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Abstract

Purpose of review—A major goal in repopulating hematopoietic stem cell (HSC) gene 

therapies is achieving high-efficacy gene transfer, while maintaining robust HSC engraftment and 

differentiation in vivo. Recent studies have documented that rapamycin treatment of HSC during 

lentiviral vector transduction enhances gene transfer to human and mouse HSCs and maintains 

engraftment capacity. In this review, we place into context the role of mammalian target of 

rapamycin (mTOR) pathways in HSC quiescence and function, endocytic regulation, and lentiviral 

gene delivery.

Recent findings—Lentiviral vector transduction of human and mouse HSCs is considerably 

enhanced by rapamycin treatment. Furthermore, rapamycin preserves long-term engraftment of 

human and mouse HSCs. Investigations of cellular mechanisms that contribute to increased 

transduction in HSCs uncovered a role for mTOR inhibition-dependent activation of endocytosis.

Summary—Rapamycin enhances lentiviral vector transduction of HSCs through regulation of 

endocytic activity via mTOR inhibition. An important attribute of rapamycin treatment during 

transduction is the preservation of HSC function, allowing reconstitution of long-term 

hematopoiesis in vivo in murine models.
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INTRODUCTION

A long sought-after holy grail in the field of hematopoietic stem cell (HSC) gene therapy is 

a method for highly efficient lentiviral vector transduction that does not impair in-vivo 

reconstitution potential of HSCs following human transplantation. Although modest 

lentiviral vector transduction efficiency of 15–25% has been reported in HSCs in the 

absence of cytokine activation, this level may not be sufficient for clinical use [1,2]. Various 

strategies have been demonstrated or proposed for improving transduction efficiency in 

HSCs, including small-molecule approaches such as proteasome inhibitors, PGE2, SR1, and 
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pyrimidoindole derivatives, and genetic approaches such as knockdown of the p21 protein 

[3–7]. However, most of these methods are still in early-stage preclinical investigation, and 

none has yet been translated to clinical usage, due to treatment-associated cytotoxicity or 

cumbersome genetic manipulations of HSCs. Recently, we and others made the intriguing 

discovery that the clinically used drug rapamycin, an inhibitor of the mammalian target of 

rapamycin (mTOR) kinase, greatly enhanced lentiviral transduction efficiency in human and 

mouse primitive HSCs, with very little detrimental, or even beneficial, effects on the 

engraftment and reconstitution potential of HSCs [8▪▪,9,10▪,11]. We uncovered the 

involvement of an unconventional and little-studied aspect of mTOR signaling – regulation 

of the endocytic pathway – in the enhancement of lentiviral transduction by rapamycin. 

Here, we review recent literature on the role of mTOR signaling in HSC function, mTOR 

regulation by rapamycin in hematopoietic cells, and the connection between mTOR 

signaling and the endocytic pathway that may inform the mechanistic basis of improved 

lentiviral vector transduction.

MAMMALIAN TARGET OF RAPAMYCIN SIGNALING PATHWAY

The mTOR kinase is a central molecule that coordinates cellular energy sensing pathways 

and metabolic flux. Studies in yeast, drosophila, and mammalian cell lines have allowed 

extensive mapping of the mTOR signaling pathway (reviewed in [12]). mTOR is regulated 

upstream by the phosphotidylinositol-3-kinase (PI3K) pathway, which plays a major role in 

promoting cell growth and proliferation. PI3K activity results in the phosphorylation and 

activation of protein kinase B (PKB or AKT). AKT in turn phosphorylates many cellular 

targets that are important in cell growth and survival, including the tuberous sclerosis 

complex (TSC). TSC is a negative regulator of mTOR; thus, inhibition of TSC by an active 

PI3K/AKT leads to activation of mTOR. The phosphatase and tensin homolog (PTEN) 

negates the action of PI3K and is a negative regulator of mTOR (Fig. 1).

Mammalian target of rapamycin is the active kinase subunit of two complexes, mTORC1 

and mTORC2, which carry out nonredundant functions. The functions of mTORC1, which 

is conventionally thought to be rapamycin-sensitive, are much better mapped out. The 

mTORC1 complex is characterized by the presence of the protein Raptor. The most well 

studied downstream actions of mTORC1 include activation of protein translation through 

phosphorylation of ribosomal S6 kinase (S6K1) and eukaryotic initiation factor 4E binding 

protein (4E-BP1), and inhibition of autophagy. The mTORC2 complex is characterized by 

the presence of Rictor, and is traditionally thought to be rapamycin-insensitive. A well 

defined mTORC2-specific downstream effect is phosphorylation of AKT at Ser473 [13,14]. 

Thus, mTORC2 positively regulates signaling of the AKT/mTOR axis.

REGULATION OF MTORC1 AND MTORC2 BY RAPAMYCIN

Although rapamycin is extensively used as a canonical mTORC1 inhibitor, its use comes 

with a few important caveats. Firstly, rapamycin does not completely inhibit mTORC1, its 

canonical target, in mammalian cells, with a number of rapamycin-insensitive mTOR 

downstream processes such as 4E-BP1 phosphorylation and autophagy [15–18]. Rapamycin 

allosterically inhibits mTORC1 through binding to the adaptor protein FKBP12. 
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Rapamycin– FKBP12 does not bind mTORC2, which is traditionally believed to be 

insensitive to inhibition by rapamycin. However, since rapamycin–FKBP12 does bind free 

mTOR, prolonged rapamycin treatment (>24 h) impairs mTORC2 turnover by sequestering 

free mTOR [19]. In addition, different concentrations of rapamycin have been reported to 

differentially modulate mTORC1 and mTORC2, with high concentrations in the micromolar 

range inhibiting mTORC2 assembly [20]. Thus, the interpretations of studies reporting 

autophagy induction and function in hematopoietic cells in which micromolar 

concentrations of rapamycin were utilized may be confounded by the effects of mTORC2 

induction [21,22].

For lentiviral vector transduction enhancement in HSCs, the inhibition of mTOR by 

rapamycin or other active site inhibitors is required, but it is unknown which mTOR 

complex is involved, or the downstream molecular events that regulate function following 

inhibition [8▪▪]. The effective rapamycin concentration for HSC transduction enhancement 

is in the micromolar range, concentrations at which mTORC2 inhibition may be invoked 

[20]. Supportive of a potential mTORC2-dependent mechanism, we found no evidence for 

the involvement of autophagy, an mTORC1-specific cytoprotective pathway. Although 

autophagy may contribute to certain aspects of lentiviral transduction of HSCs, such as the 

kinetics of intracellular trafficking of vector particles, it does not appear to affect the stable 

gain of transduction efficiency that results from rapamycin treatment.

ROLE OF MAMMALIAN TARGET OF RAPAMYCIN IN HEMATOPOIETIC 

STEM CELL QUIESCENCE

Mammalian target of rapamycin complexes play a central role in the regulation of cellular 

energy sensing and response pathways, which are particularly important for the function of 

primitive stem cells. Consistent with observations in other cell types, inhibition of mTOR 

exhibits a general effect in promoting HSC quiescence, and inappropriate activation leads to 

HSC proliferation, depletion, and oncogenic transformation, discussed in detail below.

EFFECT OF MAMMALIAN TARGET OF RAPAMYCIN ACTIVATION

The PI3K/AKT pathway, through regulation of mTOR, plays a key role in HSC quiescence. 

Over-activation of mTOR, either through increased AKT signaling [23], or depletion of 

negative regulators of mTOR, including PTEN, TSC, and PML, leads to HSC proliferation 

and depletion, as well as myeloproliferative disease [24–27]. Phenotypes associated with 

activation of AKT, depletion of PTEN, TSC, or PML, are reversed by rapamycin treatment, 

demonstrating involvement of mTOR [23,24,26,27]. Furthermore, HSC aging is associated 

with mTOR activation, and activating mTOR through TSC depletion in young mouse HSCs 

mimics an aged phenotype, which is corrected by rapamycin [28].

Mechanistically, mTOR activation may impact HSC quiescence by three potential 

mechanisms: increasing the amount of reactive oxygen species, as in the case of TSC 

depletion [26,29]; limiting fatty acid oxidation [30]; or deregulating the rate of protein 

synthesis, as in the case of PTEN depletion [31▪]; all three are detrimental for HSC 

maintenance (Fig. 1). Furthermore, the effect of mTOR activation on production of reactive 
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oxygen species may be mediated by repression of autophagy, as depleting Atg7 also leads to 

accumulation of mitochondria and generation of reactive oxygen species, and consequently 

proliferation and exhaustion of HSCs [32].

EFFECT OF MAMMALIAN TARGET OF RAPAMYCIN INHIBITION

The effect of mTOR inhibition on HSC function has been studied through pharmacological 

or genetic means. Rapamycin specifically reduced expansion of common myeloid 

progenitors (Lin+CD34+), but not primitive HSCs (Lin−CD34+) or lineage committed 

progenitors (Lin+CD34−) [33]. The different effects of rapamycin on primitive and 

progenitor cells may be due to different propensities for autophagy induction, as mouse 

HSCs are more prone to autophagy induction relative to myeloid progeny, due to the action 

of the transcription factor FOXO3A [34]. A similar mechanism may also underlie different 

rapamycin sensitivities of HSCs from different sources, as HSCs show augmented 

autophagy following G-CSF-mediated mobilization [35].

In recent years, generation of mouse models with conditional ablation of Raptor and Rictor 

has allowed specific examination of the functions of mTORC1 and mTORC2 complexes in 

hematopoiesis. Neither complex is essential for normal HSC maintenance under homeostatic 

conditions [36,37], but does affect differentiation of various downstream progenitors. While 

not essential in homeostatic hematopoiesis, mTORC1 is required for HSC regeneration 

following transplantation [36]. Inhibition of mTORC1 through Raptor depletion causes 

pancytopenia and skewing of hematopoiesis toward myelomonocytic lineages through 

impaired granulocyte and B-cell development, but does not affect proliferation of 

hematopoietic and myeloid progenitors [36,38,39]. Both mTORC1 and mTORC2 contribute 

to T-cell lymphopoiesis, but at different stages. Depletion of Raptor inhibits early T-cell 

development at the DN1 stage, whereas depletion of Rictor impairs development at the DN3 

stage [39,40]. Interestingly, rapamycin blocks T-cell development at the DN3 stage, similar 

to the effect of Rictor depletion and distinct from the effect of Raptor depletion, suggesting 

that rapamycin may act to modulate mTORC2 [39]. The action of mTORC2 in 

hematopoiesis seems to specifically affect T-cell lymphopoiesis, as Rictor depletion does 

not affect the function of HSCs or development of B cell, erythroid, or myeloid lineages 

[37,40]. Depletion of either Raptor or Rictor protects from PTEN loss evoked 

leukemogenesis, indicating the involvement of both mTORC1 and mTORC2 in abnormal 

hematopoiesis in response to a hyperactive AKT pathway [36,37]. Of note, PTEN inhibits 

mTORC2 signaling in adult, but not neonatal HSCs, highlighting important differences in 

mTOR pathway regulation in HSCs of different origins that may be relevant to HSC 

transduction [37].

CONNECTION BETWEEN HEMATOPOIETIC STEM CELL QUIESCENCE AND 

TRANSDUCTION

Regulation of HSC quiescence is a key aspect in HSC transduction protocols, due to the 

need to maintain stem cell functions such as homing, engraftment, and reconstitution for 

subsequent transplantation following lentiviral vector transduction. However, in addition to 

its intrinsic importance, regulation of quiescence may be mechanistically linked to lentiviral 
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vector transduction efficiency. It has long been shown that the ability to transduce HSCs 

with lentiviral vectors is dependent on the cell activation state, as HSCs and progenitor cells 

need to exit G0 and progress to G1 to allow efficient transduction [41]. Accordingly, several 

strategies that improve lentiviral vector transduction in HSCs also affect cell cycling status. 

Rapamycin causes cell cycle delay in HSCs, consistent with previous studies [8▪▪]. 

Fibronectin, commonly used to enhance HSC lentiviral vector transduction, may also be 

implicated in HSC maintenance [42–44]. Silencing of the p21 protein leads to ex-vivo 

expansion of HSCs and decreases the fraction of HSCs in G0, and also increases lentiviral 

vector transduction efficiency [7,45]. However, we showed that rapamycin-mediated 

lentiviral vector transduction enhancement occurred via a rapidly dissipating effect on 

endocytosis of lentiviral vectors, which was likely distinct from rapamycin-mediated 

inhibition of cell cycle progression [8▪▪]. Nevertheless, cell activation status plays a key role 

in regulating HSC lentiviral vector transducibility through regulation of low-density 

lipoprotein receptor (LDLR) levels, the cellular receptor for vesicular stomatitis virus 

glycoprotein (VSV-G)-pseudotyped lentiviral vectors [46▪]. It is unclear whether mTOR is 

involved in the up-regulation of LDLR upon cellular activation; our findings indicated that 

rapamycin did not affect LDLR levels in quiescent or activated HSCs [8▪▪].

CONNECTION BETWEEN MAMMALIAN TARGET OF RAPAMYCIN AND 

ENDOCYTOSIS

Apart from its well studied role in regulating HSC quiescence, the mTOR pathway plays 

additional roles that are yet to be elucidated. Although we recently demonstrated a role for 

mTOR inhibition in enhancing endocytic entry of lentiviral vectors, resulting in increased 

transduction efficiency (Fig. 1), a relationship between mTOR and endocytosis has not been 

conclusively established [8▪▪]. It is evident that the endocytic machinery is involved in 

mTOR signaling. In yeast, TOR localizes to vesicular and endosomal membranes [47,48]. In 

mammalian cells, localization of mTOR to late endosomal and lysosomal compartments is 

involved in amino acid-induced mTORC1 signaling [49]. Furthermore, integrity of the late 

endosome is crucial for mTORC1 signaling, which is inhibited by blocking the conversion 

between early and late endosomes [50]. Rab5 GTPases, which regulate endosome formation 

and maturation, also mediate mTORC1 localization to the lysosomal compartment in both 

yeast and mammalian cells [51]. Therefore, several lines of evidence link mTOR signaling 

to functional endocytic machinery.

On the contrary, whether mTOR signaling in turn affects endocytic function has been more 

elusive. In drosophila, TOR interacts with clathrin-uncoating ATPase, and TOR signaling in 

the drosophila fat body differentially promotes bulk endocytosis while preventing endocytic 

degradation of amino acid transporter to increase nutrient availability. In this case, TOR is 

both regulated by endocytosis, as signaling is disrupted by disruption of endocytosis, and in 

turn regulates the endocytic process [52]. TOR may also have an indirect effect on protein 

endocytosis at the apical epithelium in drosophila pupal wing and mouse kidney proximal 

tubules, by inhibiting the transcription of the multiligand receptor Megalin [53].

While initially aiming to target postentry lentiviral restriction in HSCs, we instead showed 

that rapamycin-mediated transduction enhancement was solely attributed to enhanced vector 
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entry, demonstrating cytoplasmic entry to be a major restrictive step in lentiviral 

transduction of HSCs that can be regulated by mTOR (Fig. 1). The regulation of endocytic 

pathways in HSC by mTOR is a novel finding. Since VSV-G, which is commonly employed 

for lentiviral vector pseudotyping, mediates entry via the LDLR [54], this may be a 

byproduct of mTOR regulation of lipid metabolic pathways. Lipid metabolic pathways play 

a role in HSC function, as LDL promotes mouse HSC proliferation in vitro and in vivo [55]. 

Furthermore, mTOR functions in the regulation of lipid metabolic pathways and rapamycin 

have been reported to down-regulate the LDLR at both messenger and protein levels in 

hepatic cells [56,57]. However, we found in CD34+ HSCs that rapamycin did not affect the 

cell surface levels of LDLR or bound lentiviral vectors, but rather increased the amount of 

vector cores in the cytoplasm. This suggests that rapamycin acts at the stages of vesicle 

internalization, trafficking, or lentiviral– endosomal fusion. The VSV-G pseudotype 

mediates cell entry in clathrin-coated vesicles that are dependent on actin for internalization 

[58]. Mechanistically, mTOR could potentially modulate lentiviral entry by acting on the 

cytoskeleton, as both yeast TOR2 and mammalian mTORC2 modulate organization of the 

actin cytoskeleton [59–62]. Actin cytoskeleton plays an important role in cargo sorting and 

maturation of early endosomes – the site of fusion for VSV-G pseudotyped vectors [63,64]. 

It is unclear whether mTOR inhibition affects other entry pathways in addition to 

clathrinmediated endocytosis, but there is evidence that drosophila TOR may be selective in 

promotion of clathrin vs. caveolin and raft-mediated endocytosis [52]. A genome-wide 

analysis of kinases in HeLa cells identified the mTOR pathway in the specific maintenance 

of clathrin-mediated endocytosis, as silencing of mTOR and signaling pathway members 

blocked clathrin-dependent endocytic events such as VSV infection, and transferrin 

internalization and trafficking [65]. This is in contrast to our finding that mTOR inhibition 

stimulates clathrin-dependent endocytosis of VSV-G pseudotyped lentiviral vectors in 

HSCs, and may reflect differences in cell type-specific metabolic programming.

CONCLUSION

The mTOR pathway is a key consideration in HSC gene therapy, both due to its well studied 

role in HSC maintenance, and our recent demonstration of its novel role in lentiviral vector 

endocytosis. The regulation of HSC endocytic machinery by mTOR reveals a novel aspect 

of mTOR signaling that is relevant to HSC gene therapy, and brings to light a number of 

further mechanistic and therapeutic questions. For example, the molecular events that bridge 

mTOR inhibition and endocytic enhancement need to be elucidated. Even though our 

findings suggest a non-mTORC1 mechanism in endocytic enhancement, certain aspects of 

mTORC1 signaling, such as autophagy, may be involved at additional stages of lentiviral 

vector entry. The contributions of mTORC1 and mTORC2 to the transduction process 

should be assessed, and may inform upon the choice of small molecule mTOR inhibitors 

with more specificity for therapeutic use. Additionally, it is unknown whether the regulation 

of endocytosis by mTOR exists as a physiological signaling pathway to bring in 

nonlentiviral vector ligands during metabolic stress, and whether this phenomenon is 

restricted to stem cells due to their particular metabolic requirements. Therapeutically, the 

efficacy of mTOR inhibitors in improving transduction by non-VSV-G-pseudotyped vectors 

that use alternative entry pathways remains to be evaluated. Finally, the dosage of mTOR 
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inhibitors needs to be optimized in animal and human studies to maximize both transduction 

efficiency and preservation of HSC function for clinical purposes.
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KEY POINTS

• Rapamycin significantly augments lentiviral gene delivery to HSCs while 

preserving engraftment potential.

• Rapamycin-mediated transduction in hematopoietic stem cells uncovered a role 

for mTOR inhibition-dependent activation of endocytosis.

• mTOR signaling regulates HSC quiescence and maintenance.
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FIGURE 1. 

The role of mTOR in HSC maintenance and transduction. Gray arrows denote upstream 

regulators of mTOR that are important for HSC maintenance (green: mTOR activators; red: 

mTOR inhibitors). Black arrows denote downstream effectors regulated by mTOR. mTOR 

is the active kinase subunit of two complexes: mTORC1 and mTORC2. mTORC1 regulates 

three processes implicated in HSC maintenance, shown in orange [26,29,30,31▪]. In addition 

to promoting HSC maintenance, mTOR inhibition also enhances lentiviral vector 

transduction of HSCs by enhancing one or more early steps of vector endocytosis, shown in 

blue, potentially via an mTORC2-mediated mechanism [8▪▪]. HSC, hematopoietic stem cell; 

mTOR, mammalian target of rapamycin.
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