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Interleukin-23 (IL-23) is a pro-inflammatory cytokine composed of two subunits, IL-23A

(p19) and IL-12/23B (p40), the latter shared with Interleukin-12 (IL-12). IL-23 is mainly

produced by macrophages and dendritic cells, in response to exogenous or endogenous

signals, and drives the differentiation and activation of T helper 17 (Th17) cells with

subsequent production of IL-17A, IL-17F, IL-6, IL-22, and tumor necrosis factor

α (TNF-α). Although IL-23 plays a pivotal role in the protective immune response

to bacterial and fungal infections, its dysregulation has been shown to exacerbate

chronic immune-mediated inflammation. Well-established experimental data support

the concept that IL-23/IL-17 axis activation contributes to the development of several

inflammatory diseases, such as PsA, Psoriasis, Psoriatic Arthritis; AS, Ankylosing

Spondylitis; IBD, Inflammatory Bowel Disease; RA, Rheumatoid Arthritis; SS, Sjogren

Syndrome; MS, Multiple Sclerosis. As a result, emerging clinical studies have focused

on the blockade of this pathogenic axis as a promising therapeutic target in several

autoimmune disorders; nevertheless, a greater understanding of its contribution still

requires further investigation. This review aims to elucidate the most recent studies

and literature data on the pathogenetic role of IL-23 and Th17 cells in inflammatory

rheumatic diseases.
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REVIEW

Interleukin-23
Interleukin-23 (IL-23) is a member of the IL-12 cytokine family composed of the IL-23p19
subunit and the IL-12/23p40 subunit, the latter shared with IL-12, encoded by genes located on
chromosomes 12q13.2 and 11q1.3, respectively (1–3).

IL- 23 is mainly secreted by activated macrophages and dendritic cells (DCs) located in
peripheral tissues, such as skin, intestinal mucosa, joints and lungs (4–6).

Despite the protective role played by the IL-23/IL-17 axis against bacterial and fungal
infections, extensive knowledge supports the contribution of its dysregulation in triggering chronic
inflammation and autoimmunity, providing a solid substrate for the development of several
autoimmune diseases like PsA, Psoriasis, Psoriatic Arthritis; AS, Ankylosing Spondylitis; IBD,
Inflammatory Bowel Disease; RA, Rheumatoid Arthritis; SS, Sjogren Syndrome; MS, Multiple
Sclerosis (3, 7–10) (Table 1).

The main role of IL-23 is to induce the differentiation of αβ T CD4+ naïve cells (Th0 cells) in T
helper type 17 (Th17 cells) (11, 12), which are considered pivotal players in autoimmunity (1, 9).
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TABLE 1 | Therapeutic agents in rheumatic diseases.

SpA PsA SS SLE RA Target

Secukinumab x x Ongoing trials Ongoing trials Ongoing trials IL-17a

Ixekizumab x x Ongoing trials IL-17a

Brodalumab Not approved Not approved IL-17R

Bimekizumab Ongoing trials Ongoing trials IL-17a, IL-17f

Netakimab Ongoing trials IL-17a

Ustekinumab Not approved x Ongoing trials IL-12, IL-23

Guselkumab Not approved x Not approved IL-23

Apremilast Not approved x PDE4

Tofacitinib Ongoing trials x x JAK1-JAK3 (JAK2)

Baricitinib x JAK1-JAK2

Upatacitinib Ongoing trials x JAK1

Filgotinib Ongoing trials JAK1

Rituximab Off label Off label x CD-20

Tocilizumab Not approved x IL-6R

SpA, Spondyloarthritis; PsA, Psoriatic Arthritis; SS, Sjogren Syndrome, SLE, Systemic Lupus Erhytematosus; RA, Rheumatoid Arthritis.

Although IL-12 and IL-23 are both members of the IL-12
family and have a similar structure, the role of these two cytokines
in Th0 differentiation is totally different (13, 14); indeed, unlike
IL-23, IL-12 induces differentiation of Th0 cells into T helper
type 1 (Th1 cells) rather than into Th17 (Figure 1) (15–19). Both
cytokines are produced by DCs and the balance of IL-12 and IL-
23 production is controlled by prostaglandin E2 (PGE2), which
promotes inflammatory responses (20, 21).

IL-12 and IL-23 act as a bridge between the innate and
adaptive arms of the immune response (22). IL-12, produced
by antigen presenting cells (APCs), is essential for the optimal
proliferation and production of cytokines by Th1 cells in
response to antigens. Overall, IL-12-induced IFN-γ is an effective
activator of the antimicrobial functions of phagocytes and plays a
critical role in resistance to many pathogenic bacteria, fungi and
intracellular parasites (23).

Regarding the IL-23/IL-17 axis, γδT cells and innate lymphoid
cells (ILCs) constitutively express the IL-23 receptor (IL-23R),
suggesting their prompt first-line response to IL-23, followed
by cytokine secretion and subsequent activation of the adaptive
immune response. Moreover, since Th0 cells do not express IL-
23R, they require prior stimulation with transforming growth
factor β (TGF-β), IL-6 and IL-21 to become responsive to IL-
23 (24–29).

In response to IL-23-mediated activation, αβ T cells, γδ T cells
and ILCs produce IL-17, IL-22, TNF-α, and interferon-gamma
(IFN-γ); in addition, IL-23-activated γδ T cells make αβ T cells
refractory to the suppressive activity of regulatory T cells (Treg)
and they also prevent the conversion of conventional T cells into
FOXP3+ Treg cells in vivo (30).

IL-23 Receptor
The IL-23 receptor (IL-23R) is a heterodimeric receptor
composed of 2 subunits: IL-12Rβ1, in common with the
IL-12 receptor (IL-12R) and IL-23Rα, specific to IL-23
signaling (31).

Therefore, T cells lacking IL-12Rβ1 cannot respond to IL-12
nor IL-23. Conversely, IL-23Rα-deficient T cells cannot respond
to IL-23, while maintaining IL-12 signaling capability (32). IL-
23Rα and IL-12Rβ1 chains are expressed on T cells, natural killer
(NK) T cells, monocytes/macrophage and DCs (33).

The intracellular pathways require different signaling
proteins: JAK2, Janus kinase 2; TYK2, tyrosine kinase 2; STAT3,
STAT4, signal transducer and activator of transcription 3 and 4
(34, 35).

Specifically, IL-12Rβ1 binds to TYK2 inducing STAT4
phosphorylation which is essential for increasing IFN-γ
production and subsequent Th1 cells differentiation. Instead,
IL-23Rα interacts with JAK2, inducing STAT3 phosphorylation
and leading to the upregulation of retinoid-related orphan
receptor gamma tau (RORγt), crucial for the development of
Th17 cells (19, 31, 36, 37).

Once activated, STATs homodimers translocate into the
nucleus, where they bind to DNA in the promoter region of target
genes, acting as downstream effectors in the IL-23/IL-12 signaling
pathway (38, 39).

Finally, the evaluation of IL-23 functions in vivo in different
mouse models supports the hypothesis that IL-23 may act in
both lymph nodes and peripheral tissues to drive terminal
differentiation of effector Th17 cells in vivo, promoting Th-17-
mediated inflammation. Confirming these observations, in the
absence of Il-23, Th17 cells experience “arrested development”
leading to impaired function (40).

Interleukin-17A
Interleukin-17A (IL-17A) is the first described member of the
IL-17 cytokine family, which includes six members, IL-17A to
IL-17F (41, 42).

Many IL-17A-producing cells have been reported, including T
CD8+ cells (43), γδ T cells (44), and NK T cells (45); however,
according to current knowledge, T CD4+ cells (Th17) are the
major source of IL-17.
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FIGURE 1 | Schematic image of the cascade of cytokines and transcription factors involved in the differentiation of Th1 and Th17 cells. IFN-γ, interferon-γ; IL,

interleukin; RORγt, retinoid-related orphan receptor γt, STAT, signal transducer and activator of transcription; GATA, GATA transcription factor; TGF-β, transforming

growth factor β, Th, T helper.

Although IL-23 has mainly been identified as the initiating
factor for IL-17 expression from T cells (9, 46), Th0 cells do not
constitutively express IL-23R, but they are still sensitive to IL-
23 (47); in this context, it is reasonable to assume that IL-23R
expression on these cells can be induced in the presence of other
pro-inflammatory cytokines (48, 49).

Several findings clearly demonstrated that TGF-β and IL-6
are sufficient for Th17 differentiation in vitro and in vivo, in the
absence of IL-23 (50–53).

Therefore, TGF-β, IL-6, and IL-21 seem to activate T
lymphocytes and promote the initial differentiation of Th0 into
Th17 cells, conferring responsiveness to IL-23 (50, 51, 54–
60), which is a crucial step for Th17 cells stabilization and
expansion (61).

Conversely, increased TGF-β levels coupled with the absence
of inflammatory cytokines inhibit Th17 differentiation (62), as
well as the common inhibitors of Th17 commitment (IFN-γ,
IL-4, IL-25, IL-27) (54–56, 63–67).

Finally, IL-17-producing cells have been shown to express a
wide range of heterogeneous cytokines such as IL-17A, IL-17F,
IL-26 (62), and other proinflammatory mediators including IL-
22, IL-21,IL-6, TNF-α, granulocyte colony-stimulating factors
(GM-CSF), and chemokines (e.g., CCL20, CXCL8, CXCL1,
CXCL10) (9).

IL-17 Receptor
IL-17 receptor (IL-17R) is expressed on many cell types,
including epithelial cells, B and T cells, fibroblasts, monocytic
cells, and bone marrow stroma (68).

IL-17 signaling activates nuclear factor κB (NFκB) activator
adaptor protein (ACT1), which in turn acts on mitogen-
activated protein kinases (MAPKs), including p38MAK (69),
c-jun N-terminal kinase (JNK), extracellular signal-regulated
kinase (ERK), Janus kinase (JAK), signal transducer and activator
of transcription (STAT), phosphoinositol 3 kinase (PI3K)
and induces several pro-inflammatory cytokines (IL-1β, IL-6,
TNF-α, CCL2), antimicrobial peptides (β-defensin), and matrix
metalloproteinases (69–71).

In health conditions, IL-17 is one of the main contributors
to the host defense against microbial infections (68, 72–74). Of
note, the IL-17 pathway regulates antifungal immunity, in human
and mice, inducing upregulation of proinflammatory cytokines,
antimicrobial peptides and neutrophil-recruiting chemokines,
which lead to limit fungal overgrowth (75).

Historically, CD4+ T cells have been involved in protecting
against Candida albicans infection were found in Human
Immunodeficiency Virus (HIV) positive patients (76, 77).

Subsequently, Th17 subset was identified as CD4+ T cells with
reactivity to Candida albicans (37, 78).

Moreover, ex vivo studies on human T cells demonstrated
that Candida albicans triggers Th17 cells which produce IL-
17 and IFN-γ, but not IL-10. On the contrary, Staphylococcus
aureus–activated Th17 cells produce IL-10, which can limit the
immune system responses. These different responses could derive
from the presence, in the priming phase, of different cytokine
environments induced by each microbe (79).

The specific role of IL-17 in protection against the fungus
Candida albicans was confirmed by evidence that IL-17RA
deficient mice or mice and humans with defects along the IL-17
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FIGURE 2 | Pathogenesis of IL-17-correlated disease and different targets of therapy. IFN-γ, interferon-γ; IL, interleukin; Th, T helper; TNF-α, Tumor necrosis factor.

signaling pathway, were susceptible to systemic Candida albicans
infection (80–83).

Major roles of IL-17 include the promotion and initiation of
chemotaxis and the recruitment and activation of neutrophils
in inflamed tissues (71, 84, 85). Among its pleiotropic effects,
the enhancement of angiogenesis (86) and the tissue remodeling
through the production of angiogenic factors and matrix
metalloproteases are worthy of note (87). IL-17 works in synergy
with TNF-α causing release of the IL-6, TNF-α, and IL-1β, in
order to amplify the multifaceted and complex inflammatory
process (88).

Consistently, increased serum and tissue levels of IL-17 have
been widely reported in inflammatory condition such as IBD,
MS, and arthritis, compared to a non-pathological setting where
IL-17A levels are extremely low or undetectable in human sera
(Figure 2) (3, 10, 89–92).

Ankylosing Spondylitis (AS)
Ankylosing Spondylitis (AS) is the prototypical subset of
SpA characterized by a predominant axial involvement (93).
As a result, sacroiliitis is the clinical hallmark of disease
and its identification through the most sophisticated imaging
techniques, such as high-field magnetic resonance imaging
(MRI), is extremely important in order to achieve an early
diagnosis that can prompt a rapid treatment administration.
The new classification criteria published by the Assessment in
Spondylo-Arthritis international Society (ASAS) in 2009 have
included MRI as the gold standard technique to identify active
sacroiliitis, consisting in bone marrow oedema and osteitis, even
in patients that have not developed radiographical signs of disease
(94). According to these criteria, the presence of alterations (both
in standard radiography or MRI) coupled with clinical, genetic
and laboratory data, allow the classification of AS patients into

radiological axial SpA (r-axSpA) or non-radiological axial SpA
(nr-axSpA) (95).

New bone formation, determined by chronic inflammation
involving the spine, leads to vertebral ankylosis, severe chronic
pain and disability as major consequences of disease progression.

The beginning of the inflammatory process in AS relies on a
complex, multifactorial interplay between genetic, epigenetic and
environmental factors associated with a dysregulated immune
response. The current understanding of AS pathogenesis suggests
that the IL-23/IL-17 axis acts as the major driver in disease
development, even if type 17 response could not entirely elucidate
the mechanisms behind this rheumatic disease (96).

Genetics and epigenetics play a pivotal role in the pathogenesis
of AS; siblings of AS patients have a higher risk of developing
the disease and a high degree of concordance in twins is
observed, 50–63% in monozygotic and 13–20% in dizygotic
twins, respectively (97). The strongest genetic association is
with the allele human leukocyte antigen B27 (HLA-B27) of the
Major Histocompatibility Complex-I (MHC-I) gene, located on
chromosome 6 (98).

Several theories have emerged to explain the possible
pathomechanism related to HLA-B27, AS starting, and
subsequent dysregulated activation of the IL-23/IL-17 axis
via Th17 cells (99). Modifications in the shape of HLA-B27
affect the protein binding domain impairing both the antigen
presentation process and the correct folding of the HLA-B27
molecule (100). The altered binding domain may lead to the
presentation of self-peptides to cytotoxic CD8+ T cells that in
turn give rise to a pathological autoimmune response (101). On
the other hand, the unfolded protein response (UPR) theory
postulates that unconventional HLA-B27 variants homodimerize
instead of heterodimerize; the misfolded proteins accumulate
in the intracellular compartment triggering endoplasmic
reticulum stress and increasing IL-23 production (102). In
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fact, heterodimers expressed on APC surface directly interact
with cell receptors on a wide range of immune cells such as
NK, monocytes, B cells and promote a significant impact on
Th17 stimulation (103). In particular, the aberrant expression
of the allele of the HLA B 27 in spondylitis, could act by
binding cells that contain a natural killer receptor for HLA B
27 homodimer, named killer cell immunoglobulin-like receptor
3DL2 (KIR3DL2), determining IL-17 production (104).

HLA-B27 alone accounts for almost the 25% of AS heritability
and genetic-wide association studies (GWAS) have identified
multiple genetic loci linked to disease pathogenesis (105, 106).
In particular, single nucleotide polymorphisms (SNPs) in genes
coding for aminopeptidases expressed in the endoplasmic
reticulum (ER), such as ERAP1 and ERAP2, were identified
in the past decade. These proteins trim peptides in the ER so
that these molecules get to the right length, usually between
8 and 10 amino acids, to be presented by MHC-I molecules
(107). Mutations in ERAP enzymes are supposed to lead to the
formation of the so called “arthritogenic peptide” which, through
mechanisms related to molecular mimicry, triggers immune cells
to react against self-antigens located at joint and enthesal sites
(108). ERAP1 and HLA-B27 effects are linked in an epistatic
way, meaning that ERAP1 mutation effects are only observed in
HLA-B27 positive patients (109).

SNPs directly affecting the IL-23/IL-17 axis were described in
AS and further stress the importance of this pathway. The most
relevant are located in the genes coding for IL-23R and STAT3
and TYK2, which are downstream targets of IL-23 signaling
(110, 111).

However, it is not entirely clear how this polymorphism is
responsible for pathogenesis, but this probably alters the amino
acid sequence of the intracellular portion of IL-23R, and it could
have a secondary regulatory function; indeed, protective alleles
have also been identified in IL-23R, and some studies have
detected polymorphisms in the IL-23R as a strong protective
genetic factor (112).

The fundamental role played by the IL-23/IL-17 axis comes
from several lines of evidence depicting a clear increase in
IL-23 and IL-17 levels in the sera of AS patients (113). This
observation is coupled with the increased number of Th17 cells in
peripheral blood from AS patients (114). In this regard, the most
intriguing and recent theories suggest that the interface between
environment and immune system in AS can be represented by
the gut epithelial barrier, where IL-17A exerts its functions in
maintaining mucosal immunity and barrier functions (115). The
intimate relationship between the articular disease and the gut
is underlined by the detection of subclinical inflammation in
up to 70% of AS patients on endoscopic examination, as well
as on histological samples (116) and in about 10% of these
occurs a clinical IBD suggesting a pre-clinical stage of IBD (115).
Even bone marrow oedema in sacroiliac joints was correlated to
gut inflammation, as emerged from the analysis of the Ghent
cohort (117).

At gut level the huge number of adherent and invading
bacteria, known as human microbiota, may be perturbed leading
to both quantitative and qualitative alterations that affect the
integrity of the gut-epithelial and vascular barriers in accordance

with the “joint-gut axis theory” (118). The “leaky gut” allows the
translocation of bacteria-derived peptides and primed immune
cells to the interstitium and then to the bloodstream, eliciting a
systemic abnormal inflammatory response. The derangement of
the gut interface has been related to the alteration of the tight
junction system and an increase in zonulin level was retrieved
both in gut epithelium and peripheral blood (119). In AS patients
dysbiosis was evidenced in comparison to healthy individuals
and increased level of IL-23 are found in patients’ gut and in
particular in the terminal ileum (120). Several cell populations
involved in epithelial immunity and joint/enthesal inflammation,
such as Th17, ILC, γδ T cells, and mucosa-associate invariant T
(MAIT) cells, as well as cells involved in mucosal homeostasis,
such as Paneth cells, produce IL-23 at intestinal level. ILC3
are expanded in gut and differentiate upon IL-17 and TNF-α
stimulation becoming an important source of IL-23 and IL-17
(121). Among the intraepithelial lymphocyte (IEL) compartment
γδ T cells are the most represented population, accounting for
approximately the 50% of IEL; on the other hand, they represent
only the 3–5% of circulating T cells. Once activated with IL-
23 these cells produce IL-17 (44). Their number was found
increased in gut and γδ T cells obtained from AS patients show
hyper-responsiveness to IL-23, due to IL-23R hyper-expression,
with consequent discharge of higher amount of IL-17 when
stimulated (122).

According to the gut-joint axis theory the intestinal activation
of different immune cell subsets, among the ones above
described, followed by their recirculation in blood may lead
to their final localization in joint and enthesis where the
inflammatory process is carried out. Intestine seems to be the
major site of IL-23 production and is also the site where it
acts most. Even gut- derived IL-17 producing ILC3 were found
expanded at bone marrow, joint and peripheral blood level. ILC3
are also characterized by a significant expression of an integrin
that regulates intestinal T cells homing, called α4β7. Moreover,
the receptor of this integrin (named MADCAM1) was found
upregulated in the gut and in bone marrow of AS patients,
suggesting a chemoattraction process of ILC3 at inflammation
site (121). Cuthbert et al. described resident γδ T cells at spinal
enthesis where they contribute to IL-17 production in both IL-
23 dependent and independent ways. In fact, a subpopulation of
these cells lacking IL-23R was proven to produce IL-17 (123).
In addition, IL-17 producing MAIT cells were found elevated
in AS patients both in blood and synovial fluid (124, 125).
To add more pieces to the already complex puzzle of IL-17
producing cells, a new population of CD8+ T cells able to
produce IL-17, named Tc17 cells, was described and was found
increased in both peripheral blood and synovial fluid of AS
patients (126). Other possible sources of IL-17 that deserve
deeper investigation are tissue-resident memory T cells (TRM),
mast cells and CD3−CD56+NK cells (127, 128). In axial tissues
IL-23 producing cells are macrophages and DC while IL-17
sources are myeloid cells as neutrophils (129, 130).

Animal models have supported the actual knowledge on the
role of the IL-23/IL-17 axis, even if human disease appears
far more complex and no animal model can comprehensively
elucidate it. Transgenic HLA-B27 rat model was used to
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demonstrate the importance of the HLA-B27, gut microbiota and
Th17 cells in the pathogenesis of SpA (131). These rats, grown
in germ free condition do not develop SpA (132). Several mice
models even exist and have contributed to the unraveling of the
pivotal role played by IL-23 and IL-17 in activating T cells and
driving disease development via type 17 immunity (133).

Taken together, the above resumed evidence underlines
the importance of this axis in inducing and sustaining the
multifaceted inflammatory process depicted in SpA, making it a
central therapeutic target.

Advances in understanding the pathogenesis of SpA have
prompted the development of biologic drugs designed to inhibit
the IL-23/IL-17 axis. In fact, for more than 15 years, TNF-α
inhibitors were the only biologic treatment available and, despite
an initial great success in SpA management, it came out clearly
that almost 40% of patients failed to reach a significative response.
The new therapeutic agents interfering with the IL-23/IL-17 axis
can be divided into monoclonal antibodies directly targeting
IL-17, IL-23 or their receptors and small molecules inhibiting the
intracellular pathways triggered by these cytokines (134).

Among monoclonal antibodies targeting IL-17, Secukinumab
and Ixekizumab, respectively a fully human monoclonal IgG1/k
antibody and a humanized IgG4 monoclonal antibody, are the
only two molecules already marketed for SpA.

The MEASURE trials demonstrated the superiority of
Secukinumab against placebo in providing sustained efficacy in
relieving signs and symptoms of AS as well as in granting a good
retention rate, as demonstrated in the 5-years extension study
(135, 136). In the 2-years follow up in the MEASURE 1 trial no
radiographic progression was evidenced in the 80% of patients
included (137).

Ixekizumab was licensed for r-axSpA treatment in 2019
and for nr-axSpA in 2020, the COAST-V trial demonstrated
a superior response rate in ASAS40 score at week 16 over
placebo (138).

Several trials aimed to assess the therapeutic value of other
IL-17 inhibitors, such as Netakimab and Bimekizumab, are
currently ongoing (139, 140). The randomized controlled trial
on Brodalumab, a humanized IgG2 monoclonal antibodies that
binds IL-17R was discontinued because of the occurrence of high
suicide ideation in the active group (141).

Up to date, no IL-23 targeting drug has been proven effective
for AS (142, 143).

New treatments for AS are small molecules inhibitors that
target intracellular proinflammatory pathways, as those triggered
by cytokine stimulation. Among targeted synthetic DMARDs
(tsDMARDs), JAK-inhibitors stand out as the most promising
treatment (144). In particular, Tofacitinib, a pan-JAK inhibitor,
Filgotinib and Upadacitinib, both JAK1 inhibitors, were shown
to be superior to placebo in axSpA (145–147).

The inhibition of PDE4 through the small molecule
Apremilast failed to achieve the primary end-point in the
specifically designed phase 2 trial including 490 AS patients (148).

Future perspectives to implement the therapeutic
options for AS patients include broader anti-inflammatory
approaches with multi-cytokine blockade to overcome
the inhibition of a single pathway, for example targeting

simultaneously TNF-α and IL-17, as in an ongoing study in
PsA (149).

Psoriatic Arthritis
Psoriatic arthritis (PsA) is a chronic, immune-mediated,
inflammatory disease dominated by a heterogeneous phenotype
that mainly affects peripheral and axial joints, entheses, skin,
and nails, leading to juxta-articular new bone formation, bone
erosions and abnormal keratinocyte proliferation (31, 150).

Interactions between genes and environmental triggers,
including infections, trauma, stress, obesity and smoking are
recognized as crucial for the onset of the autoimmune process
in PsA. Furthermore, the disruption of the gut microbiota
composition in PsA patients is supported by consolidate evidence
(151, 152).

The main effector cells of the inflammatory cascade, both in
joints and in plaques of patients with PsA, are DCs, macrophages,
NK cells (153, 154), mast cells, neutrophils (155, 156), γδ T cells
(157), T CD4+ and T CD8 + cells.

All the ones above described have a predominant IL-17
secretory phenotype (41, 158), defined by the production of
cytokines such us IL-17, IL-22, and TNFa; however, T CD4+ cells,
as the major source of IL-17, are considered the cornerstone in
the pathogenesis of psoriasis (157, 159).

Specifically, DC-derived cytokines, IL-23 and IL-12, drive the
differentiation of distinct Th17 and Th1 cells, which are known
to be implicated in the pathogenesis of PsA. Activated T cells
move from the circulation to the target organs, and chronic
inflammation occurs in the skin and joints.

Accordingly, increased numbers of Th17 cells were detected
in the blood and affected skin of patients with psoriasis and in
the blood and synovial fluid of patients with PsA. Furthermore,
the assessment of the expression of IL-23, IL-17, and their
related receptors in psoriatic skin lesions and inflamed synovium
supports the concept of IL-23/IL-17 axis as a driving force of
immune inflammation in psoriasis (160–164) PsA synovitis is
characterized by significant infiltration of mononuclear cells, T
and B cells, vascular proliferation and hyperplasia of synovial
lining cells, similar to the pathological changes observed in RA
(165). Additionally, ectopic lymphoid tissues were frequently
found in PsA synovial membrane with microanatomical features
for germinal center formation, capable of antibody production
(166). The role of B cells in PsA is still elusive; a recent study
reported that autoantibodies against a peptide sharing sequence
homology with skin and entheseal autoantigens were detected in
85% of patients with PsA (167).

Several findings have clearly demonstrated the influence of IL-
17 on bone metabolism. Despite the direct effects of IL-17 on
osteoclasts, induction of osteoclastogenesis is mediated by the
production of matrix metalloproteinases bymacrophages and the
activator of the NF-κB ligand receptor (RANKL) presented by
osteoblasts (168–170).

Skin lesions from patients with psoriasis exhibit epidermal
hyperplasia and infiltration with neutrophils, T CD4 + and T
CD8 + cells, B cells, dendritic cells and mast cells, type 3 innate
lymphoid cells (ILC3) and γδ T cells (171–174).
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In contrast, IL-22, totally absent in synovial tissue, is highly
expressed in entheses, where it promotes entheseal and periosteal
bone formation through STAT3 activation, explaining the
formation of enthesophyte and juxta-articular bone, hallmarks
of PsA (175, 176). In skin lesions IL-22 drives keratinocyte
hyperproliferation via STAT3 signaling (177) and prompts
epithelial cells to release chemokines, such as IL-8 (178, 179),
a key factor in neutrophil recruitment in psoriatic lesions and
stimulates keratinocytes to secrete antimicrobial peptides (180,
181), preventing skin lesions from becoming infected (182).

In inflammation, Th17 cells also produce interleukin 9 (IL-9),
which in turn induces the differentiation of Th17 cells and
potentiates the suppressive effect of regulatory T lymphocytes
via activation of STAT3 and STAT5. Our group demonstrated
that IL-9 overexpression and T helper type 9 (Th9) polarization
occur in the synovial tissue and peripheral blood of PsA patients.
Furthermore, clinical improvement after treatment with TNFi
and ustekinumab was associated with a significant reduction in
circulating Th9 cells (183, 184).

Up to date, a wide range of therapeutic approaches have
been proposed for PsA, depending on disease severity, including
disease-modifying anti-rheumatic drugs (DMARDs) such as
methotrexate; anti-tumor necrosis factor α (anti-TNF-α) agents,
phosphodiesterase 4 (PDE4) inhibitors, IL-17 and IL-12/IL-23
inhibitors (185, 186).

The central contribution of IL-23/IL-17 axis in both PsA and
psoriasis is confirmed by the efficacy of biologics neutralizing
IL-17 or IL-23/IL-12 (187) as well as the effectiveness of TNF-
α inhibition dependent on down-regulation of IL-17 pathway
genes (188–190).

To date, several monoclonal antibodies have been approved
for the treatment of PsA and can be introduce following
the failure of non-steroidal anti-inflammatory drugs (NSAIDs)
and/or conventional DMARDs, or an anti-TNF-α agent.

Ustekinumab is a human IgG1 monoclonal antibody that
binds to the p40 subunit, shared with IL-12 and IL-23, and blocks
downstream events of both the IL-12 and IL-23 signaling cascade
through inhibition of IL-12Rβ1 binding (191). Ustekinumab has
produced consistent and sustained clinical efficacy in two phase
three clinical trials in PsA, PSUMMIT-1 and PSUMMIT-2, with
data out to 52 weeks, and no new safety signals. PSUMMIT-1
included patients with active PsA despite conventional therapy
who were all naïve to anti-TNF-α agents, whereas PSUMMIT-2
also included anti-TNF-α experienced patients (192).

Secukinumab, is a human IgG1κ monoclonal antibody that
binds to IL-17A neutralizing its interaction with IL-17 receptors.
It is currently approved in several countries for the treatment of
PsA (193) and, in two phase 3 trials FUTURE1 and FUTURE
2, secukinumab has provided sustained improvements in disease
signs and symptoms, assessing reduced radiographic progression
in patients with active PsA through 2 years of therapy (194).

Ixekizumab is a humanized IgG4 monoclonal antibody
targeting IL-17A, approved for the treatment of moderate-
to-severe plaque psoriasis, active PsA, and active AS. Two
phase three trials (SPIRIT-P1 and SPIRIT-P2) demonstrated
that treatment with ixekizumab improved joint and skin disease
compared to placebo (195, 196).

In addition, the SPIRIT-H2H study confirmed the superiority
of ixekizumab over adalimumab in patients with Psa and
inadequate response to csDMaRDs (197).

Over the past decade, the development of Janus kinase
inhibitors (JAK inhibitors) has emerged as a new therapeutic
option in autoimmune diseases, including PsA. The rationale of
their use is suggested by the observation that the blockade of JAK
receptor downregulates the production of the cytokines (TNF-α,
IL-17, IL-6, IL-23) involved in the pathogenesis of PsA.

Tofacitinib is an orally administered inhibitor of
predominantly JAK1 and JAK3, with functional selectivity
to JAK2, used for the treatment of RA. Interestingly, its efficacy
in managing treatment-resistant disease and ameliorating
enthesitis, dactylitis, and radiographic progression has been
reported. Consistently with previous observations, Tofacitinib
could provide an alternative approach for PsA patients with
inadequate response to DMARDs (198, 199).

Finally, Guselkumab, a monoclonal antibody targeting IL-23
via IL-23 p19 subunit, was recently approved for the treatment
of PsA in adults with an inadequate response or intolerance to
DMARDs therapy. Results for the use of Guselkumab derive
from phase three clinical trials, DISCOVER-1 and DISCOVER-2,
which demonstrated significantly better clinical and radiographic
outcomes among PsA patients treated with the IL-23 inhibitor
compared with placebo group.

Participants treated with Guselkumab achieved 20%
improvement in American College of Rheumatology (ACR)
response criteria at week 24 at rates of 52% in DISCOVER-1 and
64% in DISCOVER-2, whereas placebo-treated patients had rates
of 22 and 33%, respectively (200, 201).

Rheumatoid Arthritis (RA)
Rheumatoid arthritis (RA) is a systemic autoimmune disease
that primarily affects synovial joints, accompanied by systemic
inflammation and production of autoantibodies (202).

The synovitis in RA is characterized by an inflammatory
infiltrate, consisting of leukocytes such as T and B cells,
macrophages, granulocytes and dendritic cells, together with a
synovial milieu dominated by proinflammatory cytokines and
chemokines (203).

For a long time, RA was considered a Th1 dependent disease,
until a significant amount of research in RA patients and
experimental mouse models suggested that Th17 cells may play
a central role in the pathogenesis of RA.

IL-17 is involved in both early and established RA disease,
promoting activation of fibroblast-like synoviocytes (FLS),
osteoclastogenesis, recruitment and activation of neutrophils,
macrophages and B cells (204).

Synergism between IL-17 and TNF-α has been shown to
activate the production of pro-inflammatory mediators, such as
IL-1β, IL-6, IL-8, PGE2, and matrix metalloproteinases (MMPs),
promoting progression of early inflammation toward a chronic
arthritis (205, 206).

The differentiation of osteoclasts is induced significantly in
the presence of IL-17 either directly (207), or indirectly, through
upregulation of RANKL.
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By the late 1990s studies had already shown that IL-17
expression had increased in the joint of RA patients compared
to healthy individuals or osteoarthritis (OA) patients (89).

More recently, an increased proportion of chemokine receptor
CCR6+ Th17 cells has been described in the peripheral blood
of treatment-naive patients with early RA (208), and higher
frequencies of Th17 cells have been detected in the synovial
compartment of RA patients, compared to OA patients (209).

Moreover, Th17 cells were associated with clinical parameters,
such as disease activity score 28 (DAS28), C-reactive protein
(CRP) levels and presence of anti-citrullinated protein antibodies
(ACPAs), highly specific for RA (210, 211).

Direct evidence obtained from experimental mouse models
confirms the critical role of the IL-23/IL-17 axis in the
pathogenesis of arthritis. IL-23p19-deficient (Il23a−/−) mice
were protected against the development of collagen-induced
arthritis (CIA), a mouse model of RA. IL-17-producing CD4+ T
cells were absent in the Il23a−/− mice despite normal induction
of IFN-γ-producing CD4+ Th1 cells (212).

Interplay between IL-23 and IL-17 production may be a
critical immune pathway and a potential therapeutic target for
a range of inflammatory arthritis.

Antibodies against IL-17 (Ixekizumab and Secukinumab) or
IL-17R (Brodalumab) have been tested in RA patients (213–216).
In a phase I RCT of RA patients treated with oral DMARDs,
the addition of Ixekizumab improved RA signs and symptoms
and disease activity scores such as DAS28, compared to placebo
(213). This improvement was confirmed in a phase II study in
which Ixekizumab was administered to patients who were naive
to biological therapy or resistant to TNF-α inhibitors (217).

In a phase II study enrolling RA patients with inadequate
response to methotrexate, greater decreases in DAS28 were
observed with Secukinumab than with placebo (214).

Furthermore, patients with active RA who did not respond to
DMARDs showed improvements after long-term treatment (52
weeks) with 150mg of Secukinumab, with ACR50 rates increased
from 45% to 16 to 55% at week 16 at week 52 (215). Conversely,
Brodalumab showed no evidence of clinical benefit in RA patients
in a phase Ib study (213).

In addition, the efficacy of Ustekinumab, a human anti-
IL-12/23 p40 monoclonal antibody and human anti-IL-23
monoclonal antibody, Guselkumab, has been evaluated in
patients with active RA not responsive to methotrexate therapy.
However, no significant clinical improvement was recorded
compared to the control group (218).

Recently, the double blockade of IL-17 and TNF-α has
been studied using ABT-122, a variable double domain Ig
that targets human TNF-α and IL-17 (219). A phase II
study showed that there was no significant difference in the
ACR20 response at week 12 by the double inhibition of IL-
17 and TNF-α compared to treatment with only anti-TNF-
α (220). Lastly, double blockade of IL-17A and IL-17F using
Bimekizumab in RA patients with inadequate TNF-α response
resulted in a greater reduction in DAS28-CRP at week 20
compared to anti-TNF-α inadequate response plus placebo
group (221).

Sjögren’s Syndrome (SS)
Sjögren’s syndrome (SS) is a systemic autoimmune disease
characterized by the lymphocytic infiltration into the
exocrine glands, mainly salivary and lacrimal glands, and
other tissues (222).

The role of the adaptive immune system in the pathogenesis
of SS is supported by the presence of ectopic germinal centers
in almost 25% of the patients, which promote local expansion
of antigen-specific B cells, production of autoantibodies and
hypergammaglobulinemia, as well as increased risk of developing
non-Hodgkin lymphoma (NHL) (223, 224).

In this regard, the interaction between CD4+ T cells and
B cells appears to be a key step in the development of the
disease (222).

Although SS has historically been considered a Th1-driven
disease, subsequent studies have revealed that, in addition to Th1
cells, several subgroups of CD4+ T cells are involved, follicular T
helper cells (Tfh) and Th17. In healthy subjects, Th17 cells play an
important role at mucosal barriers and are involved in immune
responses. In SS, Th17 cells may be activated by dendritic cells
in lymph nodes draining the salivary and lacrimal glands by
the production of cytokines as TGF-β and IL-23. In the later
phases of the disease, naïve T cells can also be polarized locally
in Th17 cells by APC and cytokines as IL-6 and TGF-β (225). IL-
23 production bymacrophages is also important for maintenance
and expansion of Th17 cells by STAT3 activation (226). The
main effector cytokines of Th17 cells are IL-17 and IL-22. Recent
studies reported that IL-17 protein andmRNA are present within
lymphocytic infiltrates of minor salivary gland (MSG) tissue of
SS patients.

Furthermore, IL-17 mRNA levels in MSG biopsies were
related to the degree of inflammation (226–228).

Along with IL-17, the expression of IL-23 and IL-22 was also
increased in the inflamed salivary glands of SS patients. IL-17
and IL-22 secretion in the exocrine glands promote inflammation
and the induction of matrix metalloproteinases which may cause
acinar damage (229).

Moreover, the presence of Th17 cells in SS infiltrate has been
hypothesized to be crucial in B cell activation and formation of
germinal centers within glands (230).

The IL-23/IL-17 axis also plays a role in the symptoms
development, as confirmed by the increased levels of IL-17 and
IL-6 protein and mRNA in tears and saliva from SS patients
compared to non-SS controls. Additionally, the expression
of Th17-associated cytokines correlated with ocular surface
parameters, such as Schirmer I Test, break up time (BUT) and
corneal fluorescent staining (CFS) (231).

A recent study showed that serum IL-17F levels were
significantly increased in SS patients and were associated with
high levels of autoantibodies and increased EULAR SS disease
activity index (ESSDAI), compared to IL-17A, suggesting the
possibility of several pathogenetic roles played by different IL-17
family members (232).

The role of the IL-23/IL-17 pathway in the pathogenesis of
SS has been also supported by data from animal models. In
C57BL/6.NOD-Aec1Aec2 mouse, a model of spontaneous SS,
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genetic ablation of IL-17 reduced lymphocytic infiltration and
restored glandular function, especially in female animals (233).

In addition, adoptive transfer of Th17 cells induced the
development of experimental SS (ESS) in immunized IL-17
knockout mice (234).

Even if Th17 cells are themain source of IL-17 in SS, γδ T cells,
NK cells, ILCs and CD8+ T lymphocytes can also produce IL-
17 (68). However, recent evidence has shown that CD4− CD8−

(double negative, DN) T cells and mast cells can also participate
in local IL-17 production in SS (235).

Rituximab treatment demonstrated a significant reduction in
IL-17 expression in the salivary glands of SS patients, while
factors that are important for maintenance of Th17 cells, as
STAT3 and IL-23, are likely not affected (228).

Despite the increase in Th17 cells in SS is well-established, data
on the amount of T reg cells are still controversial. Th17 and Treg
cells are counter-regulated. IL-6 promotes Th17 differentiation
by inhibiting T reg generation (51), while IL-2 acts in the opposite
way (236). Since reduced IL-2 levels could underline Th17
upregulation (237), the effects of administration of recombinant
IL-2 have been studied in SS. Reduction of glucocorticoid and
Hydroxychloroquine (HCQ) in patients treated with IL-2 and
restored Th17/Treg balance have been reported (238).

Regarding IL-6 inhibition, as the IL-6 signaling is important
for the IL-17 cells differentiation, an effect of tocilizumab on Th17
cells is probable. However, the results of a randomized placebo-
controlled study showed that Tocilizumab had no impact on
the main symptoms of SS, although improvements in joint
involvement were observed (239).

Long-term efficacy of Ustekinumab, a human monoclonal
antibody directed against the p40 protein subunit shared by
IL-12 and IL-23, in a patient suffering from psoriasis and SS
has been recorded on both the cutaneous and joint component
(240). However, the inhibition of IL-17 achieved by systemic
administration of Secukinumab did not affect the severity of the
dry eye (241). Given the pilot role of the IL-23/IL-17 axis in SS
pathogenesis, further investigations are needed to confirm the
selective blockade of Th17-associated cytokines as a potential
therapeutic target.

Systemic Lupus Erythematosus (SLE)
Systemic lupus erythematosus (SLE) is a prototypic systemic
autoimmune disease with multiple immunological abnormalities
including dysregulation of both T and B lymphocytes and
production of autoreactive antibodies directed toward nuclear
self-antigens, with immune complex formation and tissue
damage (242). A wide number of cytokines is involved in disease
pathogenesis. Recently, the role of the IL-23/IL-17 axis has
emerged in SLE and has been investigated either in humans or
mice. Higher serum levels of IL-17 and IL-23 as well as increased
number of Th17 cells has been demonstrated in patients with
SLE compared with healthy controls (243, 244). Moreover, T
cells that express IL-17 were found within infiltrates in kidney
biopsies of patients with active lupus nephritis and significant
proportion of these cells are double negative (DN) T cells,
which are also expanded in the peripheral blood of patients
with SLE, produce significant amounts of IL-17 and contribute
to the disease pathogenesis (245). In a murine model of lupus,

Zhang et al. detected DN T cells expressing high levels of IL-
17A in the kidneys of mice with active nephritis. Interestingly, the
lymphocytes isolated from these lupus-prone mice progressively
express higher levels of IL-23 receptor as their disease worsens.
Treating these lymphocytes in vitro with IL-23, they induce
nephritis when transferred to non-autoimmune, control mice.
Additionally, the kidneys of these recipient affected mice showed
significant Ig and complement deposition in the glomeruli. This
finding suggests that IL-23 also promoted an autoimmune B cell
response. These data added to previous evidence indicate that DN
T cells provide excessive help to B cells, resulting in abnormal
production of pathogenic autoantibodies in SLE (246).

Consistently with previous findings, Chen et al. found that
circulating Th17 frequency correlated with SLE activity, in
particular with Systemic Lupus Erythematosus Disease Activity
Index (SLEDAI) and histological activity index in 24 lupus
nephritis (LN) patients (247).

The link between IL-23/IL-17 axis and LN is also supported
by the observation that high serum levels of IL-23 and IL-17 at
baseline predict an unfavorable histopathological response and
British Isles Lupus Assessment Group (BILAG)-non-responders
had high IL-23, indicating that a number of LN-patients has a
Th-17 phenotype that may influence response to treatment.

In addition to LN, high serum levels of IL-23 and Th17
cells are closely related to other SLE manifestations, including
vasculitis, serositis, lymphopenia, central nervous system and
cutaneous involvement and the production of autoantibodies
(antinucleosome antibodies, antiphospholipid antibodies, and
anti-SS-B/La antibodies) (244, 248–250).

Taken together, these findings suggest that Th17 cells are a
promising therapeutic target for SLE.

Previous studies have shown that Hydroxychloroquine
(HCQ), an essential drug for the treatment of SLE, can inhibit
Th17 cell differentiation and production (251).

In a phase two trial of 102 adult patients with active SLE,
the addition to standard-of-care treatment of Ustekinumab, a
human IgG1k monoclonal antibody targeting both the IL-12
and IL-23 cytokines, resulted in better efficacy in clinical and
laboratory parameters than placebo. In particular, 37 (62%) of
60 patients in the Ustekinumab group and 13 (33%) of 42
patients in the placebo group achieved a SLE disease activity
index 2000 responder index-4 (SRI-4) response (difference 28%,
p= 0.006) (252).

Few data are available in literature about the anti-IL-17A
antibody (Secukinumab). A case of 62-year-old female who
presented with psoriasis vulgaris and refractory lupus nephritis
successfully treated with Secukinumab was reported. Further
studies are needed to test the efficacy of drugs targeting.

CONCLUSION

This review provides an overview of the critical role played by
the IL-23/IL-17 immune axis in a wide variety of inflammatory
processes, and summarizes the current knowledge on cytokine
milieu that regulates IL-17-producing cells. The growing body
of evidence on the relevance of this intricate pathway in
autoimmunity has allowed the implementation of treatment
options in pathological conditions.
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However, further studies are needed to clarify the complexity
of IL-17 signaling, in order to allow the discovery of new potential
therapeutic targets of inflammatory processes and the availability
of cutting edge therapies designed on patients not responsive to
standard treatments.
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