
OVERVIEW

The NF2 tumor suppressor gene, which is located on
chromosome 22, was identified in 1993.55,69 The clinical
syndrome NF2 (previously termed central neurofibro-
matosis or bilateral acoustic neurofibromatosis) had been
described more than 170 years earlier.73 It became clear
during the twentieth century (predominantly during the
latter half) that NF2 was a distinct clinical entity from
NF1 (von Recklinghausen disease or peripheral neurofi-
bromatosis).10,15,16,24,37,51,72 The NF2 gene codes for a pro-
tein named separately by the two groups who identified it
in 1993; that is, schwannomin or merlin. Schwannomin
was proposed as a name for the NF2 gene because of its
inactivation in schwannomas. Merlin was suggested be-
cause of the homology of the NF2 gene to the ERM fam-
ily of proteins: moesin, ezrin, and radixin. Nevertheless,
neither term has been universally accepted, and it would
appear that a hybrid name is required. In an attempt to
incorporate both names and to avoid further confusion in
the literature, we suggest that the gene be referred to as
schmerlin.

There have been numerous publications in which alter-
ations in the NF2 gene have been described (both in pa-
tients with and without NF2), which predispose individuals
to nervous system tumors, including schwannomas, menin-
giomas, and ependymomas.8,9,21,22,33,36,43,50,58,61,62,70,71,77 Ab-

normalities of the NF2 gene are also found in malignant
mesothelioma, tumors that are not typically associated with
neurofibromatosis.26,67 The presence of multiple meningio-
mas/schwannomas in an individual usually implies that
there is a germ line mutation (with every cell in the body
containing that mutation) or that the patient is a mosaic for
a particular mutation (a proportion of cells within the indi-
vidual’s tissues harbor a mutation as a result of a postzy-
gotic event).14,29,30,45 Clinically, these patients are deemed to
have classic NF2. Mild cases of NF2 usually result from a
particular type of mutation (see Genotype–Phenotype Cor-
relation in NF2), or may be the result of mosaicism (be-
cause the mutation is not present in every cell of the body).
For obvious reasons, severe cases of NF2 are less likely to
be the result of mosaicism. 

Solitary meningiomas or schwannomas in an individual
are normally the result of somatic mutation within the
NF2 gene in a single cell of neural crest origin. A “second
hit” to knock out the remaining copy of the NF2 locus is
then required to give this cell a growth advantage, which
eventually leads to tumorigenesis. This second hit often
consists of loss of one entire copy of chromosome 22 or 
a large proportion of the chromosome. This is usually the
result of nondisjunction during mitosis in the cells contain-
ing the original point mutation. The term “loss of heterozy-
gosity” describes the experimental findings in tumors that
are missing one copy of a particular chromosomal region.55

The “two hit” model of tumorigenesis involving tumor
suppressor genes was first proposed by Knudson.31

It is likely that mutations in other, as yet unknown genes
are necessary before a schwannoma or meningioma devel-
ops. One such candidate is the P53 tumor suppressor
gene, which has recently been shown to act synergistical-
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ly with the NF2 gene (in conditional NF2 mutant mice) in
the development of malignant tumors of neural crest ori-
gin.54 Furthermore, mutation/loss of the NF2 gene is prob-
ably an early event in tumor development, with aberra-
tions of genes on other chromosomes resulting in a more
aggressive phenotype.34

Epidemiology and Clinical Features

The inherited syndrome NF2 is not a particularly com-
mon disease, with a birth incidence of approximately one
in every 25,000 to 40,000 individuals.11 As discussed ear-
lier, however, the role of the NF2 gene is not confined to
patients with NF2 and has far more widespread implica-
tions in human disease. Mutations of the NF2 gene occur
frequently in sporadic tumors that are associated with the
disease. For example, the majority of sporadic menin-
giomas harbor inactivating NF2 gene mutations and/or
chromosome 22 loss, as do a large proportion of sporadic
schwannomas. These are among the most common tumors
found in the central nervous system. Sporadic meningio-
mas comprise 20 to 25% of all primary intracranial neo-
plasms in the US (annual diagnostic incidence 8/100,000).
Furthermore, results of autopsy studies support the sugges-
tion that asymptomatic meningiomas are 10 times more
common than clinically active ones. The incidence of VSs
is approximately 1.4 per 100,000 individuals per year, and
it is estimated that a VS will be diagnosed in one of every
1000 people during their lifetime.12

The diagnostic criteria for NF2 are well established and
have been previously documented.3,48 There have, howev-
er, been some slight modifications of these criteria in re-
cent years. In most large series published to date, bilateral
VSs develop in approximately 85 to 90% of patients with
NF2 (VSs were previously called acoustic neuromas and
are still frequently referred to by this name). A unilateral
VS develops in another 5% of patients with NF2. Thus, up
to 95% of patients with NF2 have at least one VS. 

Schwannomas at other sites (including other cranial
nerves, within the spinal cord, and on peripheral nerves)
are also very common and are found in more than half of
the patients in most studies.39,40,53 Approximately 60 to
70% of patients with NF2 have at least one meningioma
(intracranial and spinal). Posterior subcapsular lens opac-
ities also develop in more than half of all patients with
NF2. Ependymomas are seen in less than 5% of all pa-
tients with NF2, and less than 2% of patients with this dis-
ease have six or more café-au-lait macules, one of the
diagnostic criterion for NF1 and sometimes a source of
confusion between the two entities.

The NF2 Gene

The first clue to the localization of the NF2 gene to chro-
mosome 22 came from cytogenetic studies in sporadic
meningiomas.75 It was not until 1987, however, that a
definitive localization to chromosome 22 (using genetic
linkage studies in familial NF2) was established.56 In a
number of studies various authors have further refined the
localization to 22q12.2, and concluded that NF2 appeared
to be a genetically homogeneous disease.47,59,72 The NF2
gene was cloned in 1993 and found to be mutated/deleted
in the majority of sporadic meningiomas and schwanno-
mas. It comprises 17 exons and codes for a protein of 595

amino acids. The protein is closely related to the ERM pro-
teins ezrin, radixin, and moesin. There are no hotspots for
mutation in the NF2 gene in patients with the disease, or in
those with sporadic meningiomas or schwannomas.
Furthermore, all possible types of mutation (missense, non-
sense, frame-shift, splice-site, and various deletions) are
found. 

There is now overwhelming evidence that the NF2 gene
is a tumor suppressor gene. First, inactivating mutations in
the NF2 gene are found in the majority of patients with NF2
and in the sporadic tumors associated with this disease.
Second, mice with targeted inactivation of the NF2 gene
specifically in Schwann cells develop schwannomas (the
hallmark of NF2) and Schwann cell hyperplasia.17 Further-
more, in mice that are heterozygous for an NF2 mutation,
numerous malignant tumors develop, including osteosar-
comas at high frequency, and fibrosarcoma and hepatocel-
lular carcinoma at a lower rate. There is also a growing
body of evidence from cell biology experiments that the
NF2 protein functions normally as a negative regulator of
cell growth and proliferation (see later discussion).

Genotype–Phenotype Correlation in NF2

For many years it has been observed that the severity of
NF2 was relatively preserved within individual families.
That is, affected members within a family generally tended
to experience symptoms of the disease at approximately the
same age, and had a similar rate of progression with equiv-
alent disability levels and similar numbers of tumors. It was
clear clinically that a strong genotype–phenotype correla-
tion existed for NF2. This is in contrast to some of the other
genetic tumor syndromes (for example, NF1), in which
there is often marked variation with regard to severity of
disease within a given family. It is only since the identifi-
cation of the NF2 gene that it has been possible to prove
this theory.2,5,6,13,25–27,35,38,52,57,63,76

Originally, NF2 was identified as either severe (Wishart)
or mild (Gardner) disease. It is now apparent, however, that
a more refined phenotype–genotype correlation exists. A
milder NF2 phenotype (with an older age at onset and fewer
tumors) is associated with missense mutations, splice-site
mutations, and with certain large deletions. In addition,
patients with mosaicism for any particular type of mutation
tend to display a milder phenotype. One could further hy-
pothesize that patients with mosaicism who harbor mis-
sense and splice-site mutations should have an even milder
phenotype, although confirming this would require a very
large series of patients. Severe disease is usually caused by
protein-truncating alterations (such as frame-shift and non-
sense mutations). One large study has recently shown that
individuals with splice-site mutations in exons 1 to 5 of the
NF2 gene had more severe disease than those with splice-
site mutations in exons 11 to 15. Phenotype–genotype cor-
relations have now been documented for overall disease se-
verity, for VSs, for cataracts,4 and for non–eighth cranial
nerve tumors (including intracranial meningiomas, spinal
tumors, and peripheral nerve tumors). There are exceptions
to this rule, however, and even in monozygotic twins the
clinical course may not be identical.6

Biological Role of the NF2 Gene

The exact role of the NF2 gene in tumorigenesis is not
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entirely clear. Nevertheless, there are some very interest-
ing clues to the possible mechanisms whereby loss of NF2
protein function may promote uncontrolled growth and
proliferation. In the last 3 years alone, numerous reports
have been published describing various cytoskeletal and
signaling proteins that interact with and bind to the NF2
protein. 

A number of these reports describe inhibition of the
Pak1 by the NF2 protein.1,20,23,25 This kinase belongs to a
subgroup of serine/threonine kinases (the Group 1 Paks)
that are known to be downstream effectors of Rac/cdc42.
The Pak1 function is required for activation of stress-acti-
vated protein kinases by cdc42 and Rac1 as well as for
transformation by activated forms of these guanosine 59-
triphosphatases. It has also been shown that activated forms
of Pak1 induce rapid formation of membrane ruffles and
focal complexes, and Pak1 is essential for both Ras trans-
formation and NF1. The hypothesis is that the NF2 protein
normally functions to inhibit Pak1 and therefore downreg-
ulates Rac/cdc42. This in turn would result in inhibition of
Ras-induced malignant transformation. It has been shown
in cell culture experiments that mutated NF2 genes that
lack the Pak1-inhibiting domain fail to suppress Ras trans-
formation. Thus, Paks are probably bifunctional proteins,
affecting both gene transcription (through a kinase cas-
cade) and actin dynamics (by an unknown mechanism). A
recent report suggests that the NF2 protein is normally
involved in arresting cell growth at the G1 phase with de-
creased expression of cyclin D1, inhibition of CDK4 ac-
tivity, and dephosphorylation of pRB.74

Another interesting interaction exists between the NF2
protein and PIKE, which is a brain-specific guanosine 59-
triphosphatase that binds to PI3K and stimulates its lipid
kinase activity. There are three isoforms of PIKE: PIKE-S
(short form), PIKE-L (long form), and PIKE-A (alterna-
tive form). The PIKE-S and PIKE-L forms are the result
of differential splicing, whereas PIKE-A results from the
use of an alternative transcription initiation site. The NF2
protein binds to PIKE-L and abolishes its stimulatory ef-
fect on PI3K. The PI3K is a lipid kinase that generates
phosphatidylinositol 3,4,5-trisphosphate, a second mes-
senger that is essential for the translocation of Akt to the
plasma membrane, where it is phosphorylated and activat-
ed. Activation of the PI3K/Akt pathway plays a pivotal
role in fundamental cellular functions such as cell prolif-
eration. In recent years, numerous alterations in this path-
way have been described in a variety of human cancers.
Thus, the involvement of the NF2 protein in an upstream
component may prove to be a significant contributor to its
tumor suppressor function.

The interaction of the NF2 protein with HRS warrants
further discussion.19,65,66,68 The NF2 protein binds (via its C
terminus) to HRS, and it is postulated that this interaction
may facilitate its ability to function as a tumor suppressor.
Moreover, studies in schwannoma cell lines have shown
that both the NF2 protein and HRS inhibit activation of
signal transducers and activators of transcription. Recent-
ly, it has been shown in rat schwannoma cell lines that HRS
can reduce the amount of total and active epidermal growth
factor receptor. Thus, a possible direct consequence of NF2
protein inactivation may be the downregulation of epider-
mal growth factor receptor.

Other possible candidates for interaction with the NF2

protein include CD44, BII-spectrin, SCHIP-1, NHE-RF,
and BI-integrin.18,44,46,49,60,64 Furthermore, the NF2 protein
colocalizes and interacts with adherens junction compo-
nents in cell culture experiments. Knocking out the NF2
gene in this environment results in an inability to undergo
contact-dependent growth arrest and to form stable cad-
herin-containing adhesion junctions.32 This may be an im-
portant factor in tumorigenesis.

A number of mouse models have been developed in an
attempt to further elucidate the molecular biology of the
NF2 protein.17,41,42 Heterozygous NF2 mutant mice suffer
from various neoplasms that show inactivation of the wild-
type copy of the NF2 gene (in keeping with its function as
a tumor suppressor gene). Nevertheless, in these mice
there is no development of the characteristic tumors seen
in human NF2. Furthermore, homozygous NF2 mutant
mice (homozygous NF2 knock-outs) are embryonic lethal
and are therefore unhelpful as a model for NF2. 

In an attempt to overcome the deficiencies of the het-
erozygous and homozygous NF2 mutant mice, conditional
NF2 mutant mice were generated that had restricted homo-
zygous NF2 mutations in predominantly Schwann cell pop-
ulations.17 These “conditional” (Schwann cell) NF2 knock-
out mice show many similarities to patients with NF2; for
example, Schwann cell hyperplasia, Schwann cell tumors,
cataracts, and cerebral calcification. Significantly, however,
they do not develop VSs or meningiomas, two of the hall-
mark features of NF2. The conditional knock-out mice have
already provided important details regarding certain do-
mains within the NF2 gene (exon 2) and insight into how
the NF2 protein may function in cell migration and differ-
entiation. However, conditional NF2 knock-out mice con-
stitute only one piece of the NF2 puzzle, and extrapolation
of results in rodents to human disease needs to be done cau-
tiously.

CONCLUSIONS

Neurofibromatosis Type 2 has been extensively investi-
gated and characterized from a genetics perspective over
the last two decades. This has resulted in nearly 1000
research publications from numerous groups during this
period. A new era in molecular biology is now unfolding
in which researchers will characterize how genetic alter-
ations in NF2 result in disruption of the regulation of dif-
ferent proteins and signaling pathways, resulting in tumor
formation. It may be the end of one phase, but the biolog-
ical interactions yet to be elucidated may prove even more
exciting. Judging by the pace of the last few years, it may
not be long before therapeutic strategies for NF2 and its
tumors become a reality.
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