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 Introduction 

 Angiogenesis is defined as new blood vessel growth 
from previously existing structures and occurs naturally 
in the placenta and uterus during pregnancy, in the ovary 
during follicle development, ovulation and corpus lute-
um formation, and during wound healing in healthy 
adults. In pathological conditions, uncontrolled angio-
genesis can occur, resulting in various diseases and can-
cer  [1, 2] . Under quiescent conditions, endothelial cells 
form a protective barrier and line the vasculature. The 
endothelium and the protective barrier normally present 
must adapt rapidly to accommodate angiogenic sprout 
formation, where endothelial cells migrate from a quies-
cent monolayer with stable junctions and form new blood 
vessels in response to extravascular pro-angiogenic cues. 
Angiogenesis is a multi-step process which involves en-
dothelial cell activation, degradation of the basement 
membrane, invasion, proliferation, lumen formation and 
stabilization. This process is regulated by a balance of 
pro- and anti-angiogenic molecules. Several key factors 
include, but are not limited to, growth factors  [3–9] , bio-
active lipids  [10–13] , integrins  [14–21] , junctional pro-
teins  [22–24]  and transmembrane proteinases  [25–29] . 
These molecules ultimately transduce intracellular sig-
nals to the cytoskeleton, which orchestrates the various 
steps in angiogenesis. 
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 Abstract 

 Angiogenesis is the formation of new blood vessels from 

pre-existing structures, and is a key step in tissue and organ 

development, wound healing and pathological events. 

Changes in cell shape orchestrated by the cytoskeleton are 

integral to accomplishing the various steps of angiogenesis, 

and an intact cytoskeleton is also critical for maintaining 

newly formed structures. This review focuses on how the 3 

main cytoskeletal elements – microfilaments, microtubules, 

and intermediate filaments – regulate the formation and 

maintenance of angiogenic sprouts. Multiple classes of com-

pounds target microtubules and microfilaments, revealing 

much about the role of actin and tubulin and their associat-

ed molecules in angiogenic sprout formation and main-

tenance. In contrast, intermediate filaments are much less 

studied, yet intriguing evidence suggests a vital, but unre-

solved, role in angiogenic sprouting. This review discusses 

evidence for regulatory molecules and pharmacological 

compounds that affect actin, microtubule and intermediate 

filament dynamics to alter various steps of angiogenesis, in-

cluding endothelial sprout formation and maintenance. 
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  Actin 

 Actin is a well-studied cytoskeletal element for con-
trolling angiogenesis. An intact actin cytoskeleton is in-
tegral for cell motility and membrane protrusion events, 
which are key for mounting successful angiogenic re-
sponses. The actin cytoskeleton is tethered to the plasma 
membrane through adherens junctions and focal adhe-
sions at cell-cell and cell-matrix contacts, respectively. As 
discussed in the sections below, inhibition of integrins, 
focal adhesions and cadherins  [30–34]  blocks angiogenic 
responses, indicating actin anchoring at these sites is crit-
ical to this process. Given the substantial evidence link-
ing the above-described molecules associated with actin, 
it follows that the actin network and its associated pro-
teins would be viable targets for anti-angiogenic therapies 
[for a review, see  35 ]. The reader is also referred to other 
extensive reviews on migration  [36] , integrins  [37] , junc-
tional regulation  [22, 38]  and endothelial lumen forma-
tion  [39]  for further reading. 

  Cell-Matrix Interactions 
 Cell recognition and response to the extracellular ma-

trix (ECM) is critical for successful sprouting responses. 
Blockade of various integrin subunits prevents angiogenic 
responses in multiple systems  [14, 21, 40–43] . Integrin liga-
tion results in activation of focal adhesion kinase, Ras, 
phosphoinositide-3 kinase-Akt signaling, mitogen-ac-
tivated protein kinases, Src and Rac, Rho, and Cdc42
GTPases  [44–47] , in addition to other molecules not listed. 
Furthermore, recognition of the ECM by some integrins 
(such as  � v � 3) results in the phosphorylation of integrin 
cytoplasmic tyrosine residues, which in turn promotes re-
cruitment of intracellular adaptor proteins  [48, 49] . Inte-
grin knockout models suggest that functional compensa-
tion occurs between various integrin subunits, and that 
embryonic and adult vasculogenic and angiogenic events 
are controlled by distinct integrin subunits  [50] . These 
data provide important insights into the ECM and inte-
grins, which transduce downstream signals and promote 
angiogenesis in development and pathological situations. 

  Small GTPases 
 The Rho family of small GTPases are master regula-

tors of the actin cytoskeleton  [51]  and have been shown 
to be involved in angiogenesis. GTPases are perfectly 
suited to regulate actin dynamics, which are key for cell 
motility, protrusion formation and establishing polarity. 
Cdc42 and Rac1 mediate endothelial lumen formation 
 [52–54] . Fitting with these data, expression of Cdc42 and 

Rac1 improved the architecture of pathological angio-
genesis stimulated by VEGF administration  [55, 56] . 
 Davis and colleagues  [57]  have provided biochemical 
 evidence to link Cdc42 to the  � 2 � 1 integrin, which is 
 required for lumen formation and endothelial morpho-
genesis. These data explain how matrix recognition of a 
pro-morphogenic substrate (such as collagen type I  [58] ) 
can induce endothelial lumen formation and sprouting 
responses, namely by coupling matrix recognition (via 
 � 2 � 1) with cytoskeletal rearrangements (via Cdc42) and 
matrix proteolysis (via membrane type I matrix metal-
loproteinase, MT1-MMP)  [57] . In addition, Cdc42 can 
form a polarity complex with atypical protein kinase C 
and protease activated receptor 3 (Par 3), which directs 
lumen formation and sprouting  [59] . These data high-
light that endothelial polarity is established during an-
giogenic responses, and that the Cdc42 and Rac1 GTPas-
es are required for polarization.

  In addition to Cdc42 and Rac1, the small GTPases Rho 
and Rap1 have been investigated in angiogenesis. Colla-
gen type I activated Src kinase and Rho through  � 1-inte-
grins  [60] , and Rho activation stimulated endothelial cell 
assembly into new blood vessels in a mouse skin model of 
angiogenesis  [61] . Further evidence for an involvement of 
Rho is provided by a report that Syx, a synectin-binding 
guanine exchange factor for Rho, may interact with an-
giomotin, an endothelial junctional protein, to direct 
sprouting  [62] . Separate studies have demonstrated that 
silencing of the cerebral cavernous malformation 2 
(CCM2) gene in endothelial cells activates Rho and im-
pairs endothelial junctions to block vacuole and lumen 
formation but maintain initial sprouting responses  [63] . 
Expression of dominant negative isoforms of Rho and 
treatment with C3 exoenzyme alone do not significantly 
alter vacuole and lumen formation  [53] , suggesting the ad-
ditional change in junctional permeability contributes to 
a defect in lumen formation. Interestingly, CCM2 forms 
an intracellular complex with CCM1 and CCM3. CCM1 
is also known as KRIT-1 and forms a complex with the 
Rap1 GTPase, which is involved in regulating endothelial 
permeability and junctional integrity  [64, 65] . In separate 
studies, Ras-associated protein 1 (Rap1), a small GTPase 
which associates with both integrins and cadherins, is re-
quired for angiogenesis  [66] , and is essential for the con-
formational activation of  � 1-integrins and postnatal neo-
vascularization in endothelial cells  [67] . These studies 
emphasize important roles for small GTPases in mediat-
ing various steps of angiogenesis, and highlight that cross-
talk between small GTPases and endothelial junctions is 
critical for successful angiogenic responses.
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  Junctional Proteins 
 The endothelium lines the inner surface of the vascu-

lar system and is arranged as a monolayer. Another class 
of molecules involved in cell-cell communication that is 
integral in vessel organization and sprouting responses is 
the transmembrane adhesion receptors that maintain the 
integrity of endothelial junctions. Interendothelial junc-
tions contain three complex junctional structures – in-
cluding adherens junctions, tight junctions and gap junc-
tions. Gap junctions are communication structures 
which allow the passage of small-molecular-weight sol-
utes between neighboring cells. Tight and adherens junc-
tions are mainly responsible for intercellular adhesion via 
the formation of actin filament-associated protein com-
plexes along transmembrane adhesion sites  [22]  and reg-
ulate the permeability and organization of blood vessels 
 [23, 24] . 

  Vascular endothelial (VE)-cadherin is the major de-
terminant of endothelial adherens junctions. In addition, 
regulation of VE-cadherin activity or its presence at cell 
contacts is essential for controlling vascular permeability. 
VE-cadherin, like other members of the cadherin family, 
is linked through its cytoplasmic tail to p120,  � -catenin 
and plakoglobin.  � -Catenin and plakoglobin bind to  � -
catenin, which interacts with several actin-binding pro-
teins, including  � -actinin, ajuba, zonula occludens-1 
(ZO-1) and others, forming a large and dynamic protein 
complex at cell contacts  [68] . Tyrosine phosphorylation of 
 � -catenin reduces its affinity for the cadherin cytoplas-
mic tail and increases its turnover at junctions, thereby 
destabilizing adherens junctions  [69, 70] . Mice deficient 
for VE-cadherin die at midgestation of vascular malfor-
mations  [71] . Defects are more severe in the extraembry-
onic placental vasculature. No capillary plexus is formed 
in the allantois, although electron microscopy shows that 
interendothelial junctions do form. Thus, VE-cadherin 
seems dispensable for initial vasculogenesis, but is re-
quired for subsequent remodeling and vascular morpho-
genesis  [71] . 

  In addition to molecules responsible for maintaining 
junctional integrity, the Notch pathway has been report-
ed to modulate angiogenesis  [72, 73] . Endothelial cells ex-
press Notch1 and Notch4 surface receptors, along with 
their ligands, Jagged1 and Jagged2 (homologs of  Dro-
sophila  serrate-like proteins) and Delta-like 1 (DLL1) and 
DLL4. Notch signaling is initiated when the extracellular 
domain of the receptor recognizes ligand expressed on a 
neighboring cell, which cleaves the Notch receptor and 
releases the extracellular domain. The intracellular do-
main is released and translocates to the nucleus to acti-

vate gene transcription  [73] . Notch signaling regulates 
endothelial cell specification and the initiation of branch-
ing morphogenesis in multiple systems  [74–78] . Interest-
ingly, feedback may occur from cytoskeletal regulatory 
proteins to regulate Notch signaling. Cytoskeletal bind-
ing protein, CG3973, was recently identified as a tran-
scriptional target of Notch signaling in  Drosophila . 
CG3973 is a member of the Gas2-like family of proteins 
which have potential binding sites for both actin and
microtubules. Roper and colleagues  [79]  have recently 
shown that CG3973 negatively regulates Notch signaling, 
because adult flies lacking CG3973 have higher levels of 
Notch activation in various tissues. Perhaps more inter-
esting, new evidence is emerging that Notch ligands 
cross-talk with cell adhesion and cytoskeletal machinery. 
The cytoplasmic tail of Jagged-1 contains a PDZ recogni-
tion motif that interacts with afadin, a molecule associ-
ated with adherens junctions  [80] . These data suggest an 
additional connection to the cytoskeleton independent of 
an ability to activate Notch signaling. Altogether, these 
recent publications suggest an increased level of sophisti-
cation, where the cytoskeleton is integrated with Notch 
signaling. It remains to be demonstrated whether such 
cross-talk with the endothelial cytoskeleton and Notch 
signaling pathways occurs.

  Role for Proteins That Regulate
Membrane-Cytoskeletal Interactions  
 Actin accessory and membrane scaffold proteins com-

prise an additional class of molecules that can regulate 
angiogenic responses. Three prominent actin-associated 
proteins are filamin, annexin 2 and moesin. Filamin iso-
forms A, B and C stabilize and bridge F-actin networks 
to the plasma membrane through membrane receptors or 
ion channels  [81] . In addition, filamins bind a diverse ar-
ray of cellular proteins, some of which include the small 
GTPases Rho, Rac, Cdc42 and RalA, allowing assembly 
of signaling complexes in various systems  [82, 83] . In en-
dothelial cells, gene silencing of Filamin B increased focal 
adhesion assembly, reduced VEGF-induced migration 
and cord formation, and increased p21 activated kinase 
(PAK) activation; further, Filamin B formed a complex 
with Vav-2 and Rac1  [84] . These data stress a role for fila-
min in controlling endothelial migration and tube for-
mation.

  Annexin 2 is a multifunctional membrane scaffold 
protein that has been implicated in the formation of new 
blood vessels  [85] . Annexin 2 binds F-actin and spectrin 
 [86]  and is thought to organize the interface between the 
cytoplasm and plasma membrane by interacting with 
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membrane phospholipids and actin filaments  [87, 88] . 
Gene silencing studies indicate a role for annexin 2 in 
regulating adherens junctions, actin dynamics and tight 
junctions  [89–92] . We have shown that annexin 2 is re-
quired for endothelial sprouting responses, and it com-
plexes with VE-cadherin following endothelial stimula-
tion with sphingosine 1-phosphate  [93] , a potent pro-
angiogenic factor  [94] . Annexin 2 depletion reduced 
endothelial barrier integrity and significantly reduced 
Akt phosphorylation, which suggests annexin 2 may con-
trol endothelial morphogenesis through an adherens-
junction-mediated pathway upstream of Akt  [93] . These 
data indicate a key role for annexin 2 in regulating endo-
thelial sprouting responses.

  Ezrin, radixin and moesin proteins interact with 
transmembrane proteins and the cytoskeleton. This fea-
ture allows these proteins to organize specialized mem-
brane domains critical for signaling complexes  [95] . In-
terestingly, endothelial cells express predominantly moe-
sin, while epithelial cells and hepatocytes predominantly 
express ezrin and radixin  [96, 97] . Moesin is required for 
increased endothelial permeability responses to various 
cues, because knockdown of moesin blocks increases in 
permeability in response to TNF- �  and other stimuli  [98, 
99] . Essner and colleagues  [100]  report that moesin1 is 
required for lumen formation in developing interseg-
mental vessels in the zebrafish embryo. Moesin knock-
down ablated VE-cadherin-positive adherens junctions, 
but not tight junctions. These data suggest VE-cadherin 
and moesin1 cooperate to establish and maintain endo-
thelial polarity  [100] . In separate studies, mice lacking 
moesin had delayed lumen formation in the dorsal aorta 
and a decreased amount of F-actin beneath the apical 
surface of the endothelium, which is where lumen forma-
tion is initiated  [101] . In addition, CD34-sialomucins and 
podocalyxin were implicated with moesin, as well  [101] . 
These studies reinforce that establishment of endothelial 
polarity is critical for proper angiogenic responses.

  Microtubules 

 Microtubules normally ebb and flow and exhibit dy-
namic instability and treadmilling. Microtubule-binding 
drugs and vascular-disrupting agents are widely used to 
interfere with the formation of angiogenic structures and 
stimulate their collapse, which is also defined as break-
down or regression of existing structures. A summary of 
the effects of compounds that affect microtubule organi-
zation which have been used to study various steps in an-

giogenesis is summarized in  table 1 . Microtubule-bind-
ing drugs and vascular-disrupting agents suppress the 
dynamics of microtubules without appreciably changing 
microtubule mass and are undergoing various clinical 
trials  [102, 103] . These agents have provided useful tools 
to demonstrate that tubulin polymerization and stabili-
zation are required for formation and maintenance of an-
giogenic structures, respectively. Microtubule depoly-
merizing agents – such as ZD6126, AVE8062, combres-
tatin A4, CYT997, JG-03-14, TH-482, vinblastine and 
vinflunine – can destabilize existing vascular networks. 
Microtubule-depolymerizing agents can also block 
sprout formation and include colchicine, combrestatin 
A4, embellistatin, 2-methoxyestradiol (2-ME), spon-
gistatin, tubulysin A and XRP44X. Microtubule-stabiliz-
ing compounds – including docetaxel, epothilone B, IDN 
5390, laulimalide and paclitaxel – also block sprout or 
cord formation. Thus, microtubule networks must re-
main intact for angiogenic network maintenance and sta-
bilization, but also maintain dynamic properties that are 
required for the initial formation of angiogenic struc-
tures. Interestingly, intracellular levels of these com-
pounds can accumulate in endothelial cells approximate-
ly 5 times higher than other cells  [104–106] .

  Consequences of Microtubule Alterations 
 Microtubules are critical for successful cell division, 

intracellular transport and signaling. Microtubule-asso-
ciated proteins are often misregulated in cancer, making 
tubulin and microtubules viable targets for chemother-
apy. Microtubule targeting compounds are among the 
most effective classes of chemotherapeutics to prolong 
survival in patients with metastatic disease  [162, 163] . De-
scribed below are various intracellular pathways that are 
perturbed following microtubule disruption and stabili-
zation. These include alteration of microtubule plus- and 
minus-end molecules, hypoxia-inducible factor (HIF) 
and various other processes. Microtubule flux is gov-
erned by regulation of microtubule growth at plus-ends 
and anchoring at minus-ends. Minus-end anchoring of 
microtubules originates at the centrosome with the aid of 
multiple accessory proteins. Ninein is one such microtu-
bule minus-end anchoring protein  [164, 165] . Ninein is 
phosphorylated as endothelial cells undergo tubulogen-
esis, and enhanced in tip cells in endothelial outgrowths 
from embryoid bodies embedded in 3-D collagen matri-
ces  [166] . Disruption of the plus-ends of microtubules 
similarly disrupts endothelial motility and tubulogenesis 
 [158] . Low doses of vinflunine inhibited endothelial cell 
motility that correlated with EB-1 mislocalization at mi-
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Table 1. M icrotubule altering compounds and their effects on angiogenesis

Compound Class Effects on various steps of
angiogenesis in vitro

Vascular effects
in vivo 

Mechanism Reference 
No.
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ABT-751* D selectively targets tumor blood flow;
induces endothelial contraction in vitro

107, 108

N-acetylcolchinol
(ZD6126)*

D I I yes induces endothelial contraction 109–112

Albendazole D yes suppresses ascites formation by blocking VEGF 
production in ovarian carcinoma

113, 114

Ang-510 D I I combrestatin-like compound; blocks 
angiogenesis and disrupts newly formed vessels

115

AVE8062*
AC7700

D I yes combrestatin A4 derivative; toxic to endothelial 
cells in vitro; decreases blood flow and targets 
host arterioles

116–120

Colchicine* D I I I I increases endothelial permeability 121–124

Combrestatin A4
(Zybrestat)*

D I I I I yes yes blocked phosphorylation of Net, a known 
transcription factor involved in angiogenesis; 
decreased tumor blood flow; increased tumor 
blood flow

102, 125–130

CYT997* D I yes increases endothelial permeability 131

Docetaxel* S I I I yes disrupts F-actin 132–137

Embellistatin D I I I yes G2/M arrest 138

Epothilone B S I blocks angiogenic outgrowth from human tumor 
explants

139

IDN 5390* S I I yes 140, 141

JG-03-14* D I I increased endothelial permeability and inhibited 
VEGF-induced VE-cadherin phosphorylation

142

Laulimalide* S I I I blocked paxillin phosphorylation;
distinct binding site from paclitaxel

133, 143, 144

M410 D I yes decreased HIF-1� and VEGF 145

2-ME
(Panzem)*

D I I I I yes can synergize with docetaxel to mask
pro-angiogenic effects of VEGF

123, 124, 
134, 146, 147

Paclitaxel
(Taxol)*

S I I I I yes can downregulate VEGF production 124, 135, 
136, 147–149

Spongistatin D I I I I yes blocks PKC� activity and translocation to 
membrane

150

TH-482 D I I I increases endothelial permeability 151

Tubulysin A* D I I 152

NPI-2358* D increases endothelial permeability 122

Vinblastine
(Velban)*

D I I I I I I yes yes combines with VEGFR2 mAb to inhibit 
angiogenesis

104, 119, 
124, 132, 
153–155

Vincristine
(Oncovin)*

D I I I I increases endothelial permeability 122, 124

Vinflunine D I I I yes yes affects EB-1 localization 156–160

XRP44X* D I inhibits aortal sprouting 161

S =  Stabilizer; D = destabilizer; I = inhibits; 2-ME = 2-methoxyestradiol. 
* In clinical trials (reviewed in Schwartz [103] and Kanthou and Tozer [102]).
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crotubule plus-ends, decreased microtubule targeting to 
adhesion sites, decreased adhesion site dynamics and the 
formation of stable stress fibers  [157] . These results illus-
trate that disruption of both plus- and minus-ends of mi-
crotubules significantly alters sprouting responses, and 
cross-talk between microtubules, actin and adhesion 
complexes is critical to sprouting. 

  Microtubule stabilizing and destabilizing drugs inhib-
it HIF-1 �  accumulation by disrupting microtubule func-
tion  [167] . Giannakakou and colleagues  [168]  first report-
ed that microtubule disruption dysregulates HIF; 2ME2, 
taxol and vinblastine blocked nuclear accumulation of 
HIF-1 � , VEGF secretion and angiogenic responses. In 
addition, nuclear HIF-2 �  accumulation and VEGF pro-
duction were blocked in primary endothelial cells  [168] . 
Similar results were observed with M410, which blocked 
cell cycle progression and induced microtubule depoly-
merization in a human colon carcinoma line  [145] . Stath-
min is a cytosolic protein that binds the  � / � -tubulin di-
mer and depolymerizes microtubules. Stathmin knock-
down in primary endothelial cells led to microtubule 
stabilization and inhibited HIF-1 �  protein accumulation 
and VEGF expression  [169] . It appears that 2ME-2, Taxol, 
vinblastine, M410, ENMD-1198 and epothilone B all re-
duce HIF-1 �  expression, nuclear HIF-1 �  accumulation 
and VEGF expression in endothelial and tumor cells, and 
these alterations correlate to decreased angiogenic re-
sponses in vivo  [145, 167, 168, 170] . Thus, successful in-
tranuclear transport of HIF appears to require the ability 
of microtubules to polymerize or depolymerize, as stath-
min knockdown and Taxol treatment also block HIF-1 �  
nuclear translocation  [168, 169] . This action has been 
linked to the ability of these compounds to target  � -tu-
bulin  [167] . 

  Cross-Talk between Microtubules and Actin 
 Communication between microtubules, actin and fo-

cal adhesions are critical for successful cell motility  [171] . 
Microtubule-binding drugs can alter structures associ-
ated with actin assembly, such as adherens junctions and 
focal adhesions. Both microtubule stabilizing and desta-
bilizing compounds can prevent endothelial focal adhe-
sion formation and assembly  [102, 133, 137, 157] . Inhibit-
ing microtubules can cause a loss of cell polarity and 
block formation of lamellipodia  [172] . Consistent with 
this observation, non-toxic doses of docetaxel, epothi-
lone B and vinblastine significantly inhibited endothelial 
cell migration, invasion and cord formation on matrigel, 
which was ascribed to reduced F-actin stress fiber forma-
tion, appearance of nuclear F-actin rings and early inhi-

bition of Rac1 and Cdc42 activity  [132] . Higher doses of 
vinblastine, a microtubule-disrupting agent, induced 
rapid collapse and apoptosis of established endothelial 
networks in 3-D collagen matrices  [153] . Interestingly, in-
hibiting actin polymerization with cytochalasin D did 
not induce collapse of pre-formed 3-D endothelial net-
works  [153] . The vinblastine-induced collapse required 
Rho GTPases and was blocked with C3 exoenzyme and 
dominant negative forms of RhoA and RhoC, indicating 
microtubule depolymerization induced Rho GTPase ac-
tivation and collapse of endothelial networks  [153] . In 
separate studies, Luis and colleagues  [173]  recently re-
ported that MVL-PLA2, a phospholipase A2 from snake 
venom, increased microtubule dynamics and blocked an-
giogenesis. MVL-PLA2 likewise disrupted focal adhe-
sions, contributing to failed angiogenic responses  [173] . 
In line with this observation, TAE226 inhibition of focal 
adhesion kinase blocked tube formation in vitro and mi-
crovessel density in subcutaneous tumors  [174] . These 
studies underscore the interplay between focal adhesions 
and dynamic microtubule networks, and illustrate the 
link between microtubule perturbation and actin regula-
tory molecules. 

  Newly forming endothelial cells exhibit a polarized 
phenotype to guide sprout formation in response to an-
giogenic stimuli  [74, 175, 176] . Crews and colleagues  [177]  
have recently reported the activation of disheveled asso-
ciated activator of morphogenesis (DAAM1) interferes 
with endothelial cell division, migration and angiogene-
sis that correlated with microtubule stabilization. Davis 
and colleagues  [57]  have demonstrated that a polarity 
complex forms with Cdc42 that guides endothelial cell 
outgrowth. In line with this, disruption of microtubules 
may have the added ability to downregulate expression of 
VEGFR2, but not VEGFR1  [178] . This would be predicted 
to have a significant impact on angiogenic sprouting
because VEGFR2 is enriched in polarized tip cells  [77, 
179]  and is vital for promoting angiogenic responses  [180, 
181] . Altogether, these data suggest a complicated cross-
talk exists between extracellular cues and establishment 
of cellular polarity, which is ultimately accomplished 
through rearrangement of cytoskeletal elements.

  Intermediate Filaments 

 The intermediate filament cytoskeleton connects the 
plasma membrane to the nucleus and in many cases dis-
plays a tight interaction with the nuclear lamina and nu-
clear cytoskeleton. Intermediate filament proteins were 
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classically thought to function solely for mechanical sta-
bilization of cells, but are more recently being recognized 
as regulators of signal transduction events  [182–184] . Be-
cause intermediate filaments are resistant to detergent 
solubilization, they were once predicted to be stationary; 
however, intermediate filaments engage in various move-
ments that are linked with assembly, disassembly and 
subcellular organization  [185] . Vimentin is a type III in-
termediate filament that is expressed in cells of mesen-
chymal origin, including endothelial cells  [186] . Thus, vi-
mentin will be the primary focus of the following discus-
sion. 

  Vimentin intermediate filament networks are highly 
dynamic  [187] , and the polymerized filament is formed 
through the stacking of dimers and tetramers  [188–190] . 
Each monomer contains a central  � -helical rod domain 
that is flanked by an N-terminal head and C-terminal tail 
 [191] . Vimentin polymer organization is dependent on 
the phosphorylation state, because the introduction of a 
negatively charged phosphate group, predominantly in 
the head region, frees soluble vimentin from the poly-
merized network  [192–196] . Phosphorylation may reduce 
the positive charge in the head and tail domain and re-
duce the propensity for vimentin polymerization  [197, 
198] . In addition, the N-terminal head domain is cleaved 
by calpain  [199, 200] . Fragments of vimentin produced by 
calpain cleavage do not assemble into intermediate fila-
ments  [201] , and injection of N-terminal vimentin pep-
tides collapsed intermediate filament networks  [202] . 
These studies show that both phosphorylation and cleav-
age disrupts vimentin polymerization, producing soluble 
vimentin, which has been previously suggested to func-
tion as an intracellular signal transducer  [182] .

  The underlying cell processes controlled by interme-
diate filaments remain obscure and have not been inves-
tigated in detail in endothelial cells or with respect to 
blood vessel formation, although many studies have re-
vealed important functions for vimentin in smooth mus-
cle cells, fibroblasts and tumor cells. Mild phenotypic al-
terations were observed in the original report of vimen-
tin-null animals  [203] , but subsequent studies have 
identified defects in endothelial barrier function  [204]  
and fibroblast contraction during wound healing  [205] . 
Vimentin-null mice also have cerebellar defects, im-
paired motor coordination, and purkinje cell necrosis 
 [206] . Of interest here, Eckes et al.  [205]  reported a lag in 
granulation tissue formation that has not been investi-
gated further. This anecdotal evidence supports the pos-
sibility that vimentin regulates angiogenic sprouting dur-
ing granulation tissue formation. Santilman et al.  [207]  

have recently reported that vimentin binds caveolin 
(Tyr 14 ) and co-localized with caveolin at the anterior
portion of cells extending protrusions through Boyden 
chambers. Caveolin-1 polarization in 3-D migrating en-
dothelial cells required the phosphorylatable Tyr 14  resi-
due of caveolin-1. Immunoelectron microscopy further 
indicated that caveolin-1 was distributed along cytoskel-
etal structures in the anterior of transmigrating endothe-
lial cells  [208] . A similar polarization of vimentin and 
Tyr 14  caveolin was reported during retinal development 
in vivo  [207] , although vimentin fibers seen in 2-D cul-
tures were reported in endothelial cells extending protru-
sions across Boyden chamber membranes  [207] . Vimen-
tin-null mice have reduced corneal neovascularization 
 [209]  and hypoxia-induced retinal neovascularization 
 [210] . Whether these effects can be explained by direct 
defects in endothelial function remains to be demon-
strated. 

  While classically thought to provide mechanical sup-
port to cells and tissues, emerging evidence suggests ad-
ditional roles for intermediate filaments. Peptide-in-
duced disassembly of vimentin intermediate filaments 
dramatically altered fibroblast shape as well as microfila-
ment and microtubule organization  [202] , yet, in mice 
lacking vimentin, cytoskeletal organization is normal 
 [203] . These seemingly conflicting observations suggest 
that vimentin monomers are signaling intermediates 
 [186] . The mechanical properties of intermediate fila-
ments in vitro and the fact that in most cells they form 
interacting networks between the cell surface and the nu-
cleus supports the hypothesis that the intermediate fila-
ment cytoskeleton provides a scaffold to sense and trans-
duce mechanical signals. For example, applying 12 dynes/
cm 2  shear stress to vascular endothelial cells rapidly dis-
placed the extensive 3-D networks of vimentin interme-
diate filament networks at the apical surface. Interme-
diate filaments are displaced approximately 1  � m in a 
3-min time period. While these movements occurred 
throughout the cytoplasm, there was relatively more 
translocation at the apical surface than the basal surface 
of the cell  [211] . The idea that vimentin may act as a mech-
anotransducer is supported by defective flow-induced 
vasodilation responses in vimentin-null animals  [212] . 
Recent work by Fainzilber and colleagues  [213, 214]  also 
highlights the ability of calpain-cleaved vimentin frag-
ments to act as intracellular chaperones to alter gene 
transcription following crush injuries. Newly synthe-
sized vimentin was cleaved by calpain and bound to p42 
and p44 mitogen-activated protein kinases (pErk1/2) 
 [213] , protecting phosphorylated Erks from dephosphor-
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ylation  [214]  while also transporting them from distal 
sites of injury to the nucleus to drive transcription. In-
jured neurons from vimentin-null mice could not per-
form pErk1/2 transport, and this effect was correlated 
with delayed recovery of sensation  [213] . Thus, soluble 
non-polymerized vimentin fragments transduced intra-
cellular signals by chaperoning activated Erk1/2 in regen-
erating neurons. Finally, treatments that activate signal 
transduction pathways can change intermediate filament 
distribution  [215] . Given the ability of vimentin to func-
tion in signal transduction, it is reasonable to predict that 
vimentin is involved in initiating angiogenic sprouting 
responses, although this has not been demonstrated de-
finitively to date. One limitation to thoroughly investi-
gating intermediate filaments is a lack of pharmaceutical 
compounds that specifically target intermediate filament 
networks. Withaferin A has been reported to bind vimen-
tin dimers and stabilize vimentin networks  [209] , and 
withaferin A has been reported to block tumor angiogen-

esis  [209, 216, 217] . Although the above-described studies 
suggest an important function for vimentin in angiogen-
esis, none to date have defined a mechanism for vimentin 
regulation of angiogenic network formation. Pilot studies 
in our laboratory reveal that silencing vimentin expres-
sion in primary endothelial cells significantly impairs
endothelial sprouting into three-dimensional collagen 
matrices (data not shown). Further investigation will
be required to demonstrate a functional role for the inter-
mediate filament vimentin in orchestrating angiogenic 
responses and the mechanism through which this occurs.

  Cross-Talk between Vimentin and Other Cytoskeletal 
Elements  
 Vimentin is an abundantly expressed protein that as-

sociates with various intracellular molecules. Vimentin 
intermediate filaments are associated with the centro-
some  [218]  and bind activated Rac and Cdc42  [219] , phos-
pholipase A2  [220] , and the molecular motors kinesin, 

2
D

3
D

�-Tubulin �-, �-, �-ActinVimentin

  Fig. 1.  Immunofluorescence analysis of tubulin, vimentin and ac-
tin arrangement in 2-D versus 3-D cultures. Top row: Human 
umbilical vein endothelial cells (passage 5) were seeded on 18-mm 
circular coverslips coated with collagen type I (20  � g/ml) and al-
lowed to attach overnight. Cells were treated with 1  �  M  S1P for
1 h before being fixed and processed for immunofluorescence
as described in the ‘Appendix’. Primary antibodies utilized were 
anti- � -tubulin (clone DMA1; Sigma-Aldrich; 1:   100), anti-vimen-
tin [V9 FL (p) epitope; Santa Cruz; 1:   100] and anti-actin (AB-1 

clone JLA20; EMD Biosciences; 1:   25). Images were collected with 
a Nikon Eclipse TE2000-U microscope.  ! 60.  Bottom row:  Cells 
were seeded on 3-D collagen type I matrices (2.5 mg/ml) with 
growth factors and 1  �  M  S1P for 24 h, fixed in 4% paraformalde-
hyde in PBS for 30 min and processed for immunofluorescence. 
Images collected with a Zeiss Imager.A1m confocal microscope 
(0.5- to 1.5- � m stacks that were layered into 1 image).  ! 40. Ar-
rowheads indicate extended peripheral processes. 
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dynein and dynactin  [221, 222] . Vimentin is important 
for lipoprotein-derived cholesterol esterification  [223] . 
Interestingly, various protein kinase C isoforms associate 
with vimentin intermediate filaments  [224–226] , and 
PKC-mediated vimentin phosphorylation regulates recy-
cling of the  � 1-integrin subunit during cell migration 
 [227] . Plectin and intermediate filament associated pro-
tein-300 bind and cross-link vimentin to microtubules, 
microfilaments and membrane adhesion complexes 
 [228–230] . Vimentin associates with filamin A  [231] ,  � -
crystallin  [232] , cGMP kinase  [233]  and Yes kinase  [234] . 
The carboxy terminus of vimentin binds actin  [235] , and 
detyrosinated tubulin recruits vimentin intermediate fil-
aments to microtubules  [236] . Lastly, deleterious effects, 
including cataracts and lens degeneration, are seen in 
mice that overexpress vimentin  [237] . These data under-
score the intricate relationships established by molecules 
to integrate actin and microtubule dynamics with the vi-
mentin intermediate filament cytoskeleton. Further work 

will be required to continue to tease apart how the vari-
ous cytoskeletal moieties interact with one another to 
control motility and angiogenic sprouting. 

  Intracellular Localization of Actin, Tubulin and 
Vimentin during Endothelial Sprouting  
 We investigated the distribution of microtubules, vi-

mentin and actin in 2-D versus 3-D endothelial cultures 
using indirect immunofluorescence ( fig. 1 ). Filamentous 
networks for  � -tubulin, vimentin and  � -,  � -,  � -actin were 
seen in 2-D endothelial monolayers that extended from 
nucleus to plasma membrane ( fig. 1 , upper panels). The 
arrangement of these networks was distinct, however, for 
endothelial cells invading 3-D collagen matrices, which 
mimics angiogenic sprout initiation. Large highly aligned 
bundles in 3-D cultures were observed for  � -tubulin and 
vimentin that were maintained continuously throughout 
extensions of peripheral processes. These distinctions are 
depicted in the schematic in  figure 2 . The images high-
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  Fig. 2.  Schematic depicting microtubule, 
vimentin and actin localization in quies-
cent versus activated endothelial cells: qui-
escent endothelial cells (a) and sprouting 
endothelial cells (b). Placement is based on 
the data shown in figure 1. 
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light key differences in cytoskeletal arrangement in 2-D 
monolayers (those forming stable junctions) and 3-D in-
vading endothelial cells, which form sprouting structures. 

  Microtubules are clearly required for maintenance of 
both 2-D monolayers and endothelial sprouting struc-
tures. Treatment with either microtubule-destabilizing 
or -stabilizing compounds collapses existing structures 
( [130, 142, 153]  and data not shown). Actin arrangement 
in 3-D, however, was punctuate and distinctive from 2-D 
arrangements. Actin foci observed in 3-D are established 
at critical subcellular locations (e.g. strategic branch 
points). It is possible that fine extended protrusions are 
more susceptible to collapse because of differences in ad-
herence to the ECM. We have reported that endothelial 
cells continually extend and retract peripheral processes 
while advancing through 3-D collagen matrices, and this 
extension and retraction required a disintegrin and me-
talloproteinase 17 (ADAM17)  [238] . These extended pe-
ripheral processes (indicated by arrowheads in  fig. 1 ) of-
ten extend around individual collagen fibers, but do not 
alter collagen density or arrangement significantly  [239] . 
At the same time, extension and retraction of peripheral 
processes is occurring at the leading edge of the sprout, 
while individual tunnels are generated by trailing endo-
thelial cells (analogous to stalk cells) which generate the 
lumen portion of the structure  [239–241] . The various 
states initiated in angiogenesis are depicted in  figure 3 , 
where quiescent endothelial cells with stable junctions 
are activated by release of pro-angiogenic stimuli. This 
endothelial activation triggers sprout initiation, endothe-
lial invasion and new blood vessel formation.

  It appears that cytoskeletal arrangements within endo-
thelial cells extending sprouts into an intact 3-D ECM ver-
sus endothelial cells lining and forming a monolayer are 
distinct, and cellular responses to various cues rely heav-
ily on both matrix integrity and endothelial cell polariza-
tion, which would be expected to be distinct at various 
segments of developing sprouts. Certainly, these interac-
tions are dynamic, as developing microvascular struc-
tures alter the mechanical properties of the surrounding 
ECM with time  [239, 242] . The cell-matrix interactions 
between newly forming angiogenic structures are medi-
ated through integrins  [14, 15, 21, 40–43, 243, 244] , and 
maintaining endothelial attachments are dependent on 
integrin-mediated contacts, because integrin antagonism 
collapses sprouting structures  [21] . In addition, varying 
the matrix density, which presumably alters the availabil-
ity of integrin binding sites within the ECM, alters sprout-
ing responses and lumen size in various assays ( [245, 246]  
and our unpublished observations). Although extensive 
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  Fig. 3.  Schematic illustration illustrating key steps in angiogene-
sis, along with molecules that transduce signals to the cytoskele-
ton to induce sprouting angiogenesis.  a  Quiescent endothelium 
exhibiting intact basement membrane (red), mural cell (yellow) 
and intact junctions.  b  Sprout initiation is stimulated by local pro-
duction of angiogenic factors, which disrupt junctions and base-
ment membrane integrity to initiate sprouting responses.  c  Sprout 
extension and new vessel growth. Key molecules that control lu-
men formation, junctional signaling and fine protrusion forma-
tion are indicated.  
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studies to date have revealed important clues, the precise 
molecular cues responsible for the intricate processes of 
initiating, propelling and maintaining endothelial sprout-
ing structures remain to be definitively identified. 

  Altogether, the studies described here illustrate a key 
role for the cytoskeleton in angiogenic sprout initiation 
and maintenance, which are summarized in  figure 3 . 
Continued investigations will clarify how cross-talk be-
tween microtubule, microfilament and intermediate fila-
ment networks is accomplished for these vital processes. 
Also of interest is how various cytoskeletal networks in-
tegrate with and respond to the key signaling pathways 
known to regulate angiogenesis. Lastly, continued dis-
covery of new compounds that target cytoskeletal com-
ponents and normalize aberrant angiogenesis will pro-
vide additional tools to combat pathological angiogenesis 
in disease. 

  Appendix 

 Reagents  
 Human umbilical vein endothelial cells were purchased from 

Lonza and maintained as described  [247] . 

  Immunofluorescence Analyses  
 Endothelial cells seeded on coverslips were fixed in 2% para-

formaldehyde in PBS for 10 min, rinsed twice with Tris-glycine 
buffer, permeabilized for 15 min with 0.5% Triton X-100 in PBS, 

and blocked overnight in blocking buffer (1% BSA, 0.2% sodium 
azide, 0.1% TX-100, 1% goat serum in TBS). Coverslips were 
washed for 5 min with wash buffer (0.1% Triton X-100 in PBS). 
Secondary antibodies (goat anti-mouse, Jackson Immuno Re-
search; 1:   60) in blocking buffer were added for 1 h at room tem-
perature. Samples were washed for 5 min, rinsed in water and 
mounted. Endothelial cells invading 3-D collagen matrices were 
allowed to invade for 24 h, fixed in 4% paraformaldehyde in PBS 
for 30 min, and rinsed twice with Tris-glycine buffer. Samples 
were cut to generate a side view, permeabilized for 1 h (0.5% Triton 
X-100 in PBS), and blocked overnight in blocking buffer (1% BSA, 
0.2% sodium azide, 0.1% TX-100, 1% goat serum in TBS). Prima-
ry antibody was added at room temperature for 3 h. Samples were 
washed for 45 min with wash buffer. Secondary antibodies (goat 
anti-mouse Alexa Fluor �  488; Molecular Probes) were diluted
1:   300 in blocking buffer and incubated at room temperature for
1 h. Samples were washed overnight for the  � -tubulin and vi-
mentin. Samples stained with actin were washed for 30 min, 
rinsed in water, and mounted. 
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