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Following a stroke, the resulting lesion creates contralateral motor impairment and an

interhemispheric imbalance involving hyperexcitability of the contralesional hemisphere.

Neuronal reorganization may occur on both the ipsilesional and contralesional

hemispheres during recovery to regain motor functionality and therefore bilateral

activation for the hemiparetic side is often observed. Although ipsilesional hemispheric

reorganization is traditionally thought to be most important for successful recovery,

definitive conclusions into the role and importance of the contralesional motor cortex

remain under debate. Through examining recent research in functional neuroimaging

investigating motor cortex changes post-stroke, as well as brain-computer interface

(BCI) and transcranial magnetic stimulation (TMS) therapies, this review attempts to

clarify the contributions of each hemisphere toward recovery. Several functional magnetic

resonance imaging studies suggest that continuation of contralesional hemisphere

hyperexcitability correlates with lesser recovery, however a subset of well-recovered

patients demonstrate contralesional motor activity and show decreased functional

capability when the contralesional hemisphere is inhibited. BCI therapy may beneficially

activate either the contralesional or ipsilesional hemisphere, depending on the study

design, for chronic stroke patients who are otherwise at a functional plateau. Repetitive

TMS used to excite the ipsilesional motor cortex or inhibit the contralesional hemisphere

has shown promise in enhancing stroke patients’ recovery.

Keywords: ipsilesional, contralesional, stroke, motor recovery, brain-computer interface, transcranial magnetic

stimulation

INTRODUCTION

Stroke remains a leading cause of long-term disability (Hoyer and Celnik, 2011), affecting
nearly 800,000 people annually within the United States (Mozaffarian et al., 2016), and causing
almost 80% of patients to have persistent motor impairment following traditional therapy (Mayo
et al., 1999). Imaging assessment of neural injury, function, and stroke subtype appear to have
significant effects on stroke recovery (Burke Quinlan et al., 2015). Specifically, the initial degree
of motor impairment (Byblow et al., 2015) and degree of injury to the corticospinal tract
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(Burke Quinlan et al., 2015; Feng et al., 2015; Doughty et al.,
2016) have shown to be strong predictors of recovery, and several
chronic stroke patients demonstrate functional recovery plateaus
following standard rehabilitation (Young et al., 2014a).

Initial stroke recovery correlates to resolution of necrotic
tissue, edema, and inflammation (Furlan et al., 1996; Stinear
and Byblow, 2014), while later recovery relates mainly to
disinhibition of redundant neural circuits, recruitment of
functionally homologous pathways, and the creation of neural
connections to overtake the previous functions of the damaged
neurons (Rossini et al., 2007; Murphy and Corbett, 2009;
Ackerley et al., 2011). Such neuronal processes may occur on
the ipsilesional and contralesional hemispheres and are not
completely understood (Hoyer and Celnik, 2011; Buetefisch,
2015); therefore, the relationship between the two motor cortex
(M1) hemispheres post-stroke remains a topic of great interest
(Baron et al., 2004; Hummel et al., 2008).

The contralateral M1 normally inhibits the ipsilateral
hemisphere during motor performance tasks (Ocklenburg
et al., 2015). However, patients with recent stroke commonly
demonstrate increased M1 excitability on the contralesional
hemisphere (equivalent to the ipsilateral hemisphere for healthy
patients) for movements with the affected side (Chollet et al.,
1991; Weiller et al., 1992; Shimizu et al., 2002; Butefisch
et al., 2003, 2008; Murase et al., 2004; Tang et al., 2015).
Therefore, stroke patients display an interhemispheric imbalance
where the ipsilesional M1 no longer inhibits the contralesional
hemisphere and the contralesional side appears to inhibit the
ipsilesional (Baron et al., 2004), possibly through the transcallosal
fibers (Murase et al., 2004) (Figure 1). The magnitude of
such an imbalance appears to positively correlate with the
degree of motor impairment (Murase et al., 2004), and the
interhemispheric imbalance in other functional networks may
also contribute toward other cortical functional disruptions
including neglect (Tomaiuolo et al., 2010) and aphasia (Griffis
et al., 2016).

Therapies that offer repeated action of the impaired arm,
including mirror therapy (MT) (Rossiter et al., 2015), virtual-
reality therapy (VRT) (Laver et al., 2015), constraint-induced
movement therapy (CIMT) (Kwakkel et al., 2015), and brain-
computer interface (BCI) therapy may reverse progressive down-
regulation of sensorimotor activity (Lindberg et al., 2007) and
induce neural plasticity (Johnson et al., 2004). However, most
current rehabilitation methods that can target a specific M1
hemisphere, such as, transcranial magnetic stimulation (TMS),
focus on ipsilesional hemispheric activation to facilitate motor
recovery (Sanes et al., 1990; Hoyer and Celnik, 2011; Buetefisch,
2015). Although several studies demonstrate poorer motor
recovery with increased contralesional hemispheric recruitment
(Loubinoux et al., 2003; Fridman et al., 2004; Ward and
Cohen, 2004; Calautti et al., 2007), some evidence suggests
that contralesional recruitment may play an integral role in
post-stroke motor recovery. According to Hoyer et al., the
importance and role of contralesional M1 neural activity is
probably determined by variables including time since stroke,
degree of damage to the motor system, and complexity of the
motor task (Hoyer and Celnik, 2011).

Brain-computer interfaces are a newer modality that
use reward-based neuromodulatory training to induce use-
dependent plasticity and facilitate functional recovery for stroke
rehabilitation (Li et al., 2014; Young et al., 2014b; Soekadar
et al., 2015; Mrachacz-Kersting et al., 2016). Unlike MT, VRT,
CIMT, and TMS, BCI therapy uses signal detection of neural
activity through an electroencephalogram (EEG) to provide
specific and immediate visual feedback to the patient depending
on their performance (Buch et al., 2008; Young et al., 2014a).
This mini review attempts to broaden the scientific community’s
understanding of the roles of the M1 hemispheres in stroke
rehabilitation by: (1) Analyzing current research on the role of
the M1 hemispheres for spontaneous stroke recovery, and (2)
Examining results from a therapy that relies upon specific M1
neuronal signals for feedback (BCI) as well as therapy that targets
specific M1 hemispheres (TMS).

THE ROLE OF THE CONTRALESIONAL
AND IPSILESIONAL HEMISPHERES FOR
SPONTANEOUS STROKE RECOVERY

Most stroke patient brain activation studies find increased
bilateral activation, related to elevated contralesional M1
activation, correlates to poorer motor recovery (Loubinoux
et al., 2003; Baron et al., 2004). For example, increases in
ipsilesional M1 activation, indicative of lesser bilateral activation,
have significantly predicted larger treatment-induced behavioral
gains for patients with lacunar infarcts (Burke Quinlan et al.,
2015). Meanwhile, Ward et al.’s (2003a) cross-sectional study
demonstrates a shift from bilateral activation to unilateral
ipsilesional M1 activation in the more well-recovered patients
during movement of the affected hand (Ward et al., 2003a) with
other cross-sectional studies showing similar results (Chollet
et al., 1991; Ward et al., 2003b). Longitudinal studies have also
shown this trend with increased recovery correlated to increased
unilateral development (Ward et al., 2003b). A limitation of
many of these studies was significant mirror movements of the
unaffected hand (Nelles et al., 1999, 2001; Carey et al., 2002;
Feydy et al., 2002; Small et al., 2002). Such movements, indicative
of poor motor outcome (Nelles et al., 1998; Kim et al., 2003),
could have contributed to greater contralesional M1 activity
(Buetefisch, 2015). Rodent stroke models that display decreased
motor recovery when the non-affected limb is trained further
suggests that increased contralesional M1 activation hinders
motor recovery (Allred et al., 2005, 2010; Allred and Jones, 2008).
In a recent systematic meta-analysis of studies in human stroke
patients, Tang et al. demonstrated increased interhemispheric
balance activation in patients within the sensorimotor and
premotor cortices in well-recovered stroke patients (Tang et al.,
2015). To facilitate optimal motor recovery, one might attempt to
re-establish a normalized hemispheric balance between the two
sides of the motor cortex given the evidence that activation for
most well-recovered stroke patients shifts from a bilateral to an
unilateral pattern (Hoyer and Celnik, 2011).

Increased ipsilateral M1 activation has been shown for
tasks with higher accuracy or complexity demands in healthy
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FIGURE 1 | Interhemispheric Imbalance Post Stroke: Normally during unilateral motor performance tasks, activation of the contralateral hemisphere inhibits activation

of the ipsilateral hemisphere (black X is showing inhibition of the ipsilateral side). However, when the contralateral M1 is impacted by stroke, this inhibition is lost (black

X on the blue inhibitory arrow) and therefore the contralesional (analogous to ipsilateral for healthy controls) becomes more activated. Some studies suggest that this

increased contralesional activation may also contribute to the interhemispheric imbalance by imposing increased inhibition on the ipsilesional (contralateral for healthy

patients) hemisphere designated by the blue arrow and black X on the ipsilesional hemisphere (Murase et al., 2004).

subjects (Winstein et al., 1997; Hummel et al., 2003; Seidler
et al., 2004; Verstynen et al., 2005; Buetefisch et al., 2014).
Additionally, well-recovered stroke patients with chronic
striatocapsular motor strokes (≥2 months post-stroke) show
notable contralesional motor activity (Weiller et al., 1992), and
Schaechter and Perdue demonstrated that increased activation
of the contralesional cortical network in chronic stroke (≥6
months post-stroke) patients is associated with good motor
recovery (Schaechter and Perdue, 2008). These findings suggest
that uncrossed corticospinal tracts, which include roughly
10% of the corticospinal neuronal fibers, play a role in motor
movement and possibly in recovery (Brus-Ramer et al., 2009).
Touvykine et al. suggests that the contralesional premotor cortex
may play a greater role in stroke recovery with larger lesions
where damage on the ipsilesional side is more severe and where
less ipsilesional neuronal recovery can develop (Touvykine
et al., 2016). This indicates that activation of the contralesional
hemisphere provides recruitment of additional neural resources
due to the increased demands of the damaged ipsilesional motor
system (Riecker et al., 2010). While some research suggests that
increased activation of the contralesional M1 may detract from
motor recovery (Calautti and Baron, 2003; Ward et al., 2003b),
recent evidence suggests continued supportive functions of the
contralesional hemisphere in a subset of chronic stroke patients
(Butefisch et al., 2005; Lotze et al., 2006; Riecker et al., 2010).
As most motor-impaired stroke patients initially demonstrate
increased contralesional M1 activation (Murase et al., 2004),
it is possible this activation offers increased motor function
benefits (Lotze et al., 2006) within the subacute stage, but may
interfere with continued recovery for some patients (Mansur
et al., 2005; Fregni et al., 2006). Regardless, the contralesional
M1 appears to support the function of the impaired limb in a

subset of chronic stroke patients (Lotze et al., 2006), depending
on factors including lesion location and size, but it may interfere
in complete recovery of the limb in other subsets (Mansur et al.,
2005; Fregni et al., 2006).

TMS can index interhemispheric interactions in patients >14
months post stroke (Borich et al., 2016) and has been used to
help characterize the roles of the contralesional and ipsilesional
hemispheres in spontaneous stroke recovery. Multiple studies
utilizing TMS suggest that continuation of the increased
activation of contralesional M1 associates with lesser clinical
outcome (Turton et al., 1996; Netz et al., 1997; Feydy et al.,
2002; Johansen-Berg et al., 2002). For instance, for 12 individuals
with major arm paresis post-stroke, inhibitory TMS of the
contralesional M1 significantly increased movement time in a
paretic arm reaching task suggesting that patients with severe
arm impairment rely heavily on the contralesional hemisphere
(Mohapatra et al., 2016). Stinear et al. demonstrates that
ipsilesional corticomotor excitability increased with time during
recovery of 46 patients (44 with subcortical damage, and only two
with motor cortex damage) during the first 6-months post-stroke
(Stinear et al., 2015). However, interhemispheric inhibition of
these patients was shown to be stable and symmetrical over
time, with no decrease in contralesional corticomotor excitability
(Stinear et al., 2015).

Other TMS studies suggest that contralesional hemispheric
recruitment is a factor of well-recovered stroke patients. For
instance, Lotze et al. demonstrated that rTMS applied to the
contralesional hemisphere in well-recovered patients induced
timing and accuracy deficits during production of a complex
sequential motor task (Lotze et al., 2006). Furthermore, although
TMS of only the ipsilesional hemisphere of well-recovered stroke
patients, and not the contralesional, induced motor-evoked
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potentials in Nair et al., TMS did reveal greater transcallosal
inhibition from the contralesional to the ipsilesional hemisphere
than in the reverse direction (Nair et al., 2007). In Julkunen et al.,
TMS in conjunction with diffusion weighted imaging revealed
that inter-hemispheric asymmetry in the M1 persists even years
after stroke for well-recovered patients where clinical symptoms
have normalized (Julkunen et al., 2016). These findings, along
with a number of noninvasive brain stimulation studies that
report null effects, suggest that the aim to strictly normalize the
interhemispheric balance may be over-simplistic (Di Pino et al.,
2014). Instead, other more complex models, such as, a bimodal
balance-recovery model that links interhemispheric balancing
and functional recovery to the amount of structural reserve
spared by the lesion, may prove more accurate at determining
optimal therapy for stroke patients (Di Pino et al., 2014).

THE ROLE OF THE CONTRALESIONAL
AND IPSILESIONAL HEMISPHERES WITH
NEWER MODALITY THERAPY (BCI & TMS)

Some BCI paradigms have demonstrated motor improvements
associated with recovery of the contralesional hemisphere. The
BCI design in Song et al. and Young et al. demonstrated that
increased contralesional hemispheric activation correlated to
better performance on the Nine-Hole Peg Test (9-HPT), Action
Research Arm Test (ARAT), and Stroke Impact Scale (SIS) (Song
et al., 2014; Young et al., 2014a). Additionally, contralesional
corticospinal tract (CST) fractional anisotropy (FA) correlated
positively with improvements in the 9-HPT and increases in
asymmetric FA correlated with the ARAT (Young et al., 2016).
Similarly, Bundy et al.’s BCI, which focused on contralesional
motor activation, found significant increases in the ARAT,
grasp strength, Motricity Index, and the Canadian Occupational
Performance Measure (Bundy et al., 2017). Young’s, Song’s,
and Bundy’s BCI paradigms suggested that axonal remodeling
within, and increased motor fiber integrity of, the contralesional
hemisphere correlates with individual motor gains for patients
with upper-limb impairment (Song et al., 2014; Young et al.,
2014a; Bundy et al., 2017).

In contrast, other BCI paradigms display motor
improvements correlated to recovery of the ipsilesional
hemisphere. Ramos-Murguialday et al.’s BCI [denoted as
a brain-machine-interface (BMI)], saw significant motor
gains associated with increased ipsilesional M1 recruitment
with their experimental group as compared to control
(Ramos-Murguialday et al., 2013). Additionally, only the
experimental group demonstrated significantly improved
modified upper limb Fugel-Meyer Motor Assessment
(FMA) scores. Similarly, in Pichiorri et al., BCI training
was associated both with increased ipsilesional hemisphere
activation in response to motor imagery of the paralyzed
limb and increased functional outcome in the FMA
(Pichiorri et al., 2015).

Reasons for the differences found in the BCI studies
probably relate to the BCI/BMI designs and the patient
exclusion criteria. For instance, Young and Song recruited

patients with a greater range of severity of motor impairments
than Ramos (Ramos-Murguialday et al., 2013; Young et al.,
2016). Additionally, Ramos’ BMI paired orthoses movements
with desynchronization of ipsilesional hemisphere brain
oscillations (Ramos-Murguialday et al., 2013), Young and
Song rewarded µ (8–12Hz) and β (18–26Hz) rhythms
with functional electrical stimulation (FES), tongue display
unit stimulation, and visual ball movement (Song et al.,
2014; Young et al., 2014a), and Bundy used a moving hand
exoskeleton that responded to contralesional motor signals
(Bundy et al., 2017).

Overall, multiple BCI studies have found improved motor
function for the severely impaired stroke patient correlated
with contralesional M1 recruitment (Song et al., 2014; Young
et al., 2014a; Bundy et al., 2017) as well as ipsilesional M1
recruitment (Ramos-Murguialday et al., 2013; Pichiorri et al.,
2015). Specific BCI designs, as well as patient recruitment
qualifications probably determine which hemisphere will activate
more to begin motor function compensation development.
Wide variation in the behavioral assessments used for outcome
evaluation of motor function after stroke may also contribute to
the heterogeneity in results making direct comparisons between
study results challenging (Broetz et al., 2014). However, with
the meta-analysis by Lohse et al. demonstrating that the trend
of increased therapy correlating with increased improvement
is not altered by stroke chronicity (Lohse et al., 2014), BCI
appears to be a promising therapy for stroke patients who
have reached a functional plateau with traditional therapy
(Young et al., 2015).

TMS therapy can inhibit or excite targeted brain regions,
and applications of this technique may encourage stroke
rehabilitation (Hallett, 2000; Fregni et al., 2006) without
deteriorating motor performance in the non-affected hand
(Fregni et al., 2006; Vines et al., 2008; Hoyer and Celnik, 2011).
One therapeutic utilization of TMS includes inhibitory, low-
frequency, rTMS trains onto the contralesional motor region
(Kobayashi et al., 2004). Numerous studies have already found
improved task performance on the affected side following
contralesional M1 inhibition via rTMS applied at a low-
frequency (Demirtas-Tatlidede et al., 2015; Matsuura et al.,
2015; Ludemann-Podubecka et al., 2016). Kobayashi et al.
demonstrated that for healthy subjects, inhibitory 1-Hz rTMS
over the non-performing M1 shows improvement of motor
task performance of the ipsilateral hand, possibly by enhancing
cortical excitability of the ipsilesional M1 through decreased
interhemispheric inhibition from the stimulated (Kobayashi
et al., 2004; Grefkes et al., 2010). Additionally, regional cerebral
blood flow in the left M1 during right hand movement has
been seen to increase during 1-Hz inhibitory rTMS of the
right M1 (Conchou et al., 2009). For a study with eight
mild-to-moderate stroke patients (<1 year post stroke), there
was modest improvement in their motor function following
an inhibitory rTMS applied to the contralesional hemisphere
(Mansur et al., 2005). In a 2015 study, stroke patients with mild
to moderate upper limb motor impairment were either subjected
to 1-Hz contralesional M1 inhibitory rTMS or sham rTMS.
Results demonstrated that a 1-Hz rTMS 15-day treatment plan
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showed significant motor dexterity improvement in dominant
hemisphere strokes, but not those with strokes in the non-
dominant hemispheres (Ludemann-Podubecka et al., 2015).
In contrast Rose et al. found no significant improvement in
restoration of upper extremity functional use for post 6-month
stroke patients with a four-times-a-week program of inhibitory
rTMS for 4 weeks (Rose et al., 2014). This study suggests that
increased chronicity of stroke causes impairment of beneficial
effects of rTMS in motor recovery (Rose et al., 2014).

Another method to regain interhemispheric balance and
improve recovery is to excite the ipsilesional side with TMS
(Talelli et al., 2007; Ameli et al., 2009). Kim et al. found that
high-frequency rTMS to the motor cortex ipsilesionally gave
improved finger sequence performance in the contralateral hand
(Kim et al., 2004). Additionally, Khedr found that acute stroke
patients with excitatory 3-Hz rTMS over the ipsilesional M1 for
10 days showed improved motor function (Khedr et al., 2005).
Du et al. demonstrated that 3-Hz ipsilesional M1 rTMS showed
greater motor improvements sustained for at least 3 months post
treatment as compared to a control group with sham rTMS (Du
et al., 2016). Brodie et al. confirmed that 5-Hz rTMS ipsilesionally
enhances motor learning for chronic stroke (>6 months post)
patients as compared to a sham control group over a serial
tracking task (Brodie et al., 2014). Specifically the experimental
group demonstrated significantly greater improvements in peak
velocity, cumulative distance, and cutaneous somatosensation.
The study concludes that when paired with motor practice,
as both groups also went under tracking task training, 5-Hz
excitatory rTMS over the ipsilateral M1 enhances motor learning
in chronic stroke patients although no improvement in general
upper extremity function was observed (Brodie et al., 2014).

A few studies have compared inhibiting the contralesional
hemisphere to exciting the ipsilesional side through rTMS
although the results remain inconclusive. Khedr et al. (2009)
compared 1-Hz rTMS inhibition to 3-Hz rTMS ipsilesional
M1 stimulation on simple motor tasks including keyboard
tapping and a nine-hole pegboard task. This study found that
the contralesional hemisphere 1-Hz inhibitory pulse sequence
showed more motor improvement (Khedr et al., 2009). Similarly,
another study compared 1 Hz inhibition contralesionally to
10-Hz excitatory ipsilesionally and a bilateral combination of
both with the conclusion that only contralesional rTMS and
bilateral showed significant improvement in motor training
lasting 1 week (Takeuchi et al., 2009). Despite these findings,
Emara et al. compared 1-Hz contralesional stimulation to 5-Hz
ipsilesional hemisphere stimulation over 10 days and found
that both group had significant motor function and disability
scale improvement which lasted up to 12 weeks (Emara et al.,
2010). Kim et al. also did not measure significant differences in
motor function of the upper extremity between 1-Hz inhibitory
and 20-Hz excitatory treatment for patients who suffered from
their first subacute stroke within 4 weeks of the study (Kim
et al., 2014). Finally, Mcdonnell and Stinear’s meta-analysis
found no clear evidence of interhemispheric inhibition or hyper-
excitability of the unaffected hemisphere suggesting that exciting
the ipsilesional M1 with TMS may be more beneficial than
inhibiting the contralesional M1 (McDonnell and Stinear, 2017).

CONCLUSION

Major factors influencing unilateral recovery post-stroke appear
to include chronicity, as well as lesion size and location. Increases
in unilateral ipsilesional M1 activation for movement on the
affected side appears to positively correlate with chronicity,
especially for well-recovered patients (Ward et al., 2003b).
However, increased contralesional M1 recruitment has been
demonstrated for well-recovered patients with larger lesions
(Touvykine et al., 2016). Overall, well-recovered patients display
increased unilateral activation of the ipsilesional M1 with motor
tasks as compared to ill-recovered patients, and animal models
have suggested that motor learning of the non-affected side
during recovery could limit rehabilitation of the ipsilesional
hemisphere (Allred et al., 2005, 2010; Allred and Jones, 2008;
Jones et al., 2013). However, some well-recovered patients display
notable contralesional motor activity and the contralesional
hemisphere appears to play a key role for at least a subset of stroke
patients.

BCI training demonstrates potential in assisting with motor
recovery for stroke sufferers who have reached a functional
plateau following traditional rehabilitation. Evidence suggests
that this therapy, even for chronic stroke sufferers, may induce
neuromodulatory changes that enhance motor function. Both
BCI designs that demonstrate development of the contralesional
M1, as well as designs that increase ipsilesional M1 activity,
appear to enhance motor recovery. It is currently unclear if either
type of BCI design is superior to the other for all, or certain
subsets of, patients.

Meanwhile, TMS is an effective and safe tool for research
into this field and offers promising potential to be utilized for
rehabilitation. TMS studies confirm that increased contralesional
M1 activity as compared to the ipsilesional M1 is associated with
lesser clinical outcome. Some TMS research suggests that for
some well-recovered stroke patients contralesional corticomotor
excitability does not decrease, but rather only the ipsilesional
corticomotor excitability increases with recovery (Stinear et al.,
2015) and often the interhemispheric asymmetry within M1
persists even years after stroke (Julkunen et al., 2016).

Both inhibition of the contralesional side and excitation of
the ipsilesional side appear effective for motor recovery post-
stroke. A few studies suggest that contralesional inhibition may
be slightlymore effective than ipsilesionalM1 excitation although
this is not seen throughout the literature. Initial degree of motor
impairment and chronicity (Rose et al., 2014), as well as age (Kim
et al., 2016), have been suggested to negatively correlate with the
ability for rTMS to enhance the recovery process.

Current evidence favors ipsilesional M1 excitation and
development to be the most important for stroke recovery
over contralesional hemispheric recruitment. However, the
contralesional side does appear to play a significant role for at
least a subset of stroke patients and some research suggests that
certain BCI paradigms targeting the contralesional hemisphere
may be beneficial for motor recovery. It is important to note the
numerous confounding variables that require more research to
completely understand their effects including lesion location and
size, and chronicity.
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