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Abstract
Heat shock proteins (HSPs) are a family of proteins produced by cells in response to exposure to stressful conditions. In addition
to their role as chaperones, they also play an important role in the cardiovascular, immune, and other systems. Normal bone tissue
is maintained by bone metabolism, particularly by the balance between osteoblasts and osteoclasts, which are physiologically
regulated by multiple hormones and cytokines. In recent years, studies have reported the vital role of HSPs in bone metabolism.
However, the conclusions remain largely controversial, and the exact mechanisms are still unclear, so a review and analyses of
previous studies are of importance. This article reviews the current understanding of the roles and effects of HSPs on bone cells
(osteoblasts, osteoclasts, and osteocytes), in relation to bone metabolism.

Keywords Heat shock proteins . Bonemetabolism . Osteoblasts . Osteoclasts . Osteocytes

Introduction

Bone metabolism

Bone tissue is a dynamic system that is controlled mainly by
three types of cells: osteoblasts, which form bone, osteoclasts,
which resorb bone (Raggatt and Partridge 2010), and

osteocytes, which are derived from osteoprogenitors, are the
most numerous cells in bone, representing 90–95% of the total
amount (Capulli et al. 2014). The osteocyte is an important
regulator of bone mass and a key endocrine regulator of phos-
phate metabolism (Dallas and Bonewald 2010). Osteocytes
not only synthesize sclerostin, which inhibits bone formation
by binding to LRP5/LRP6 co-receptors and blunting Wnt sig-
naling (Nakashima 2015), but also express a great amount of
RANKL (Nakashima et al. 2012) that drives bone resorption
(see Fig. 1). In addition, osteal macrophages near the bone
surface also play an important role in bone remodeling.
They create a regenerative microenvironment in the fracture
healing processes, construct a cellular canopy structure over
bone remodeling sites, coordinate osteoclast-to-osteoblast
coupling, and drive anabolic cytokines for bone formation
(Nakashima et al. 2012). Maintenance of bone homeostasis
requires tight collaboration between osteoclasts and osteo-
blasts, as well as between other cell populations and factors
present at bone-remodeling sites, which involve complex sig-
naling pathways (Sims andMartin 2014). Regardless of which
type of cell is dysfunctional, the bone system balance will be
perturbed, resulting in many metabolic bone diseases.

Multiple factors control the state of osteoblasts and osteo-
clasts. 1,25-Dihydroxy vitamin D formation from (inactive)
vitamin D is a critical point of control in bone metabolism.
Several hormones, including parathyroid hormone, growth
hormone, steroids, and calcitonin, as well as bone marrow-
derived membrane and soluble cytokines and growth factors
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are involved in these controls. Thus, a disorder of the extra-
cellular environment can also cause bone diseases, including
osteoarthritis (OA) and rheumatoid arthritis.

The heat shock protein family

Heat shock proteins (HSPs), also referred to as molecular
chaperones or cell stress proteins, are a family of proteins
produced by cells in response to exposure to stressful condi-
tions such as heat shock (Ritossa 1962), cold (Matz et al.
1995), UV (ultraviolet) light (Cao et al. 1999), during wound
healing or tissue remodeling (Laplante et al. 1998), and many
other environmental stress conditions. HSPs are found in vir-
tually all living organisms, from bacteria to humans. The ex-
pression of the HSPs is regulated by transcription factors
(Morimoto 1993; Sorger 1991). Based on their molecular
weights, HSPs are classified into different families, such as
HSP40, HSP60, HSP70, HSP90, HSP110, and small HSPs
(sHSPs) (Schlesinger 1990). Kampinga et al. (Kampinga
et al. 2009) provided a new nomenclature, classifying the
HSP family into seven groups, including HSPA (HSP70),
HSPB (small HSP), HSPC (HSP90), HSPD/E (HSP60/
HSP10), HSPH (HSP110), DNAJ (HSP40), and CCT (TRiC).

HSPs mainly function as intracellular chaperones for other
proteins. They facilitate the correct folding of newly synthe-
sized peptide chains to ensure the proper protein conforma-
tion, and they also prevent the aggregation of abnormal pro-
teins. HSPs can transport unfolded proteins across membranes

within the cell by partially stabilizing the proteins (Walter and
Buchner 2002; Julio and Carlos 2005). In cancer cells, where
they participate in oncogenesis and resistance to chemothera-
py, the expression of intracellular HSPs is abnormally high. In
addition to these essential intracellular functions, several mo-
lecular chaperones play an important role in communication
between cells. For example, in the cardiovascular system,
HSP90 binds both endothelial nitric oxide synthase and solu-
ble guanylate cyclase that in turn are involved in vascular
relaxation (Antonova et al. 2007). HSP70 forms a complex
with tumor-related antigens via its polypeptide-binding do-
main, to elicit greater antigen-specific immune responses
(Nishikawa et al. 2008). Moreover, HSPs may be involved
in binding protein fragments from dead malignant cells, to
present them to antigen-presenting cells via MHC class I and
class II molecules, leading to the activation of anti-tumor
CD8+ and CD4+ T cells. In addition, HSP-based vaccines
and small molecular inhibitors of HSPs have shown promise
as anticancer agents (Didelot et al. 2007). Clinical studies have
been carried out and are presently in progress, using HSP-
based anticancer vaccines or immunizing cancer patients with
autologous tumor-derived HSP-peptide complexes (HSPPCs)
(Ciocca et al. 2012).

Overall, HSPs may play important roles in some bone dis-
eases. The aim of this review is therefore to explore the rela-
tionship between the HSPs and bone metabolism, with in-
sights into novel ways to treat bone diseases (see Fig. 2,
Table 1).

Fig. 1 Bone tissue is a dynamic system that is drivenmainly by two types
of cells: osteoblasts, which promote bone formation, and osteoclasts,
which promote bone resorption. Aging osteoblasts will ultimately
undergo apoptosis or become osteocytes. Osteoblasts also influence
osteoclast formation through a paracrine manner. Osteoblasts can secret
macrophage colony-stimulating factor (M-CSF) that promotes osteoclast
proliferation and differentiation by interacting with its receptor c-Fms
expressed on the surface of pre-osteoclasts. Osteoblasts also regulate

osteoclast differentiation by RANKL/RANK/OPG pathway. Receptor
activator of nuclear kappaB ligand (RANKL) that is produced by osteo-
blasts can bind to its receptor RANK expressed by osteoclast precursors
and activate the fusion and differentiation of pre-osteoclasts into mature
osteoclast. Osteoblasts also produce another factor called osteoprotegerin
(OPG) which inhibits osteoclastogenesis and the subsequent bone resorp-
tion by binding to RANKL and avoiding its interaction with RANK
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HSPs and bone resorption

The HSP60 family and osteoclast/bone resorption

HSP60 is a mitochondrial chaperonin that cooperates with
HSP10 in the transportation and refolding of proteins from
the cytoplasm into the mitochondrial matrix. HSP60 aids in
the folding and conformation maintenance of approximate-
ly 15–30% of all cellular proteins (Ranford et al. 2000) to
enable cells to adapt to environment stress. HSP60 can also
be an immune modulator and biomarker (Quintana and
Cohen 2011), and can promote development of infections
caused by viruses (Wyzewski et al. 2018). HSP60 has been
implicated in cancer; however, there are different hypothe-
ses to explain the effects of positive versus negative expres-
sions of this protein (Cappello et al. 2006; Urushibara et al.
2007).

In 1995, the potent osteolytic activity of molecular chaper-
ones extracted from Escherichia coliwas reported in a murine
calvarial bone resorption assay (Kirby et al. 1995). To charac-
terize the effects of groEL (a lipopolysaccharide-free recom-
binant cpn60 of E. coli) on the formation of osteoclasts in
culture, Reddi et al. (Reddi et al. 1998) used 12-day cultures
of mouse bone marrow to assess osteoclast recruitment.
GroEL (1–1000 ng/mL) remarkably stimulated the formation
of TRAP multinucleated cells, as osteoclasts, that can secrete
various proteinases and seem to participate in cartilage de-
struction in a dose-dependent manner (Reddi et al. 1998).
Indomethacin, an inhibitor of cyclooxygenase, almost
completely abolished the osteoclast formation induced by
groEL. Lipopolysaccharide-low human recombinant
chaperonin 60 (HSP60) is a potent stimulator of the bone
resorption on murine calvarial bone, and that resorption acti-
vation of murine calvarial bone resorption by HSP60 is dose-
dependent over a range of 0.001–1 μg/mL (Meghji et al.
2003). The bone-resorbing activity of HSP60 is significantly
inhibited by both indomethacin and high concentrations of the
natural IL-1 antagonist, IL-1ra. The osteoclast inhibitor, oste-
oprotegerin (OPG), almost totally inhibits bone resorption in-
duced by HSP60.

The RANK/RANKL/OPG signaling pathway controls the
differentiation and activation of osteoclasts. In this system,
RANKL is expressed in several tissues and organs including
the following: skeletal muscle, thymus, liver, colon, small
intestine, adrenal gland, osteoblast, mammary gland epithelial
cells, prostate, and pancreas (Wada et al. 2006), and RANKL
binds RANK on cells of the myeloid lineage and functions as
a key factor for osteoclast differentiation and activation.
Osteoprotegerin is mainly produced by osteoblasts and is a
decoy receptor for RANKL, which inhibits the activation of
RANK-dependent pathways by competing for RANKL bind-
ing. Furthermore, bone resorption regulated by HSP60 may
involve the RANKL/RANK system. HSP60 causes osteoclas-
tic bone resorption via Toll-like receptor-2 (TLR-2) during
estrogen deficiency (Koh et al. 2009) that suggests that
HSP60 and TLR-2 may be novel mediators of estrogen
deficiency-induced bone loss.

However, controversial effects of HSP60 in bone resorp-
tion have been reported. Cpn60.1, one of two homologous
chaperonin (Cpn)60 proteins produced by Mycobacterium
tuberculosis, inhibits bone breakdown both in vitro, in murine
calvaria and in vivo, in experimental arthritis (Winrow et al.
2008).

The HSP70 family and osteoclast/bone resorption

HSP70s are a family of conserved, ubiquitously expressed
HSPs. The differences between several HSP70 proteins
expressed by eukaryotic organisms are slight (Tavaria et al.
1996). HSP70 can suppress aggregation, remodel folding
pathways, and regulate activity by protecting partially folded
structures as well as unfolded protein chains (Mashaghi et al.
2016). In addition to improving overall protein integrity,
HSP70 inhibits apoptosis by preventing recruitment of
procaspase-9 to the Apaf-1 apoptosome (Beere et al. 2000).

Heat shock 70-kDa protein 8 binds toMNSFb (a ubiquitin-
like protein) via noncovalent association, and double knock-
down of MNSFb and HSPA8 strongly inhibits RANKL-
induced osteoclastogenesis of Raw264.7 macrophage-like
cells. ERK1/2 and p38 phosphorylation and TNF-α

Fig. 2 Publications on bone metabolism, formation, resorption, and
HSPs. a The number of papers studying the role of HSPs in bone
metabolism in different periods. b The number of studies involved in

bone formation and bone resorption. c The number of various HSP
families in the studies involved in bone metabolism
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production induced by RANKL are also inhibited by the same
treatment, which suggests that the association between
MNSFb and HSPA8 may play an important role in
RANKL-induced osteoclastogenesis (Notsu et al. 2016).

The HSP90 family and osteoclast/bone resorption

HSP90 is a chaperone protein that assists other proteins to fold
properly, protects proteins from heat stress, and aids in the
degradation of proteins. HSP90 has been a target for cancer
therapy, because of its ability to stabilize numerous proteins,
including growth factor receptors, PI3K, and AKT, that are
required for tumor growth (Sawai et al. 2008; Lurje and Lenz
2009).

The role of HSP90 in osteoclastogenesis is also controver-
sial. In one study, SNX-2112, a selective HSP90 inhibitor,
potently inhibited osteoclast formation via downregulation
of ERK/c-fos and PU.1 in multiple myeloma and other hema-
tological tumors (Okawa et al. 2009). Multiple myeloma
overexpressed RANKL that activates osteoclasts and
Dickkopf WNT signaling pathway inhibitor 1 (Dkk1) that is
an antagonistic inhibitor of theWNTsignaling pathway that is
crucial for a correct bone mass achievement. Six hundred
nanomolars of another HSP90 inhibitor, 17-allylamino-17-
demethoxygeldanamycin (17-AAG), induced inhibition of os-
teoclasts in human marrow mononuclear cells (Francis et al.
2006). However, in studies on human breast cancer cell lines
and osteoclast progenitors, 17-AAG has been found to en-
hance osteoclastogenesis (Price et al. 2005; van der Kraan
et al. 2013). 17-AAG-enhanced osteoclast formation was
Hsf1 (heat shock factor 1, the major regulator of heat shock
protein transcription in eukaryotes)-dependent (et al. 2014).
HSP90 also functions as a chaperone of C-terminal Src kinase,
and inhibition of HSP90 promotes osteoclastogenesis through
Src kinase activation (et al. 2008). Furthermore, inhibition of
HSP90 activity by 17-AAG rescues glucocorticoid-induced
bone loss by enhancing osteogenesis (Chen et al. 2017).

HSP families and bone formation

HSP families, including the HSP70 and HSP90 families, the
collagen-specific chaperone HSP47, and cytosolic chaper-
ones, are differentially expressed during the process of endo-
chondral bone formation in a stage-specific pattern that
reaches very high levels during specific stages (Loones and
Morange 1998). Immunohistochemical analyses of the ex-
pressions of HSP27 in craniofacial development and osteo-
genesis have revealed that HSP27 is involved in specific re-
gional and temporal expressions during tooth development
(Leonardi et al. 2004).

The small HSP family and osteoblast/bone formation

Small HSPs have a subunit molecular weight of 12–43 kDa
and are characterized by highly conserved C-terminal do-
mains called the α-crystallin domain (Bakthisaran et al.
2015). They are classified into class I and class II (Taylor
and Benjamin 2005). Class I (HSP27, αB-crystallin, HSP20,
and HSP22) proteins display ubiquitous expression, whereas
class II (HSPB2, HSPB3, HSPB7, HSPB9, HSPB10, andαA-
crystallin) proteins exhibit a tissue-restricted pattern of expres-
sion. Among all sHSPs, HSP27 is the most widely studied
protein in bone metabolism. Like other sHSPs, HSP27, also
known as HSP beta-1 (HSPB1), is involved in chaperone
activity, thermotolerance, inhibition of apoptosis, and regula-
tion of cell development differentiation. High expression
levels of different phosphorylated HSP27 species may be cor-
related with muscle/neurodegenerative diseases and various
cancers (Sarto et al. 2000), and negatively correlated with cell
proliferation, metastasis, and resistance to chemotherapy
(Vargas-Roig et al. 1997).

In osteoblasts, heat treatment induces the expression of
HSP27, facilitated by extrogen (Shakoori et al. 1992;
Cooper and Uoshima 1994). Chemical stimulations such as
sodium arsenite (arsenite) and physiological regulators of
bone metabolism such as endothelin-1 (ET-1), prostaglandin
F2 alpha (PGF2 alpha), prostaglandin D2 (PGD2), prostaglan-
din E2, glucocorticoids, transforming growth factor-β
(TGF-β), and basic fibroblast growth factor may induce
HSP27 expression (Suzuki et al. 1996; Kawamura et al.
1999; Kozawa et al. 1999a; Kozawa et al. 1999b; Kozawa
et al. 2001a; Kozawa et al. 2001b; Hatakeyama et al. 2002;
Kozawa et al. 2002). Importantly, chemical stress is negatively
regulated by activation of protein kinase C (PKC) (Kozawa
and Tokuda 2002; Tokuda et al. 2002). In addition to p38
MAP kinase and p44/p42 MAP kinase, stress-activated pro-
tein kinase/c-Jun N-terminal kinase (SAPK/JNK) may also
play a role in ET-1- and PGF2 alpha-induced HSP27 in oste-
oblasts (Tokuda et al. 2003; Tokuda et al. 2004), and metho-
trexate may enhance PGD2-stimulated HSP27 induction
downstream from MAP kinases in osteoblasts (Yoshida et al.
2004).

TGF-β-stimulated HSP27 induction can be regulated by
Rho kinase via SAPK/JNK activation in osteoblasts
(Natsume et al. 2009; Kato et al. 2010). Rho kinase-
regulated PGD2 stimulates HSP27 induction in osteoblasts
via activation of both SAPK/JNK and p38 MAP kinase
(Kato et al. 2010). In addition, HSP27 induction is critical
for TGF-β-induced vascular endothelial growth factor
(VEGF) release in osteoblasts (Kato et al. 2011a). By contrast,
unphosphorylated HSP27 attenuates fibroblast growth factor-
2-stimulated VEGF synthesis in osteoblasts (Kondo et al.
2013). HSP70 inhibits TGF-β-stimulated VEGF synthesis in
osteoblasts, and this inhibitory effect occurs upstream of p38
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MAP kinase (Sakai et al. 2017). Regarding bone metabolism,
VEGF is necessary for the coupling of blood vessel invasion
and impaired trabecular bone formation, promoting the expan-
sion of the hypertrophic chondrocyte zone in the mouse tibial
epiphyseal growth plate (Gerber et al. 1999).

Unphosphorylated, but not phosphorylated, HSP27 has a
suppressive role in osteocalcin (OC) synthesis induced by
recombinant BMP-4 or T3 in osteoblast-like MC3T3-E1 cells
(Kato et al. 2011b). Osteocalcin is a hormone affecting repro-
duction and energy/insulin metabolism; however, its effect on
bonemineral is relatively minor. The activation of p38MAPK
or the cAMP-dependent protein kinase induces the phosphor-
ylation of HSP27 in MC3T3-E1 cells, so p38 MAPK and
cAMP-dependent protein kinase may act as regulators of OC
synthesis by fine-tuning HSP27-induced suppression in
osteoblasts.

Mineralization in osteoblast cells is enhanced by decreased
expression of OC induced by unphosphorylated HSP27. OC
is secreted solely by osteoblasts and is the most abundant
osteoblast-specific non-collagenous protein. OC has dual
roles in bone metabolism: it regulates bone remodeling by
modulating osteoblasts and osteoclast activity, and acts as a
regulator of bone mineralization (Neve et al. 2013). The inhi-
bition of OC in the regulation of bone matrix mineralization
has been reported in several studies (Menanteau et al. 1982;
Boskey et al. 1985; Romberg et al. 1986; Hoang et al. 2003;
Hunter et al. 1996). In a similar manner as a steady-state gel
system, OC inhibits the nucleation of hydroxyapatite in an
early stage of mineralization (Hunter et al. 1996). However,
there is controversy concerning the role of OC in bone forma-
tion. OC-deficient mice developed a phenotype with higher
bone mass and bones of improved functional quality, suggest-
ing that OC inhibits osteoblast bone formation (Ducy et al.
1996). However, OC also accelerates bone formation and re-
generation, based on the earlier and increased expression of
bone-specific matrix proteins and multifunctional adhesion
proteins such as osteopontin, bone sialoprotein, and CD44.
In addition, OC activates both osteoclasts and osteoblasts dur-
ing early bone formation, supporting the above observations
(Rammelt et al. 2005).

In addition to HSP27, other sHSP families also play an
important role in osteogenesis. HSP22 (HSPB8), interacts
with HSP27, negatively regulates the TGF-β-induced migra-
tion of osteoblasts by suppressing the activation of R-Smads
resulting from the downregulation of TGF-β receptor II pro-
tein expression in osteoblast-like MC3T3-E1 cells
(Yamamoto et al. 2016).

However, HSP22 has a close connectionwith the osteogen-
ic differentiation of cells. The osteogenic differentiation capa-
bility of dental pulp stem cells (DPSCs) is gradually reduced
during in vitro proliferation (Flanagan et al. 2017). However,
the expression of HSPB8 is significantly reduced during the
in vitro expansion of DPSCs when the cells lose osteogenic

differentiation potential. Furthermore, knockdown of HSPB8
in early-passage DPSCs results in a decrease in the osteogenic
differentiation potential of DPSCs.

Platelet-derived growth factor-BB (PDGF-BB) stimulates
the migration of osteoblast-like MC3T3-E1 cells, HSP27
functions as a negative regulator in the PDGF-BB-
stimulated migration of osteoblasts, and its suppressive effect
is amplified by the phosphorylation of HSP27 (Kainuma et al.
2017).

HSP22, HSP27, TGF-β, and PDGF-BB may be part of the
negative feedback system that controls the metabolism and
migration in the development and differentiation of
osteoblasts.

The HSP60 family and osteoblast/bone formation

In postmenopausal women, a series of changes occurs as a
result of decreased plasma estrogen levels. Plasma HSP60
levels are approximately 3.5-fold higher in postmenopausal
women (median, 1152.4 ng/mL; range, 724.7–2123.4 ng/
mL) than in premenopausal women (median, 316.3 ng/mL;
range, 164.6–638.4 ng/mL) (Kim et al. 2009). In vitro, exog-
enous HSP60 binds to cells via specific cell surface receptors,
including CD14 and TLRs (Ranford and Henderson 2002),
and that human HSP60 activates the Toll receptor-interleukin-
1 receptor signaling pathways that ultimately leads to activa-
tion of the NF-kappaB signaling pathway by binding TLR-2
and TLR-4 (Vabulas et al. 2001). In this system, HSP60 sig-
nificantly reduces cell viability and increases apoptosis in os-
teoblast lineages. On a molecular level, HSP60 increases
TLR-2 and TLR-4 expression, activates caspase-3 and
caspase-9 in the HS-5 hBMSC cell line, and increases the
release of mitochondrial cytochrome c into the cytosol. P38
and NF-kappaB are activated at the same time. Pretreatment
with blocking antibodies for TLR-2 and TLR-4 almost
completely eliminates the effects of HSP60 on apoptosis, cas-
pase-3, and caspase-9 activation, and the activation of NF-
kappaB and p38 MAPK. These results suggest that HSP60
induces TLR-dependent apoptosis in osteoblast lineages via
activation of p38 MAPK and NF-kappaB pathways. In
estrogen-deprived patients, osteoblast apoptosis has been ob-
served (Kousteni et al. 2002), and the degree of osteoblastic
apoptosis is an important determinant of bone formation in
postmenopausal osteoporosis (Manolagas and Birth and death
of bone cells: basic regulatory mechanisms and implications
for the pathogenesis and treatment of osteoporosis 2000).

However, the link between estrogen deficiency and HSP60
is still not definitive. Under conditions of estrogen deficiency,
the production of IL-1 and TNF-α increase (Cappello et al.
2006). Furthermore, in osteoclast lineages, IL-1 and TNF-α
stimulate the production and secretion of HSP60 and proin-
flammatory cytokines, and enhance the expression of HSP60
(Chen et al. 1999).
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HSP60 is expressed not only in mitochondria as a molec-
ular chaperone that assists protein folding, transport, and se-
cretion (Cappello et al. 2008), but also at the cell surface (Xu
et al. 1994; Soltys and Gupta 1997). Anti-citrullinated protein
antibodies (ACPAs) induce Saos-2 cells that are sarcoma os-
teogenic cells generated from human osteoblast apoptosis.
Citrullinated HSP60 (citHSP60), but not HSP60, inhibits
ACPA-mediated apoptosis (Lu et al. 2016). The HSP60 struc-
ture does not contain a significant stretch of hydrophobic res-
idues that could act as a membrane-spanning domain (Jindal
et al. 1989; Woodlock et al. 1997), while HSP60 could asso-
ciate with other cell membrane proteins, such as TLR4 or
α3β1 integrin, to facilitate cell signaling (Barazi et al. 2002;
Ohashi et al. 2000). HSP60 binds to TLR4 (Ohashi et al.
2000), and antibody blocking of TLR4 inhibits ACPA-
mediated Saos-2 cell apoptosis, suggesting that ACPA in-
duces Saos-2 cell apoptosis via binding to surface-expressed
citHSP60 through TLR signaling (Lu et al. 2016).

The HSP70 family and osteoblast/bone formation

HSP70 (200 ng/mL) increases alkaline phosphatase activity
and promotes human mesenchymal stem cell (hMSC) miner-
alization (Chen et al. 2015). Under osteogenic induction con-
ditions, HSP70 significantly upregulates the expression of
osteo-specific genes, such as the runt family transcription fac-
tors Runx2 and osterix. Microarray and pathway analyses
have revealed that HSP70 promotes osteogenesis of hMSCs
through activation of the ERK signaling pathway.
Downregulation of HSP70 impairs the osteogenic and
chondrogenic differentiation of hMSCs, as well as the en-
hancement of these processes by thermal treatment (Li et al.
2018). Overexpression of HSP family A member 1A
(HSPA1A), which encodes cognate HSP70, enhances osteo-
genic differentiation of BMSCs, partly through the Wnt/β-
catenin signaling pathway (Zhang et al. 2016).

The HSP90 family and osteoblast/bone formation

Mouse osteoblasts at day 3 of cell culture exposed to low-
intensity pulsed ultrasound (LIPUS) at a frequency of
3.0 MHz by 30 mW/cm2 for 15 min or to 42 °C heat shock
for 20 min upregulated expression of HSP90 and phosphory-
lation of Smad1 and Smad5 at 24 h. These treatments en-
hanced cell viability and proliferation at 24 h, while 10 days
after LIPUS (but not heat shock) stimulation, osteoblasts had
stronger mineralized nodule formation (Miyasaka et al. 2016).

HSPs and bone diseases

HSPs have been studied widely in bone diseases. In osteosar-
comas, HSPs or HSFs have already been targeted clinically to

treat solid tumors, based on their strong anti-tumor effects.
Recently, the discussion of type I collagen folding and related
diseases has been reshaped due to discoveries of severe bone
disorders in patients with deficiencies in several endoplasmic
reticulum chaperones (Makareeva et al. 2011). HSPs may also
become a promising therapeutic target in osteoarthritis.

HSPs and osteosarcomas

HSP72 was significantly overexpressed in osteosarcomas
compared to nonmalignant bone tumors, and HSP72-
positive osteosarcoma patients responded better to neoadju-
vant chemotherapy than HSP72-negative patients (Trieb
et al. 1998). HSP72 may regulate the interaction between T
lymphocytes and osteosarcoma cells in a specific group of
osteosarcoma patients expressing HSP72. Thus, induction of
HSP72 in osteosarcomas might lead to an increased immune
response and rejection of the osteosarcoma (Trieb et al.
2000a).

As mentioned before, HSP90 has been a target for cancer
therapy, because of its ability to stabilize numerous proteins.
For examples, sera samples from 20 high-grade osteosarcoma
patients were tested using an enzyme-linked immunosorbent
assay, and anti-HSP90 antibodies were found to correlate with
a better response to neoadjuvant chemotherapy (p < 0.01)
(Trieb et al. 2000b). 17-AAG, an HSP90 inhibitor, is quite
toxic and will cause severe bone loss. Other HSP90 inhibitors,
including AUY922 and STA-9090 (Ganetespib), also cause
bone-related adverse events such as bone pain and fractures in
clinical trials. HSF-1 limited the HSP90 inhibitor’s anti-cancer
activity by a feedbackmechanism (Chen et al. 2013), so HSF1
may be a new target to enhance HSP90 inhibitors’ activity in
human cancers. IHSF115, a new inhibitor targeting human
transcription factor HSF1, is cytotoxic for a variety of human
cancer cell lines, multiple myeloma lines consistently
exhibiting high sensitivity (Vilaboa et al. 2017). An increase
in anti-HSP60 antibodies is also seen at the time of the first
diagnosis of osteosarcoma (Trieb et al. 2000c).

In a drug-resistant cell line developed by repeatedly
treating the HOS human osteosarcoma cell line with zoledro-
nic acid, the expression of HSP27 was upregulated and its
resistance was inhibited by HSP27 silencing (Morii et al.
2010). Because of their important role in osteosarcoma, vari-
ous HSPs or anti-HSP products have been developed.
Numerous HSP products for treating solid tumors have
progressed to ongoing or completed clinical trials. These in-
clude HSPPC-96 (NCT00293423, phase II, brain and central
nervous system tumors), OGX-427 (NCT01120470, phase II,
c a s t r a t i on - r e s i s t an t p ros t a t e cance r ) , Vi t e spen
(NCT00003025, phase I, pancreatic cancer), IPI-504
(NCT00627627, phase II, breast cancer), SNX-5422
(NCT01892046, phase I , cancer ) , and v i tespen
(NCT00005628, phase II, soft tissue sarcoma).
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HSPS and osteoarthritis

Anti-HSP60 IgA is increased in the sera of OA patients
(Watanabe et al. 2003). Chondrocytes are more resistant to cell
death induced by monoiodoacetate, by overexpressing HSP70
(Grossin et al. 2006). Intra-articular injections of a reversible
proteasome inhibitor (MG132) induce local induction of
HSP70 that protects articular chondrocytes from cellular death
in a rat OA kneemodel induced by an anterior cruciate ligament
transection (Etienne et al. 2008). A combination of microwave
(MW) exposure and glutamine significantly enhances the ex-
pression of HSP70, and OA severity is significantly milder in
rat OA models (Fujita et al. 2012). Inhibition of HSP90 expres-
sion results in increased HSP70 synthesis, suggesting that
HSP90 limits HSP70 expression. In addition, an HSP90 inhib-
itor increases cartilage sulfated glycosaminoglycan levels even
beyond baseline, stimulates subchondral bone thickness, pro-
tects against cartilage degradation, and suppresses macrophage
activation (Siebelt et al. 2013).

Conclusions

HSP60 promotes osteoclast formation and induces TLR-
dependent apoptosis in osteoblast lineages via activation of
p38 MAPK and NF-kappaB pathways, so it is highly possible
that HSP60 also regulates proliferation by affecting the state
of osteoblasts. HSP70 both positively regulates osteoclastic
bone resorption via the RANKL/RANK pathway and pro-
motes osteogenesis through activation of the ERK and Wnt/
β-catenin signaling pathways. HSP90 induces the production
of osteoclast-associated genes such as PU.1 and c-fos to pro-
mote the formation of osteoclasts. A series of chemical and
physiological stimulations affect the production of sHSPs in
osteoblasts such as HSP27, regulating the differentiation of
osteoblasts (see Fig. 3).

Increasing numbers of HSP-based drugs such as HSP90 in-
hibitors have been clinically used to treat solid tumors, based on
their strong anti-tumor effects. In view of their extensive roles in
bone metabolism, HSP-based drugs are promising treatments
for bone diseases such as OA and osteoporosis. HSP90 inhibi-
tors are most widely studied in clinical trials due to their ability
of stabilizing numerous proteins that are important in many
diseases. However, the large number of client proteins of
HSPs means that compounds that bind them will have complex
effects. For example, HSP90 blockers usually induce a strong
stress response that limits their anti-cancer actions by HSF1.

Although numerous HSPs are involved in bone metabolism
and bone-related diseases, the actions of the various HSP fam-
ilies are different. HSP60 is most important for bone cell func-
tion, while sHSPs are the most common HSPs induced in bone
cells by drugs, hormones, or other stimuli. In spite of significant
progress in the field of HSPs, there are still important issues that
need to be resolved. The exact signaling pathways that mediate
the promoting function of HSP60 in osteoclasts via osteoblasts
are still not definitively known; neither are the reasons why
HSP90 has the opposite effects on osteoclasts. Additional stud-
ies need to better characterize the mechanisms discussed in this
review, to provide more effective, precise, and rational thera-
peutic strategies using HSPs.
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Fig. 3 The signaling pathways
involved in the regulation of
HSPs in bone metabolism.
HSP60 induces TLR-dependent
apoptosis in osteoblast lineages
via activation of p38 MAPK and
NF-kappaB pathways. HSP70
both positively regulates osteo-
clastic bone resorption via the
RANKL/RANK pathway and
promotes osteogenesis through
activation of the ERK andWnt/β-
catenin signaling pathways.
HSP90 induces the production of
osteoclast-associated genes such
as PU.1 and c-fos to promote the
formation of osteoclasts
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