGF mRNA in hypoxic retinas (*P � 0.05 and
**P � 0.001 vs. vehicle-treated mice; §P � 0.01 vs. 2 mg kg�1 pro-
pranolol-treated mice; ANOVA). Inset: VEGF mRNA levels in normoxic
(�) and hypoxic (f) conditions. Treatment with propranolol at 20 mg
kg�1did not affect VEGFR-1 (C) and VEGFR-2 (D) mRNAs. Insets:
VEGFR-1 and VEGFR-2 mRNAs in normoxic (�) and hypoxic (f)
conditions. Data were analyzed by the Ct method with Rpl13a used as
the internal standard. Each histogram represents the mean � SE of data
from four samples. Each sample was the mRNA extracted from two
retinas.
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To investigate whether propranolol could play a role in
VEGF-induced BRB breakdown, we treated the control mice
with s.c. propranolol from PD12 to -16 and with an intravitreal
injection of VEGF at PD13. Maximum vascular leakage was
measured at 48 hours after intravitreal injection with a dose of
100 ng VEGF, in agreement with previous studies.12,13 Vehicle
administration produced no detectable BRB leakage, as evalu-
ated at PD17 (Fig. 15A), whereas VEGF-treated retinas dis-
played evident BRB breakdown (Fig. 15B). When the mice
treated with propranolol at 20 mg kg�1 were injected with
VEGF, we found that propranolol did not reduce the vascular
hyperpermeability induced by an intravitreal injection of exog-
enous VEGF (Fig. 15C).

DISCUSSION

In this study, we report a novel role for the �-AR blocker
propranolol in regulation of retinal angiogenesis and vascular
permeability. Systemic administration of propranolol reduced
retinal VEGF and IGF-1 expression, retinal neovascularization,
and vascular leakage in a mouse model of OIR. In addition,
propranolol did not influence retinal VEGF in the normoxic
condition nor did it affect VEGF expression in other tissues.
These findings imply an antiangiogenic and antipermeability
effect of �-AR blockade that probably acts through downregu-
lation of VEGF and IGF-1 expression, presumably in a parallel
manner. Propranolol’s effect on VEGF expression is likely to be
mediated by HIF-1�. That hypoxia upregulates the �3-ARs that
appear to be localized to the growing endothelium suggests
the possibility that �3-ARs mediate the antiangiogenic effects
of propranolol in the retina of the OIR mice.

Effects of �-AR Blockade on
Proangiogenic Factors

In our work, propranolol concentrations affecting both the
levels of proangiogenic factors and the gravity of retinal neo-
vascularization were in line with those used previously, al-
though studies of the in vivo use of propranolol to treat retinal
neovascularization are scarce. Generally, in rodent studies us-
ing propranolol, treatment modalities included oral administra-
tion in drinking water (in doses ranging from 5 to 100 mg kg�1

day�1),26,48 as well as s.c. administration or i.p. injection (in

FIGURE 8. Levels of HIF-1� in normoxic (�) and hypoxic (f) condi-
tions, as evaluated by Western blot with �-actin used as the loading
control. Densitometric analysis showed that HIF-1� was increased by
hypoxia (**P � 0.001 vs. normoxic; ANOVA). The hypoxic level of
HIF-1� was unaffected by vehicle treatment, whereas it was decreased
by propranolol at 20 mg kg�1 (§P � 0.01 vs. vehicle-treated mice;
ANOVA). HIF-1� level after propranolol was higher than the respective
normoxic level (*P � 0.01; ANOVA). Each histogram represents the
mean � SE of data from three samples. Each sample was the protein
extracted from four retinas. N, normoxia; H, hypoxia; V, vehicle; P,
propranolol.

FIGURE 7. Levels of VEGF mRNA and protein in the normoxic retina
after propranolol. Neither VEGF mRNA (A) nor VEGF content (B) in
the normoxic retina was influenced by propranolol at 20 mg kg�1. In
QPCR experiments, data were analyzed by the Ct method, with Rpl13a
as the internal standard. Each histogram represents the mean � SE of
data from four samples, and each sample was the mRNA extracted
from two retinas. In the ELISA experiments, each histogram represents
the mean � SE of data from five samples, and each sample was the
protein extracted from two retinas.
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doses ranging from 1 to 30 mg kg�1).49,50 The propranolol
dose used the most in infants to treat hemangiomas is 2 mg
kg�1 day�1 administered orally two or three times a day,
depending on the severity of the hemangiomas.51,52 As shown
by our results, s.c. or i.p. propranolol produces comparable
effects on VEGF levels indicating that both modalities of ad-
ministration may provide the retina with similar drug concen-
trations, although it is difficult to conjecture about the drug
concentration that actually reaches the retina.

Both experimental and clinical studies have reported an
important role of VEGF in pathologic retinal angiogenesis.4,53

Of the VEGF receptors, VEGFR-2 is considered to be the re-
ceptor that mediates functional VEGF signaling in endothelial
cells, whereas the function of VEGFR-1 remains to be fully
disclosed.54 Our finding that hypoxia increases the levels of
VEGF and its receptors is consistent with previous find-
ings.33,44 Our additional result that propranolol drastically in-
hibited hypoxia-induced VEGF production provides the first
demonstration that �-ARs are coupled to a modulation of VEGF
in the OIR model. The present results are in line with those in
another study demonstrating that timolol reduces the severity
of OIR in the newborn rat, possibly through VEGF downregu-
lation.27 On the other hand, there are also findings demonstrat-
ing that propranolol does not affect retinal VEGF in rats with
DR.26 Either the different administration route or different
dosage can be assumed to be the possible cause of this dis-
crepancy. However, the possibility that �-AR’s control of an-
giogenesis can be regulated by diverse mechanisms in OIR and
DR should be also considered. In this respect, topical admin-
istration of isoproterenol has recently been demonstrated to
prevent ERG alterations and to inhibit metabolic abnormalities
found in DR rats.24 In addition, propranolol has been shown to
produce a dysfunctional ERG and increase angiogenic growth
factors in nondiabetic rodents.25 In our study, propranolol did
not affect the VEGF level in the normoxic retina, but it reduced
VEGF overproduction in the hypoxic retina, suggesting differ-
ential regulation of VEGF transcription in normoxic and hy-
poxic conditions. This possibility is supported by the addi-
tional finding that �-AR blockade did not influence VEGF levels
in brain, lung, or heart, in which VEGF expression is not
regulated by hypoxia, indicating that these organs probably do
not experience hypoxia in the OIR model. In response to
systemic hypoxia, organ-specific regulation of the HIF system,
which primarily regulates VEGF expression in hypoxic condi-
tions, has been described in rodents with HIF-1� accumulation
observed only in conditions of severe hypoxia (for references,
see Ref. 55). The OIR model is of relative hypoxia in which the
exposure to hyperoxia before the retinal vascularization is
completed leads to the arrest or retardation of normal retinal
vascular development. When the animals are returned to the
normoxic environment, they are in a relative hypoxic situation
in which the retina lacks the normal vasculature that is neces-
sary to support the neural tissue in normoxic conditions. The

Š

FIGURE 9. Levels of IGF-1 and -1R mRNAs in mouse retinas. (A) The
predicted length of each QPCR product was confirmed by agarose gel
electrophoresis performed on mRNA extracted from normoxic retinas
(94, 127, and 182 bp corresponding to the mRNA of IGF-1, IGF-1R, and
Rpl13a). (B) QPCR evaluation of IGF-1 and IGF-1R mRNAs in normoxic
(�) and hypoxic (f) conditions. Normoxic IGF-1 and IGF-1R mRNAs
were increased by hypoxia (*P � 0.05 vs. the respective normoxic;
unpaired t-test). (C, D) IGF-1 and IGF-1R mRNAs in hypoxic retinas
after treatment with either vehicle or propranolol at 20 mg kg�1.
Propranolol significantly decreased IGF-1 mRNA (*P � 0.05 vs. vehicle-
treated mice; ANOVA), whereas it did not affect IGF-1R mRNA. Data
were analyzed by the Ct method using Rpl13a as the internal standard.
Each histogram represents the mean � SE of data from four samples.
Each sample was the mRNA extracted from two retinas.
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retina is one of the body’s most metabolically demanding
tissues, and this ischemic situation results in unregulated,
VEGF overproduction that leads to retinal neovascularization.

As was also shown by the present results, the hypoxia-
induced increase in retinal levels of IGF-1 and -1R was in line
with previous results demonstrating that the IGF system is
involved in retinal angiogenesis.56,57 For instance, serum IGF-1
levels correlate positively with the degree of ROP and insuffi-
cient IGF-1 has been suggested to be a factor involved in ROP
development.1 Our finding that propranolol reduces the
hypoxia-induced increase in IGF-1 is the first demonstration
that �-ARs may control retinal angiogenesis through IGF-1.
Little is known about possible cross talk between �-ARs and
IGF-1. For instance, in the rat, �-AR stimulation has been
shown to induce cardiac hypertrophy through the IGF-1
axis.58 In addition, IGF-1 treatment influences astrocyte
function through a �2-AR– dependent mechanism.59 Our
finding that propranolol does not influence IGF-1R either in
normoxic or in hypoxic conditions is in line with previous
results in rat retina.25

In the present study, the IGF-1R antagonist PPP did not
affect hypoxic levels of retinal VEGF, indicating that VEGF
expression in the OIR model was not substantially controlled
by interactions between IGF-1 and IGF-1R. This finding is in
line with the result that, in OIR mice, treatment with the
long-acting IGF-1R antagonist JB3 suppresses retinal neovascu-
larization without affecting VEGF levels.60 On the other hand,
PPP administration has recently been shown to reduce VEGF
expression in a murine model of choroidal neovascularization.6

The additional result that PPP administration to propranolol-
treated mice does not affect the propranolol-induced inhibition
of retinal VEGF suggests that propranolol’s effects on VEGF do
not involve IGF-1 signaling, although IGF-1 is a potent inducer
of VEGF.6,7 By inhibiting IGF-1 and VEGF levels, propranolol
inhibits the neovascularization process directly through de-
creasing the endogenous angiogenic effect of VEGF and indi-
rectly via attenuation of IGF-1 signaling, which has a permissive
role in VEGF-induced neovascularization.

Effects of Propranolol on
Retinal Neovascularization

As a result of the inhibitory effects that propranolol exerts on
hypoxia-induced upregulation of proangiogenic factors, pro-
pranolol ameliorates retinal angiogenesis in response to hy-
poxic insult, indicating that �-ARs may regulate neovascular-
ization in the OIR model. In line with the present results, a role
for �3-ARs in the control of cell proliferation and migration has
been determined in human retinal endothelial cells.22 In hu-
man choroidal endothelial cells, �3-ARs may play a role in cell
invasion and elongation, while playing a more limited function
in regulation of cell proliferation.39 In addition, a role for �-ARs
in vascular remodelling of the rat choroid has been demon-
strated.61 Moreover, in a rat model of chronic hind limb isch-
emia, �2-AR overexpression results in ameliorated angio-
genic response to ischemia, whereas �2-AR blockade
prevents the proliferative response to isoproterenol in bo-
vine aortic endothelial cells.62 Finally, propranolol has been
shown to inhibit tubulogenesis and matrix metalloprotein-
ase-9 secretion in human brain microvascular endothelial
cells.63

FIGURE 10. VEGF expression in OIR mice treated with picropodo-
phyllin (PPP), an inhibitor of IGF-1R phosphorylation. (A) QPCR eval-
uation of VEGF mRNA and (B) ELISA quantitation of VEGF content in
the hypoxic retina after treatment with vehicle or PPP (20 mg kg�1)
either alone or in combination with propranolol at 20 mg kg�1.
Vehicle or PPP did not influence hypoxic levels of VEGF mRNA and
protein. VEGF mRNA and protein levels after PPP�propranolol
were not significantly different from those measured after
vehicle�propranolol. In QPCR experiments, data were analyzed by the
Ct method with Rpl13a used as the internal standard. Each histogram

represents the mean � SE of data from four samples. Each sample was
the mRNA extracted from two retinas. In ELISA experiments, each
histogram represents the mean � SE of data from five samples, and
each sample was the protein extracted from two retinas.
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Effects of Propranolol on BRB

BRB resides in the tight junctions between RPE cells (outer
BRB) and between endothelial cells in the retinal vasculature
(inner BRB). It is known that retinal endothelial cells are
susceptible to hypoxia with resulting increased permeability
and BRB dysfunction.8 Consistent with previous studies, in our
experiments hypoxia downregulated the tight junction protein
occludin, increased the retinal content of albumin, and caused

plasma extravasation. This leakage was accompanied by retinal

hemorrhages, probably due to a weakness of the basal mem-
brane which, when microvascular integrity is impaired, may

allow red blood cells to leak out of the vessels.64 As shown by
the present results, propranolol definitely reduced the hy-
poxia-induced leakage from vessels, which was accompanied

by partial restoration of tight junction proteins. The role of

VEGF, as a permeable factor that induces alteration of tight

FIGURE 11. QPCR evaluation of
VEGF mRNA (A, C, E) and ELISA
quantitation of VEGF content (B, D,
F) in mouse brain (A, B), lungs (C,
D), and heart (E, F) in normoxic (�)
and hypoxic (f) conditions. Hypoxia
did not affect VEGF levels in brain,
lungs, or heart. Neither normoxic
nor hypoxic VEGF levels were influ-
enced by either vehicle or proprano-
lol at 20 mg kg�1. In QPCR experi-
ments, each histogram represents
the mean � SE of data from four
samples. Each sample was the mRNA
extracted from two retinas. In ELISA
experiments, each histogram repre-
sents the mean � SE of data from five
samples. Each sample was the pro-
tein extracted from two retinas.
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junction proteins and results in BRB breakdown, has been well
established.8 Thus, the blockade of VEGF expression in hy-
poxic retina may be responsible, at least in part, for the pro-
pranolol-induced reduction of vascular leakage in OIR mice.
More evidence to support the reduction in vascular leakage via
blockade of VEGF production is that propranolol did not re-
duce the vascular hyperpermeability induced by intravitreal
injection of exogenous VEGF. This finding suggests that pro-
pranolol does not influence the VEGF-induced downstream
signaling pathways, consistent with the result that the expres-
sion of VEGF receptors is not changed after propranolol treat-
ment. In contrast, corticosteroids have been shown to inhibit
VEGF-induced vascular leakage in a rabbit BRB model, indicat-
ing that they modulate signaling or effector proteins down-
stream of the VEGF receptor.12

Mechanisms of Action of Propranolol
on Angiogenesis

�-AR messengers and proteins are expressed at the retinal level
as, for instance, �1- and �2-ARs in the rat retina15 and �1-ARs
in the avian retina.16 �1- and �2-ARs are present in Müller cells
of the rat, in which they influence cytokine production in
response to hyperglycemia.17 In the human retinal pigment
epithelium, �-ARs appear to regulate the production of the
antiangiogenic pigment epithelial-derived factor.65 �1- and �3-
ARs, but not �2-ARs, are expressed in human retinal and
choroidal endothelial cells in which a role of �3-ARs in angio-
genic processes has been demonstrated.22,39 In addition, there
is pharmacologic evidence that �2- and �3-ARs are expressed
in the retinal blood vessels of the rat.66

There are studies demonstrating that hypoxia differentially
affects �-ARs in different organs but not in the retina. In rat
heart, for instance, prolonged exposure to hypoxia decreases
�-AR density and signaling.67 In addition, in vitro hypoxia
impairs �2-AR signaling in rat alveolar epithelial cells,68

whereas prolonged prenatal hypoxia does not influence �-AR
density, but decreases postnatal �-AR sensitivity in chicken
embryonic heart.14 Thus, changes in �-ARs seem to depend on
the tissue as well as the degree and duration of hypoxia. To the
best of our knowledge, this is the first demonstration that
hypoxia upregulates �3-AR expression in the retina of OIR
mice and that �3-AR upregulation is associated with the onset
of angiogenesis. �3-AR overexpression is not accompanied by
changes in �3-AR gene expression, indicating the involvement
of translational or posttranslational mechanisms. As shown by
our immunohistochemical studies, dense �3-AR-IR is localized
to engorged retinal tufts in the inner capillary network that lies
in the ganglion cell layer and is known to undergo to the most
dramatic alterations as a consequence of hypoxia.69

Little information is available on which distinct �-AR may
mediate angiogenesis control by the adrenergic system in the
retina. For instance, the �1-AR antagonist atenolol does not
seem to influence either retinal vascular disease or retinal
dysfunction in diabetic rats.70,71 The finding that in the retina
of OIR mice, �3-ARs are localized to the growing endothelium
suggests the possibility that �3-ARs mediate the antiangiogenic
effects of propranolol, in line with previous findings demon-
strating an important role of �3-ARs in regulating proliferation
and migration of retinal endothelial cells.22

Much work has been done to clarify the functional role of
transcription factors regulating target genes involved in angio-
genesis and HIF-1 appears of particular interest because its
activation is coupled to regulation of VEGF.3 In line with
previous studies,2 HIF-1� is upregulated by hypoxia in the

FIGURE 12. Flat-mounted retinas perfused with fluorescein-dextran of
PD17 mice exposed to room air (A) or to 75% � 2% oxygen from PD7
to -12 (B–D), untreated (B) or treated with vehicle (C) or propranolol
(D) at 20 mg kg�1 from PD12 to -16. Hyperoxia followed by
normoxia for 5 days produced the central loss of blood vessels and
the formation of vessel tufts (arrows). Propranolol treatment im-
proved the blood vessel tufts, whereas vehicle administration had
no effect. Scale bar, 1 mm.

TABLE 3. Retinopathy Subscore and Total Score

Hypoxia �Vehicle �Propranolol 20 mg kg�1

Number of animals 6 6 13
Blood vessel tufts 2 (1.5, 2) 2 (1.5, 2) 1 (1, 2)*
Central avascular area 3 (2, 3) 2.5 (2, 3) 3 (2, 3)
Presumed extraretinal

neovascularization 2 (1, 2) 2 (1, 2) 2 (1, 2)
Retinal hemorrhage 1 (1, 1) 1 (1, 1) 0 (0, 0.5)†
Blood vessel tortuosity 2 (2, 3) 2.5 (2, 3) 2 (2, 3)
Total retinopathy

score 9.5 (8, 10) 9 (8.5, 11) 8 (7, 9)‡

Data are expressed as the median (25th, 75th quartiles).
* P � 0.01 vs. vehicle-treated.
† P � 0.001 vs. vehicle-treated.
‡ P � 0.05 vs. vehicle-treated.
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retina of OIR mice, suggesting that HIF-1� may help to mediate
proliferation of blood vessels in the neovascular retina. In the
present study, upregulation of HIF-1� in the hypoxic retina
consistently reduced by propranolol, indicating that HIF-1� is
likely to participate in the mechanisms coupling �-AR blockade
to VEGF inhibition. In this respect, it has been observed that
carvedilol, a nonselective �-AR blocker, reduces the expression
of both HIF-1� and VEGF in a rat model of cardiac hypertro-
phy.72 In addition, in the retina of OIR mice, statins exert
beneficial effects in ameliorating vascular dysfunction by pre-
venting hypoxia-induced HIF-1� upregulation.2

Clinical Implications

Most of recent therapeutic interventions against ROP have
focused on the mechanisms and the factors leading to new
vessel growth. In this respect, there has been great interest in
an anti-VEGF therapy that provides rapid, effective treatment
for ROP, although recent reports are cautious on its success. In
this respect, our finding that in hypoxic retinas propranolol
downregulates proangiogenic factors, ameliorates proangiogenic
effect of hypoxia, and repairs, at least in part, BRB breakdown is
particularly intriguing in light of a possible therapeutic use of �-AR
blockers to counteract retinal neovascularization in ROP.

CONCLUSION

The decrease in retinal production of VEGF and IGF-1 induced
by propranolol could represent a potential dose-dependent
retinoprotective effect of the drug. Extrapolation of these ex-
perimental findings to the human situation of ROP is difficult,

FIGURE 13. Levels of occludin (A) and albumin (B) in normoxic (�)
and hypoxic (f) conditions, as evaluated by Western blot with �-actin
as the loading control. Densitometric analysis showed that occludin
was decreased by hypoxia (**P � 0.001 vs. normoxic; ANOVA),
whereas albumin was increased (**P � 0.001 vs. normoxia; ANOVA).
Hypoxic levels of both occludin and albumin were unaffected by
vehicle treatment. (A) Propranolol at 20 mg kg�1 increased occludin
(§P � 0.001 vs. vehicle-treated mice; ANOVA). The occludin level after
propranolol was lower than the respective normoxic level (**P �

0.001; ANOVA). (B) Propranolol at 20 mg kg�1 decreased albumin
(§P � 0.001 vs. vehicle-treated mice; ANOVA). The albumin level after
propranolol was higher than the respective normoxic level (*P � 0.01;
ANOVA). Each histogram represents the mean � SE of data from three
samples. Each sample was the protein extracted from four retinas. N,
normoxia; H, hypoxia, V, vehicle; P, propranolol.

FIGURE 14. Effect of propranolol on blood–retinal vascular leakage
after hypoxia, as qualitatively evaluated with the Evans blue method. In
normoxia (A), retinal vessels were sharply outlined, and there was no
Evans blue leakage from the vessels. In hypoxia (B), there was evi-
dence of breakdown of the BRB with leakage of the dye into the retinal
parenchyma. Vehicle administration to hypoxic mice (C) produced no
detectable change in BRB leakage, whereas treatment with propranolol
at 20 mg kg�1 (D) induced an evident decrease in dye leakage. Arrows:
vascular leakage. Six mice were used for each experimental condition.
Scale bar, 200 �m.
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but they may represent another piece in the polymorphic
puzzle of this complex disease.
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