Role of the doubly stochastic Neyman type-A and Thomas
counting distributions in photon detection

Malvin Carl Teich

The Neyman type-A and Thomas counting distributions provide a useful description for a broad variety of
phenomena from the distribution of larvas on small plots of land to the distribution of galaxies in space.
They turn out to provide a good description for the counting of photons generated by multiplied Poisson
processes, as long as the time course of the multiplication is short compared with the counting time. Analyt-
ic expressions are presented for the probability distributions, moment generating functions, moments, and
variance-to-mean ratios. Sums of Neyman type-A and Thomas random variables are shown to retain their
form under the constraint of constant multiplication parameter. Conditions under which the Neyman
type-A and Thomas converge in distribution to the fixed multiplicative Poisson and to the Gaussian are pre-
sented. This latter result is most important for it provides a ready solution to likelihood-ratio detection,
estimation, and discrimination problems in the presence of many kinds of signal and noise. The doubly sto-
chastic Neyman type-A, Thomas, and fixed multiplicative Poisson distributions are also considered. A
number of explicit applications are presented. These include (1) the photon counting scintillation detection
of nuclear particles, when the particle flux is low, (2) the photon counting detection of weak optical signals
in the presence of ionizing radiation, (3) the design of a star-scanner spacecraft guidance system for the hos-
tile environment of space, (4) the neural pulse counting distribution in the cat retinal ganglion cell at low
light levels, and (5) the transfer of visual signal to the cortex in a classical psychophysics experiment. A
number of more complex contagious distributions arising from multiplicative processes are also discussed,

with particular emphasis on photon counting and direct-detection optical communications.

l. Introduction

It is just over 40 years since Neyman introduced a
family of straightforward but intriguing generalizations
of the binomial and Poisson distributions.? He called
the simplest and perhaps most useful of these “the
contagious distribution of Type-A with two parame-
ters.” Neyman’s work was motivated by a variety of
experimental observations in entomology and bacteri-
ology with which calculations based on the ordinary
Poisson failed to agree. He reasoned that the effects
of contagion were important in these studies, and he
succeeded in introducing this property in a remarkably
elegant yet simple way.

The description contagious implies that each favor-
able event increases (or decreases) the probability of
succeeding favorable events. Feller? and others have
argued that there are essentially two kinds of contagion:
true contagion as described above and apparent con-
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tagion, where there is an inhomogeneity of the popula-
tion. It has long been known that certain distributions,
such as the negative binomial and the Neyman type-A,
could be derived in terms of both types of contagion.2
Indeed the negative binomial distribution was obtained
by Greenwood and Yule3 in terms of apparent contagion
and subsequently by Eggenberger and Polya in an in-
dependent study in terms of true contagion.*% It is
generally assumed that a detailed study of the correla-
tion between various time intervals is required to dis-
tinguish between the two types.’

Distributions exhibiting true contagion are special
cases of cluster (self-exciting) point processes, which
have found application in many disciplines including
ecology, economics, entomology, oncology, bacteriology,
neurophysiology, epidemiology, forestry, cosmology,
operations research, traffic studies, reliability, geo-
physics, and detection theory. In the cluster case, a
mother (or primary) process (often a Poisson point
process) generates at each point, with a particular time
course, a sequence of daughter (or subsidiary) events.
(The multiplicative nature of the process is therefore
clear.) The mother process may, for example, be
high-energy ionizing particles and the subsidiary or
cluster events optical photons. There are two impor-

15 July 1981 / Vol. 20, No. 14 / APPLIED OPTICS 2457



tant special cases®: the Bartlett-Lewis cluster process
in which the subsidiary events are generated cumula-
tively as a finite renewal process®1?, and the Neyman-
Scott cluster processt-12 in which the subsidiary events
are generated additively, each of the random number
of events being independently displaced from its pri-
mary generating event. The resultant subsidiary pro-
cess is, in general, a nonstationary nonrenewal point
process. A wealth of information relating to cluster
point processes is contained in a remarkable volume
edited by Lewis in 1972. Various aspects of the cluster
point process are treated in chapters by Lawrance,!3
Daley and Vere-Jones,4 Fisher,!5 Cinlar,!® and Neyman
and Scott,!2 all in this volume. Snyder has more re-
cently provided an excellent description of self-exciting
point processes.!7

Other contagious distributions originally considered
by Neyman! are type-A with three or more parameters
and type-B and type-C, which are essentially linear
combinations of type-A. Beall and Rescial8 have con-
sidered an infinite sequence of two-parameter conta-
gious distributions for arbitrary 3, where 8 is not nec-
essarily an integer. (8 =0, 1, 2 correspond to the two-
parameter type-A, -B, and -C distributions, respec-
tively.) Gurland!® has shown that the limiting case (3
= ) is equivalent to the Polya-Aeppli distribution.
The major distinction between this latter distribution
and that generated by lower values of § is that any
multimodality in the region of low count numbers is
diminished as 8 increases. The Polya-Aeppli superfi-
cially resembles the negative binomial; the latter can
never be multimodal, however. Following Feller,2
Gurland?!® has systematically converted the fixed pa-
rameters in Neyman’s original formulation to random
variables, thereby creating an even more general class
of contagious distributions. A number of other gener-
alizations have also been put forward.8

A class of point processes in which apparent conta-
gion is the key element was first studied by Cox.20 It
was given the appellation doubly stochastic point pro-
cess (DSPP) to emphasize that in this case two kinds of
randomness take place: randomness associated with
the point process itself and an independent randomness
associated with its rate. Much of the recent develop-
ment of the properties of the DSPP has been in the
context of optics,?1-27 and several excellent reference
books are available.1728:29 A special case of the DSPP
obtains when the stochastic rate is shot noise; it is
therefore convenient to call this the shot-noise-driven
doubly stochastic Poisson point process (SNDP).13:30
An important result, first shown by Bartlett,3? is that
the SNDP is a particular Neyman-Scott cluster pro-
cess.!3 We have recently studied the SNDP in detail,
obtaining the singlefold and multifold counting and
time statistics3! as well as time statistics in the presence
of dead time and sick time.?2 One important result that
emerges from our study is that in the limit of counting
times long in comparison with the fluctuation time of
the shot noise, a unique SNDP counting distribution
emerges, and it is the Neyman type-A.33

We are therefore led to an interesting conclusion.
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The SNDP is a DSPP exhibiting apparent contagion,
and it is also a Neyman-Scott cluster process exhibiting
true contagion. Evidently there can be no distinction
between true and apparent contagion in connection with
the SNDP and with the Neyman type-A. More gen-
erally, Snyder has shown that a DSPP can be expressed
in terms of an equivalent self-exciting point process (see
Ref. 17, pp. 292-293).

Another closely related counting distribution will
prove useful in our study. In 1949, Thomas3! intro-
duced a two-parameter counting distribution distinct
from the Neyman type-A only in that mother pulses
appeared in the final process along with daughter
pulses. Although she originally referred to this as the
double-Poisson distribution, it has since come to be
called the Thomas distribution. Like the Neyman
type-A, it is also obtainable from the Neyman-Scott
cluster process and will become the limiting counting
distribution in a number of important applications.

In the following we develop various properties and
limits of the simple and doubly stochastic versions of
the two-parameter Neyman type-A, Thomas, and fixed
multiplicative Poisson distributions.? We will deal
with applications to photon, particle, and pulse counting
in optics and vision and touch on the performance of
systems containing such counting detectors. Finally,
we will examine a number of related contagious distri-
butions pertinent to photon counting and optical
communications.

Il. Properties of the Simple Neyman Type-A and
Thomas Counting Distributions

Following Neyman,! Feller,2 and McGill,38 we con-
sider a mother {primary) distribution describable by the
probability law p(m|W). This represents the proba-
bility of obtaining m clusters (in time or space) with a
given driving rate parameter W(>0). The number of
daughters (subsidiaries) per cluster n is assumed to vary
independently from one cluster to another according to
a probability law p(n|m) that is the same for all clusters.
When only daughter pulses appear in the final process,
and when mother and daughter distributions are both
Poisson, the conditional probability equation yields the
Neyman type-A counting distributions?

p(n]W) = iop(nlm)p(mlW)

© (am)te—om Wme—W

=3 ‘ T (1a)
m=0 n. m.
p(O|W) = exp[-W(1L —e~9)]. (1b)

The quantity a(>0) is called the Neyman type-A (or
multiplication) parameter and provides a measure of
the average number of daughters per mother event,
assuming that all daughters are included in the counting

interval. The moment generating function @,(t) =
{e!™) can be readily calculated from Eq. (1)38:
Qn(t) = exp(Wlexpla(et — 1)] — 1}). 2
The mean, variance, and variance-to-mean ratio are
{n) =aW, (3a)
((An)?) = (1 + a)aW, (3b)
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Fig. 1. Semilogarithmic plot of the Neyman type-A counting dis-

tribution p(n|W) vs the count number n. The overall mean {n) =

10. Curves are labeled according to the value of the parametera. In

the limit as ¢ — 0, the Neyman type-A approaches the Poisson

(dashed curve). The multimodal character of the distribution is
evident.

((An)2)/{n) =1+a. (3¢)
It is apparent from Eq. (1a) that W = {(m). Some years
ago Grimm3? compiled tables of the cumulative density
function for various values of (n) and a. The behavior
of this distribution is best illustrated graphically,
however. In Fig. 1, we present a plot of the Neyman
type-A counting distribution [logp (n| W) vs n] for fixed
overall mean (n) = 10, with the parameter a varying
between 0 and 10. Its multimodal character is ap-
parent.
The Thomas distribution34 is similar, but mother
pulses appear in the final process along with daughter
pulses. It is written as the finite sum

n (am)n—me —aom Wm,e—W

p(n|W) = mZ:ZI - e (4a)
pO|W) = exp[-W]. (4b)

The Thomas parameter «(=0) denotes the average
number of daughters per mother and plays a role anal-
ogous to the a parameter in the Neyman type-A.
Equation (4a) can be most readily understood by con-
sidering the upper and lower limits on the summation
index m: for m = n, all n counts arise from mother
pulses (n — m = 0), whereas for m = 1 only one count is
associated with a mother pulse, the remainder arising
from daughter pulses (n — m =n — 1). Equation (4b)
expresses the requirement that recording 0 pulses re-
quired 0 mother pulses. The moment generating
function @, (¢) is

Qn(t) = exp(Wiet exp[alet — 1)] — 1}), (5)

from which the mean, variance, and variance-to-mean
ratio are calculated to be

(n) = (1 + )W, | (6a)
{(An)2) =1+ a)2+a]W =(1+3a+ o)W, (6b)

(An)2)/(n) = [(1 +a)+ (ﬁ” (6c)

Again, from Eq. (4a) it is clear that W = (m). The
appearance of the mother pulses in the Thomas distri-
bution regularizes the pulse train. Thus the variance-
to-mean ratio is lower for a Thomas than for a Neyman
type-A of equal mean.

Because of the way in which both the Neyman type-A
and the Thomas distributions are generated, they
should become indistinguishable as a, @ — «. Inthat
limit, for (m) fixed, Egs. (3) and (6) become

(n) =AW, (7a)
{(An)?) = A2W, (Th)
{((An)%/(n) = A4, (7c)

where we have set a = @ = A. These are, of course, the
often-used moments for the fixed multiplicative Poisson
distribution with parameter 4 (=1):

@ @ mo~W
pr|W)= ¥ pn|mpm|W)= % 5(E—m) Wre
m=0 m=0 A m!
Wnl/Ag—W
= —W— n/fA=123,..., (8a)
p(0|W) = exp[-W]. (8b)

In this limit, the width of the daughter distribution
p(n|m) is negligible, and the distribution usually takes
on a scalloped appearance. The moment generating
function for the fixed multiplicative Poisson distribu-
tion is easily calculated to be

Q. (t) = exp[W(e4t = 1)]. )]

At the opposite extreme, the Neyman type-A ap-
proaches the Poisson when a — 0 with (n) finite (see
Fig. 1), and the Thomas becomes the Poisson when «
= 0. The fixed multiplicative Poisson is identical with
the Poisson for A = 1. We will subsequently demon-
strate that both the Neyman type-A and the Thomas
converge in distribution to the Gaussian for a, « fixed
and finite, when the mean of the driving distribution W
= (m) increases without limit (see Sec. IV).

Finally we note that the characteristic function is
obtained from Egs. (2) and (5) by the simple substitu-
tion ¢ — iu, whereas the probability generating function

is obtained from Egs. (2) and (5) by the substitution
et —p 40

ll. Sums of Neyman Type-A and Thomas Random
Variables

Let z; represent the sum of s mutually independent
random variables n;,

=Y m (10)

i=1

with moment generating functions

Qn,{t) = (e'Mi), (11)
whence
Q0 = I1 Qulo). a2

For Neyman type-A random variables with identical
a parameters, Eq. (2) provides
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Qn;(t) = exp(Wilexpla(e! — 1)] - 1}), (13)
. which, when combined with Eq. (12), leads to

Q.,(t) = exp ({fl W:] lexpla(et — 1)] — 1}}. (14)

Equation (14) represents the moment generating
function for a Neyman type-A distribution with an a
parameter identical with that of each constituent dis-
tribution, and with mean

(ny=aW=a

i

W;: (15a)

s
=1

and variance

((An)2) = (1 + @)W = (1 +a)a 3 Wi (15b)
i=1
For Thomas random variables with identical « pa-
rameters, Eq. (5) gives

Qn,(t) = exp(Wile! explalet — 1] = 1)), (16)
which, when combined with Eq. (12), yields

@0 = e £ W et explater -1 -1 (a0

i=1
Equation (17) represents the moment generating
function for a Thomas distribution with an « parameter
identical with that of each constituent distribution and
with mean

M =A+aW=1+a) ¥ W (182)
i=1

and variance
((An)2) = (1+3a+a®dW = (1+3a+a? 5 Wi (18b)
i=1

We conclude that the sum of an arbitrary number of
Neyman type-A (Thomas) random variables will remain
Neyman type-A (Thomas) provided that the a(c) pa-
rameter associated with all the random variables is
identical. The mean and variance of the summated
random variable are represented by the sums of the
component means and variances, respectively. This
property of the Neyman type-A and Thomas distribu-
tions makes them similar to the simple Poisson and the
fixed multiplicative Poisson [see Eq. (9)]; indeed all are
infinitely divisible distributions.*!

It is of interest to note that a simple result of this form
will not emerge if the a, @, or A parameters differ, even
if we consider only two random variables, nor will it for
the summation of a Neyman type-A with a Thomas or
Poisson random variable.

We will demonstrate in the next section, however,
that the Neyman type-A and Thomas converge in dis-
tribution to the Gaussian as W — «. In that limit, the
summation of s Neyman type-A random variables, with
individual means (n;) and parameters a;, will result in
a Gaussian random variable with mean

(n) = il(ni) = i a;W; (19a)
i= i=1
and variance
(An)2) = 5 ((An)?) = ¥ (1+a)a; Wi, (19b)

i=1 i=1
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Similarly, the summation of s Thomas random vari-
ables, with individual means (n;) and parameters «;,
will result in a Gaussian random variable with mean

() =¥ ()= ¥ L+ an)W;

i=1 =1

(20a)
and variance

((An)® = & ((An)2) = ¥ (1 + 3 + a)) Wi
=1

i=1

(20b)

It is clear that, in this same limit, the Neyman type-A
(Thomas) random variable may be added together with
any number of arbitrary independent random variables
that converge in distribution to the Gaussian (e.g.,
Poisson, binomial, Neyman type-A, Thomas) to yield
an overall Gaussian random variable with mean (n) =
2i{n;) and variance {(An)?) = 2;{(An;)?). Thisresult
is extremely useful in a broad variety of practical ap-
plications (see Sec. VI).

IV~ Convergence in Distribution of Neyman Type-A
and Thomas to Gaussian

We demonstrate that the Neyman type-A and
Thomas counting distributions converge to the Gauss-
ian by examining the moment generating functions
Q. (t). In the Appendix, we explicitly show that the
random variable

_n—(n)

- {(( An)2)1/2
converges in distribution to the standard normal ran-
dom variable when the mean of the driving distribution
W increases without limit.

It is also evident from the calculations presented in
the Appendix that for fixed W and a — «, finite terms
other than t2/2 appear in the moment generating
functions. Indeed, in that limit the Neyman type-A
and Thomas approach the fixed multiplicative Poisson
rather than the Gaussian distribution. We have already
mentioned that the former has a scalloped appearance,
whereas the latter, of course, is a smooth bell-shaped
function. Martin and Katti*2 have shown that for small
W, the Neyman type-A can be approximated by a
Poisson distribution with additional zeros.

For the Neyman type-A, behavior representing the
limits described above is apparent in Fig. 1 ({n) = 10),
where the a — 0 curve is Poisson, and where the (@ = 1,
W = 20) and (a = 1, W = 10) curves are smooth and
bell-like, whereas the (a =5, W = 2) and (a = 10, W =
1) curves have begun to scallop. A quantitative mea-
sure of the goodness of the Gaussian approximation has
been presented by Martin and Katti4? for limited ranges
of the parameters W and a.

(21)

V. Properties of the Doubly Stochastic Neyman
Type-A and Thomas Distributions

In an attempt to explain the relative frequency of
multiple occurrences of accidents in a factory popula-
tion, Greenwood and Yule3 used the notion of an inho-
mogeneous rate parameter to generalize the Poisson
distribution. These authors assumed that although the
probability of accident for a given worker (in a British



munitions factory) followed the simple Poisson law,
variation in individual proneness to accident caused the
accident rate to vary from individual to individual in the
population. They then calculated the overall proba-
bility of multiple accidents using certain plausible
density functions for this individual variation of rate
parameter. The result is the doubly stochastic (in this
case mixed) Poisson counting distribution (which ex-
hibits apparent contagion).

In this section, we introduce an inhomogeneity of the
rate parameter into the Neyman type-A, Thomas, and
fixed multiplicative Poisson distributions in the manner
described above. We thereby generate what we call the
doubly stochastic Neyman type-A, doubly stochastic
Thomas, and doubly stochastic fixed multiplicative
Poisson distributions.

We begin with the Neyman type-A kernel repre-
sented in Eq. (1). Define P(W) as the density function
for the driving rate parameter W, which is now sto-
chastic. The counting statistics emerge from removal
of the conditioning on W expressed in Eq. (1):

pn) = j;w PO WP(W)dW, (222)
= Om S p(n|m)p(m| WYP(W)dW, (22b)
m=0
= i p(n|im)p(m). (22¢)
m=0

Equation (22a) may be interpreted as the Neyman
type-A distribution with a smeared mean; Eq. (22¢), on
the other hand, which is its equivalent, is readily in-
terpreted as a doubly stochastic Poisson mother dis-
tribution p(m) giving rise to clusters of daughters that
are Poisson.

The moment generating function @, (t) is easily cal-
culated from its definition

Q) = L e"pin)= 5 e {7 pa| WIPW)AW
n=0 n=0 0
= j;mP(W)dW 3 etrp(n| W)
. n=0

= J; " POWYAWQ,(t), (23)

where @, (£) represents the moment generating function
for the simple Neyman type-A. Substituting Eq. (2)
into Eq. (23), we obtain

Qi) = j;m exp(Wiexpla(e? — 1)] = 1))P(W)dW

= Qw (expla(e’ — D] - 1). (24)

Because of the exponential form of Eq. (2), the calcu-
lation of the moment generating function for the doubly
stochastic Neyman type-A is a trivial enterprise.
Simply write down the moment generating function for
the stochastic rate @w(s) and substitute s = (exp[a(e®
— 1)] — 1). The exponential form for the moment
generating functions of the Thomas and fixed multi-
plicative Poisson simplify our calculations in those cases
as well.

The mean and variance are easily obtained from Eq.
(24), but we provide a more direct route to these results
by using well-known formulas for the conditional ex-
pectation.4

Using the notation E[-] and var[-] to represent ex-
pectation and variance with respect to W, we obtain

{(n) = E[(n|W)] = E[aW] = a{W) (25a)
with the help of Eq. (3a), and
{(An)2) = E[((An|W)2)] + var[(n|W}]
= E[(1 + a)aW] + var[aW]
=(1+a)a{W) + a2((AW)?) (25b)

with the help of Egs. (3a) and (3b). Equation (25b) may
be expressed in words by saying that the unconditional
variance is equal to the mean of the conditional variance
plus the variance of the conditional mean. From Egs.
(25a) and (25b), the variance-to-mean ratio is

((Any?) _ 1+a)+a (awy3y

(n) (W)

The limits of Eq. (25¢) are seen to be proper. For W
fixed, {(AW)2) = 0, and the ratio reduces to (1 + a),
which is appropriate for the simple Neyman type-A; for
a — 0 with a{(W) finite, ((An)2)/{n) — 1 +
{((AaW)2)/{aW), which is precisely that for the doubly
stochastic Poisson43; and, for a increasing without limit,
the ratio approaches a(1 + ((AW)2)/{W)), which is the
result for the doubly stochastic fixed multiplicative
Poisson as we will see subsequently.

Little imagination is required to generate parallel
results for the doubly stochastic Thomas distribution.
Combining Egs. (4) and (22) gives us the unconditional
probability distribution p(n). The moment generating
function Q},(t) is calculated by combining Egs. (5) and
(23) to provide

Q;(t) = @wlet explale’ — 1)] — 1). (26)

Using the conditional expectation relations provided
earlier and making use of Eq. (8), the mean, variance,
and variance-to-mean ratios are calculated to be

(25¢)

(n) =1+ a)(W), (27a)
((An)2y = [{L+ )2 + (W) + (1 + )X (AW)?),  (27b)
((An)?) a {AW)2)
nanjw _ Lawr 9

) (1+a)+1+a+(1+a) W) (27¢)

The limits of Eq. (27¢) are also proper. For W fixed,
((An)2)/{n) reduces to (1 + o) + /(1 + ), which is the
simple Thomas result; for « = 0, the ratio becomes 1 +
((AW)2)/{ W), which is the doubly stochastic Poisson
result®3; and of course for @ — =, Eq. (27¢) becomes a(1
+ ((AW)2)/(W}), which is the result for the doubly
stochastic Neyman type-A and doubly stochastic fixed
multiplicative Poisson, as expected.

The counting distribution for the doubly stochastic
fixed multiplicative Poisson is obtained by inserting Eq.
(8) into Eq. (22). Combining Egs. (9) and (23) provides
the moment generating function

Q5(t) = Qwled — 1). (28)
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Finally, using Eq. (7) and the conditional expectation
formulas cited earlier yields

(n) = A(W), (29a)
((An)2) = AXW) + AX(AW)), (29b)
2
npy L aW?) 290
(n) (W)

verifying the promised conjunction of the doubly sto-
chastic Neyman type-A, Thomas and fixed multipli-
cative Poisson distributions as a, o — .

It is clear from Egs. (22a), (22¢), (25¢), (27¢), and (29¢)
that the doubly stochastic Neyman type-A, Thomas,
and fixed multiplicative Poisson distributions are
broader than their respective underlying kernels. They
are also broader than the equivalent [same P(W)]
doubly stochastic Poisson distributions.*3

V1. Applications in Pulse, Particle, and Photon
Counting

Although the distributions and mathematical prop-
erties discussed to this point enjoy application in a
broad variety of disciplines, we restrict our attention to
their use in optics and vision. We consider specific
examples in retinal neural pulse counting, scintillation
counting, and photon counting in the presence of ion-
izing radiation. These models will apply when the
counting time is large compared with the characteristic
decay time of the multiplication process.

In a neurophysiological study of the responses of cat
retinal ganglion cells to light, Barlow et al.#4 found that
single quantal absorptions stimulated multiple neural
impulses. A study of the experimental mean and
variance of the pulse-counting distributions produced
results in accord with Egs. (3) and (7), witha, A ~ 2.
Although Barlow et al. did not explicitly refer to the
fixed multiplicative Poisson and the Neyman type-A
by name, these are indeed the distributions they used
to model the statistical behavior of the discharge in the
cat’s retinal ganglion cell at low light levels and in
darkness. We have since provided a model for the
maintained discharge time statistics in terms of the
SNDP.32 Another example of the use of the Neyman
type-A in neural counting was provided by McGill,36
who hypothesized that it plays a vital role in visual
psychophysics. He supposed that the distribution
p(m|W) [see Eq. (1)] represented the Poisson flow of
photons from an incandescent light source used as the
stimulus, whereas p(n|m) reflected the Poisson dis-
tribution of neural impulses, induced by m photons, at
some central counting center. McGill argued that the
smearing together of many neural paths at a hypo-
thetical counting center in the chain to the visual cortex
will produce a Poisson-like central noise process under
a broad range of conditions. There is ample support for
such a convergence to the Poisson from a mathematical
point of view.16 We have recently performed a series
of psychophysical experiments at the threshold of seeing
in humans that are consistent with such an interpreta-
tion,45:46

We now consider an example in the nuclear counting
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domain where we often detect ionizing radiation opti-
cally through a radiation-matter interaction in which
a single high-energy particle produces a shower of
lower-energy particles. A case in point is the scintil-
lation detector, which is a combination of a scintillation
crystal (e.g., Nal:Tl, plastic) with a photomultiplier
tube.*” When the incident high-energy particles (e.g.,
B, p, ) are Poisson distributed, and when each particle
produces a Poisson distribution of luminescence pho-
tons with a specified efficiency, such as occurs in fluo-
rescence and phosphorescence, the resulting photon
counting distribution representing the signal is the
Neyman type-A.3133 If Cerenkov radiation is also
present, mother pulses will be registered, and the out-
come is the Thomas, assuming again that we are per-
forming photon counting.*® It is usually assumed in the
literature, generally tacitly, that the fixed multiplicative
Poisson distribution describes the luminescence photon
statistics, and indeed when the counting time is long and
a is large, this is a good approximation. But if photon
counting is used, and the luminescence is weak, it will
be necessary to use the more accurate forms described
above. Similar statistics will apply to the detection of
cathodoluminescence and photoluminescence.

In certain applications where we wish to count the
photons in an optical signal (e.g., astronomy), it some-
times happens that the distributions discussed in the
previous paragraph are characteristic of the noise rather
than of the signal. Viehmann and Eubanks#?50 have
discussed sources of noise in photomultiplier tubes in
the radiation environment of space. Such noise may
arise from several mechanisms such as luminescence
and Cerenkov radiation in the photomultiplier window;
secondary electron emission from the window, photo-
cathode, and dynodes; Bremsstrahlung in turn causing
such secondary electron emission; cosmic-ray bursts;
and, of course, thermionic emission dark current.
These effects clearly degrade both the dynamic range
and the photometric accuracy of low-light-level mea-
surements and therefore must be clearly understood.
Photon counting can be particularly advantageous in
such situations: Even if a large number of photoelec-
trons are produced by the Cerenkov radiation arising
from a single charged particle (which constitutes noise
in this case), they will be counted as only a single pulse,
since the Cerenkov radiation emission time is much
shorter than the transit time in the photomultiplier.
We will shortly report on a series of photon counting
experiments carried out in the presence of ionizing ra-
diation that demonstrate the usefulness of the Neyman
type-A and Thomas distributions.?351 We mention the
image intensifier as another photon counting applica-
tion of the distributions discussed in Sec. II.

The mathematical properties of the Neyman type-A,
Thomas, and fixed multiplicative Poisson distributions
discussed in Secs. III and IV are very useful for the
study of the performance of systems. The permanence
under convolution of distributions with identical pa-
rameters a, «, or A facilitates their use in statistical
detection and estimation problems for signal and noise
distributions of arbitrary means.52 But it is the con-



vergence in distribution of the Neyman type-A and
Thomas to the Gaussian, demonstrated in Sec. IV, that
can simplify calculations enormously in many neural,
nuclear, and photon counting applications. In that
limit (@, « finite, W — =), as outlined at the end of Sec.
ITI, the Neyman type-A (Thomas) random variable with
arbitrary a{«) may be added together with any number
of arbitrary random variables that converge in distri-
bution to the Gaussian (e.g., Poisson, binomial, Neyman
type-A, Thomas) to yield an overall Gaussian random
variable with mean (n) = 2;{n;) and variance {(An)2?)
= Z;{(An;)?).

This is a powerful result because it means that the
entire statistical decision theory and estimation theory
literature relating to Gaussian random variables%3 can
be brought to bear on the problem. Some results that
follow immediately are single-threshold detection,>*
simple forms for expressing system performance and
system SNR,52-55 well-known solutions for estimation
problems,52 and a simple form for the just-noticeable
difference or detection law.5¢

As an interesting example of the convergence to the
Gaussian, we consider the design of a photon counting
photomultiplier star scanner for the guidance system
of a spacecraft exposed to intense ionizing radiation.
Quantities important to characterize the detection
performance and attitude accuracy for this kind of
system are error probabilities and the system SNR. To
carry our example further, we assume the absence of
atmospheric turbulence that would corrupt our starlight
signal, and we assume a counting time much greater
than the coherence time of the starlight. In this case
the signal will produce Poisson photon counts (mean
{ns)). Drawing on our earlier discussion of noise in
photomultiplier tubes in the radiation environment of
space, we may expect the (independent) dominant
sources of noise to be Neyman type-A counts from
v-induced fluorescence (driving mean {m., ), parameter
@), Thomas counts from charged-particle-induced
Cerenkov radiation and fluorescence (driving mean
(mg), parameter @), and thermionic emission Poisson
dark counts (mean (nq}). Using the usual definition
of the SNR for Gaussian random variables*!%% and
designating o, as the standard deviation of the noise
distribution, we obtain

{ns)
\/EO',—,
- (ns) v . (30)
V2[(1 4 @)aim,) + L+ 36+ a2 {mp) + (ng)]2
For a, @ > 1, and negligible dark counts, under the same
constraint of Gaussian signal and noise, Eq. (30) pro-
vides the very simple result
{n,)
SNR = T T 31)
A calculation of the exact error probabilities, espe-
cially when small, may be more difficult because they
are particularly sensitive to the validity of the Gaussian
approximation in the tails of the distribution.5? The
results obtained by Martin and Katti*2 and the use of

SNR =~

Chernov bounds and Monte Carlo simulations in the
manner of Personick et al.57 may be useful in this con-
nection. Aside from reporting on photon counting
experiments, we will carry out specific estimation cal-
culations for a’system similar to the star-scanner guid-
ance system envisioned for the NASA/JPL Galileo
mission scheduled to orbit Jupiter in 1988.58

The doubly stochastic Neyman type-A, Thomas, and
fixed multiplicative Poisson distributions will be useful
in photon, particle, and pulse counting when there is a
modulation of the driving-rate parameter. Three ex-
amples readily present themselves: (1) We have ex-
tended the neural counting model for visual psycho-
physics proposed by McGill®8 to the case of intensity
modulated radiation, leading to the doubly stochastic
Neyman type-A distribution.454¢ Experimental results
are consistent with this model.#>46 (2) Fluorescence
and Cerenkov radiation produced by the interaction of
a modulated relativistic electron beam with a material
will lead to doubly stochastic Thomas photon counts.
(3) The photon counting distribution at the output of
an image intensifier will be doubly stochastic Neyman
type-A if the incident optical radiation is modulated and
the counting time is long compared with the time scale
of the multiplication.

VIl.. Related Contagious Distributions Useful in
Photon Counting and Optical Communications

It has been pointed out in Sec. I that a broad variety
of contagious distributions may be constructed, al-
though to this point we have limited our discussion to
the simple and doubly stochastic Neyman type-A,
Thomas, and fixed multiplicative Poisson distributions.
In this final section, we explicitly mention a number of
more complex distributions particularly related to
photon, particle, and pulse counting. The reader is
cautioned, however, that whereas the simple Neyman
type-A, Thomas, and fixed multiplicative Poisson dis-
tributions are described by two parameters, many of
these more complex distributions require more than two
parameters for their specification.

Feller? and Rogers#® discuss the Poisson/binomial
distribution, which may be useful when not all daughter
events are included in a sampling interval. It has been
shown by Pielou®® and Gleeson and Douglas®® that
quadrat size (or sampling interval) and cluster spread
affect the estimation of parameters for these distribu-
tions. In general, the driving rate parameter is over-
estimated, whereas the multiplication parameter is
underestimated, as is intuitively expected. Clearly the
SNDP will provide a more realistic model here.3!:32

Another case of interest in particle and pulse counting
occurs when the mother-pulse distribution p(m|W) is
a dead-time-modified Poisson®1:62 rather than a Pois-
son. The primary process then exhibits self-excitation
in its own right. If the dead time is triggered by the
daughter pulses, however, the situation is more difficult,
although we have recently obtained results for the
time-interval probability density function3? and for the
count mean and variance.5!
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Finally, we explicitly consider two rather complex
contagious distributions useful in the design of practical
photon counting and optical communication systems.

Personicks3 considered the performance of a simple
binary direct-detection fiber-optic communication link
making use of a unilateral gain (single-carrier ioniza-
tion) avalanche photodiode. He assumed Gaussian
thermal noise statistics, zero dark count, and signal

statistics that are Poisson/shifted-Bose-Einstein which -

may be approximated by the Poisson/exponential for
large gain. This distribution arises in the limit of a
sequence of Thomas distributions driving Thomas
distributions (successive compounding of the Thomas).
This kind of nesting may be referred to as higher-order
clustering; in this framework, the simple Neyman
type-A and Thomas are first-order clustered. Per-
sonick made use of the Chernov technique with noise
alone to upper bound the false-alarm probability and
with signal plus noise to upper bound the miss proba-
bility. Fixing both of these probabilities at 102
(maximum-likelihood criterion), he calculated the
maximum mean number of detected photons per light
pulse required to achieve this performance. He inde-
pendently used a model consisting of Gaussian noise
statistics, Poisson dark counts, and fixed multiplicative
Poisson signal statistics to obtain a lower bound to the
required mean number of photons per pulse. In a
generalization of this first paper,® he considered
upper-bound results for two-carrier unequal ionization
probability avalanche photodiodes (e.g., Si), but the
calculations are considerably more complex. The signal
statistics can, nevertheless, be represented as a Poisson
photon-induced carrier distribution driving a random
gain-multiplication distribution substantially more
complicated than a shifted Bose-Einstein or exponen-
tial.57:65 Personick® also performed an analysis for the
twin-channel receiver (orthogonal signal format) in the

presence of dark counts and compared it with the sin-
gle-channel receiver when the incident photon statistics
are negative binomial. In a subsequent paper®” he and
his collaborators compared system performance cal-
culated on the basis of four distinct approaches: exact
computer calculation; Monte Carlo simulation, Chernov
bounds; and the Gaussian approximation, demon-
strating the usefulness of each.

Lachs®8 carried out a similar study for a binary di-
rect-detection optical communication system but as-
sumed that the detector was a nonideal photomultiplier
tube rather than an avalanche photodiode. He as-
sumed that the primary source of noise arose from in-
terfering chaotic radiation (Lorentzian spectral shape)
and also ignored dark counts. In this model, the input
photon distribution drives a cascade of stages, each
described by the Polya distribution. This leads to a
recursion relation; the lowest-order (one-stage) result
is described by a distribution very similar to the nega-
tive-binomial/Polya. Lachs presented performance
curves in graphical form for various system parameters,
assuming maximum-likelihood detection. Although
the high-gain photomultiplier tube is the instrument
of choice for photon-counting applications,*® it should
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be mentioned that under very specialized operating
conditions, avalanche photodiodes (e.g., Si just below
avalanche breakdown) can also be used for this purpose,
as demonstrated by Cummings and Lachs.t?” The
presence of intense ionizing radiation can lead to ex-
tensive damage in semiconductor devices, however.

As a closing note relating to radiation damage, it is
marvelous to consider that Neyman himself continues
to deal with important problems that make use of the
basic character of contagious distributions like the
Neyman type-A. He has, most recently with Puri,8
been exploring models that describe the damage to
living cells resulting from primary radiation particles
which generate clusters of secondaries that, in turn,
produce damage in the cell. In light of the discussion
in Sec. VI, this is a familiar application indeed.

Appendix: Explicit Calculation Demonstrating
Convergence in Distribution of Neyman Type-A and
Thomas to Gaussian

We begin with the Neyman type-A, for which
n—aW

" @i .
Since % is of the form
k=bn+ec, (A2)
it is clear that
Qr(t) = exp(ct)Qn (bt) (A3)

so that

_ _ (oW \12 t
Q'“(t)_exp[ (1+a) t]Q"([(Ha)aW]l/?)’ (A4

which, when combined with Eq. (2), yields

( aW )I/Zt
1+a ]

X exp(Wiexpla(et/lU+aeWI2 — 1)] — 1), (A5)

Qr (t) = exp

A Taylor expansion of the quantity [a(et/[1+@)aW]'/2
— 1)] provides
t[(A+a)aWl2 _ 1] = —at_.
[ale ] [(L+ a)aW]
P
2(1 + a)aW
at3
+ m +..., (AB)
so that

expla(ed0 - 1) = x| ]
aja

at?
.exp |——m—
2(1 + a)aW,

3
at ] (A7)

PN + @)a W

A further Taylor expansion of each factor above leads
to



at a2

adts
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Retaining all terms to order W3/2 in the denominator,
we obtain

L at?
et/i(1+a)aw]1/z D=1+ a .\
expla( ) [(1+a)aW]2 ' 21 + a)aW
a?t?
21+ a)aW
(I + 3a + a2)t3
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so that
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Hence
L ) aW )1/2 £2
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which, when substituted into Eq. (A4), yields

_ t2 (1+3a+a?)t?
Qe (t) = exp ot 6(1 + a)¥2a 1212 t ] ’
In the limit as a — 0, but (n) = ¢ W remains finite,
the moment generating function becomes

(A12)

2 t3
j{)m Qr(t) = exp [— + + ] » (A13)

c0‘<(n)<°° 2 6(1’1)1/2 o

which is identical to the Poisson result, as expected.
On the other hand, if a is fixed at any finite value and
the mean of the driving distribution W = {m) increases
without limit, the moment generating function is

identical to that for the standard normal random vari-
able:

nl/im Qr(t) = explt?/2]. (A14)
This result demonstrates that the Neyman type-A
converges in distribution to the Gaussian with mean aW
and standard deviation [(1 + a)a W]'/2,

The treatment for the Thomas distribution is similar.
Using Eqgs. (6) and (21), we consider the random vari-
able

__n-— 1+ a)W
[+ 3a + a2 W]12

Then, using Egs. (5), (A2), and (A3), the moment gen-
erating function is calculated to be

(A15)

Qu(t) = exp [_ (<_1+_°‘)2_VY_)”24

1+ 3a+ a?
¢ |

1+ 3a + )W)

ool
X exploaet/[I+3ata)Whi _ 1)) 1}) (A16)

In analogy with the development for the Neyman
type-A, it is easily shown that [see Eq. (A9)]

exp[a(et/[(l+3¢x+a2)wll/2 - 1)] =1+ ot
(1 + 3o + By W]L/2

1+ a)at?
21+ 3a+ o)W
1+ 3a+ a?)ars +
6[(1+3a+ W2 "7

(A17)

The calculation for the Thomas is a bit more involved
than that for the Neyman type-A because of the addi-
tional exponential factor in the generating function
[compare Eqgs. (A5) and (A16)]. Expanding it, we ob-
tain

[ t ] t
=1+
P [+ 30 + Ay W] (1 + 8a + a2 W]/2
R
2(1 + 3o + a2 )W
tB
+ ...
6[(1 + 3a + a2) W32 tee (A18)
so that
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(23
_ [+ )W 12 Lz (14 7a + 602 + o313 .
- (1 +3a+ a2) 5t 6[(1+ 30 + cR)22wi2 T (a19)
Thus
t _ 1+ a)2W )1/2 £
A {[(1 + 30+ a2)W]1/2) - e [(1 Taatal T3
1 +7a+ 602+ a3
6[(1 + 3 + a)|32Wi2 " }
(A20)
which, when combined with Eq. (A16), vields
_ t2 (1 + 7 +6a%+ ad)t?
Qu(t) = exp [2 o[0T s T e I (A21)

in analogy with Eq. (A12) for the Neyman type-A.
For a = 0, the moment generating function be-
comes
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2
lim Qu (¢) = exp [% ¥ (A22)
a—0

t3
SWir +.. ] ’
which is the Poisson form for the driving distribution.
This is as it should be, since there are only mother pulses
in the process in that case, and these have been assumed
at the outset to be Poisson distributed.

The more interesting case occurs when « is fixed at
any finite value, and the mean of the driving distribu-
tion W = (m) increases without limit; here the moment
generating function is again identical to that for the
standard normal random variable [see Eq (A14)]. Thus
the Thomas converges in distribution to the Gaussian
with mean (1 + ) W and standard deviation [(1 + 3«
+ a?) W] 1/2,
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