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Abstract: Environmental stimuli trigger an adaptative cellular response to optimize the 
probability of survival and proliferation. In eukaryotic organisms from mammals to fungi 
osmotic stress, mainly through the action of the high osmolarity glycerol (HOG) pathway, 
leads to a response necessary for adapting and surviving hyperosmotic environments. In 
this review we show that the osmoadaptative response is conserved but not identical in 
different fungi. The osmoadaptative response system is also intimately linked to 
morphogenesis in filamentous fungi, including mycotoxin producers. Previous studies 
indicate that the response to osmotic stress is also coupled to the biosynthesis of natural 
products, including mycotoxins. 
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1. Introduction 

Filamentous fungi are ubiquitous in nature, capable of inhabiting very diverse ecological niches. 
Many filamentous fungi propagate by means of dispersal of asexual spores termed conidia. Spores can 
traverse very long distances through the air which allows them to come to rest in environments that 
can be very different from that of their origin. In order for the fungus to proliferate and thrive in 
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nature, it must be capable of adapting quickly to any particular environment it may find itself in. Even 
when acclimated to their particular niche, perturbations can occur from time to time in the surrounding 
environment either as a result of natural causes (i.e., drought) or man-made causes (i.e., modern 
agriculture). To adapt to such environmental changes fungi must continually adjust their physiology in 
order to enhance survival. At the molecular level, fungi possess complex signal transduction pathways 
that allow the fungus to respond appropriately to alterations in external stimuli. These stimuli can 
include biotic stress, and abiotic stresses such as changes in temperature, pH, nutrient availability, 
oxidative stress and osmotic stress. In this report we will be focusing on the role that osmotic stress 
plays in the growth and development of filamentous fungi and the molecular mechanisms that control 
the fungus’ response to alterations in osmotic pressure. 

Many of the studies that first identified genes involved in the molecular regulation of cellular 
responses to osmotic pressure were performed in the yeast Saccharomyces cerevisiae (reviewed in 
[1]). These included the identification of MAP kinase signaling pathways and the high osmolarity 
glycerol (HOG) pathway involved in response to osmotic pressure [2]. In addition to providing 
information gleaned from studies using S. cerevisiae, we will also focus on research involving 
filamentous fungi, particularly of the genus Aspergillus. A. nidulans has been used extensively as a 
model fungus for the study of the molecular genetics of responses to osmotic stress due in large part to 
the availability of a vast number of genetic markers and a sexual stage that allows for genetic 
recombination studies [3,4]. A. nidulans also produces the mycotoxin sterigmatocystin, which is 
synthesized through the same conserved pathway that leads to production of aflatoxin in other 
Aspergilli. Both compounds are potent carcinogenic mycotoxins. In addition to A. nidulans, the genus 
Aspergillus includes a number of species that are of great importance both economically and 
medically. For example, the agriculturally important aflatoxin-producing species A. flavus and A. 
parasiticus [5]; A. oryzae and A. niger as industrially important sources of enzymes [6,7]; and 
medically important species such as the causal agent of human aspergillosis, the gliotoxin-producer A. 
fumigatus [8]. A number of studies have reported on the effects of osmotic stress on Aspergillus spp. 
as influenced by water content, water activity (Aw), and solute concentrations. Lillehoj et al. [9] 
reported on the effect of moisture (measured as percent moisture content or osmotic pressure) and 
substrate variation in developing cottonseed and corn. They found that osmotic pressure and other 
factors such as oil and starch content of seeds determine the physiological responses of A. parasiticus. 
Maximum accumulation of aflatoxin was observed in corn kernels and cottonseed that were inoculated 
at 52 and 70% moisture content, respectively. A water availability in the 600 kPa range of osmotic 
pressure provided optimum conditions for A. parasiticus development in corn kernels. Osmotic stress 
has also been shown to be a critical factor in enzyme production, relevant in industrial fermentations 
that utilize aspergilli. It was found that increased osmotic pressure as determined by NaCl 
concentration resulted in increased production and secretion of glucose oxidase during fermentation by 
A. niger [10]. Kobayashi et al. [11] found that glucoamylase activity by A. oryzae showed an increase 
of about 20-fold as water content of the wheat bran substrate was increased. 

Scientists have made great strides in elucidating some of the basic molecular mechanisms that allow 
fungi to survive and proliferate under different environmental conditions. The fact that osmoadaptation 
is easy to manage and mimic in a lab setting has aided in studies of fungal responses to osmotic stress 
both at the cellular and molecular level. The advent of whole genome sequencing and functional 
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genomics has also provided another tool to dissect the regulatory factors and signal transduction 
pathways that respond to osmotic stress. A recent review of annotated stress proteins by Miskei et al. 
[12] identified a number of genes in different Aspergillus species (A. nidulans, A. flavus, A fumigatus,  
A. niger, A. terreus, A. oryzae, A clavatus and N. fisheri), that are orthologous to those encoding 
components of the S. cerevisiae HOG pathway [2]. These studies have facilitated the generation  
of A. nidulans strains that harbor mutations in several members of the HOG pathway [13,14].  
Miskei et al. [12] also proposed in this report that the response of the HOG pathway in filamentous 
fungi is not exclusively due to the fungus’ response to osmotic stress but also to oxidative stress. In 
this review we strive to present a compilation of information on the genes involved in the molecular 
regulation of the response to osmotic pressure in filamentous fungi mainly from studies with the model 
fungus A. nidulans and the model yeast S. cerevisiae. We also include an overview of the effect of 
osmotic stress on development and secondary metabolism in filamentous fungi, particularly those 
associated with mycotoxin production. In addition, we present information from our labs on the velvet 
gene (veA) and its role in filamentous fungi as a light-responsive factor that can integrate external 
stimuli, including osmotic stress to bring about physiological responses that are often manifested as 
alterations in secondary metabolism and/or morphogenesis.  

2. Osmoadaptation Mechanisms in Yeast 

Numerous studies conducted in the yeast S. cerevisiae have contributed to the understanding of the 
high osmolarity glycerol (HOG) pathway (reviewed in [1]). Activation of the HOG pathway depends 
on an increase in osmotic pressure resulting in a change in the expression of several genes. The 
molecular response to osmotic stress in S. cerevisiae is mediated by mitogen-activated protein kinase 
(MAPK) signaling pathways. Hog1p MAPK plays a central role in this signaling system, where Hog1p 
is activated by a two-component His-to-Asp phosphorelay system that includes Sln1p, a histidine 
kinase sensor; Ypd1p, a histidine-containing phosphotransfer protein; and Ssk1p and Skn7p response 
regulators [15,16] (Figure 1). Sln1p protein consists of an extracellular sensor, a kinase and a response 
regulator domain, giving a transmembrane hybrid-type histidine kinase. Under low-osmolarity, a 
specific histidine residue (His576) within the histidine kinase domain is autophosphorylated. Then, the 
phosphate group of the histidine kinase domain is transferred to an aspartate residue (Asp1144) within 
the receiver domain of Sln1p. Through a His-Asp phosphorelay, the phosphate group is transferred to 
the downstream Ypd1p phosphotransmitter, and then to the Ssk1p response regulator [12,15,17]. 
Phosphorylated Ssk1p fail to interact with the redundant pair of MAPKKK Ssk2p/Ssk22p, resulting in 
an inactive Ssk2p/Ssk22p-Pbs2p (MAPKK)-Hog1p form [18]. However, when yeast are exposed to 
osmotic stress, Sln1p is inhibited resulting in dephosphorylated forms of Ypd1p and Ssk1p, leading to 
Ssk1p-Ssk2p/Ssk22p interactions and finally the activation of Hog1p by phosphorylation [18].  
In hyperosmotic environments, activated Hog1p migrates to the nucleus. This action is mediated by 
Gsp1p, a small GTP-binding protein, and the importin homologue Nmd5p; and it is independent of the 
NLS-binding importin/heterodimer [19]. Activation of the HOG pathway leads to the induction of 
genes required for osmotic stress response, for example glycerol biosynthesis genes such as the genes 
encoding a glycerol-3-phosphate dehydrogenase (GPD1) and glycerol-3-phosphatase (GPP2) [20,21]. 
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A nuclear exchange sequence receptor protein called Crm1p exports dephosphorylated Hog1p back 
to the cytoplasm [19]. Negative regulation of Hog1p is exerted through phosphotyrosine phosphatases, 
Ptp2p and Ptp3p, in both the nucleus and the cytoplasm, respectively [22]; and the phosphatase Ptc1p, 
Ptc2p and Ptc3p [23,24]. Ptc1p dephosphorylates Hog1p via a docking interaction between Ptc1p, 
Hog1p, and Pbs2p joining a small adaptor named Nbp2p [25,26]. 

Figure 1. Comparison of S. cerevisiae (A) and A. nidulans (B) HOG regulatory pathways. 

 
 

In addition, in yeast Hog1p is regulated by a second mechanism, which includes a transmembrane 
sensor kinase called Sho1p (Figure 1). In the Sho1 branch, a multi-component signaling complex 
consisting of Sho1p, Cdc42p, Ste20p/Cla4p, Ste50p, Ste11p (MAPKKK), Pbs2p is formed in 
hyperosmotic environments. Pbs2p is localized to the membrane by its proline-based motif and an SH3 
domain on Sho1. Pbs2p binds the MAPKKK Ste11p which is phosphorylated by the PAK-like kinase 
Ste20p, which is itself recruited to the membrane by activated Cdc42. Activated Ste11p then 
phosphorylates Pbs2p which in turn activates the downstream Hog pathway [26,27]. Hkr1p and 
Msb2p, mucin-like transmembrane proteins [27], are potential sensors for the Sho1p mechanism that 
activates Hog1p when the yeast is exposed to osmotic stress. 

Activation of Hog1p can also lead to phosphorylation of the Sko1p bZip-type repressor, which 
results in the disassembly of Sko1p-Tup1p-Ssn6p repressor complexes [28]. Phosphorylated Hog1p 
interacts with the RCS chromatin-remodeling complex to mediate its recruitment to osmo-responsive 
genes [29]. Hog1p also recruits the Rpd3p histone deacetylase to osmoresponsive gene promoters 
inducing their expression during osmotic stress [30]. Hog1p is necessary for the activation and 
increase of the RNA polymerase II complex and mRNA, behaving as a transcriptional elongation 
factor specific for genes induced upon osmotic stress [29,31]. Phosphorylated Hog1p is also necessary 
for the activation of Msn2p/Msn4p C2H2 zinc finger transcription factors involved in general stress 
response [32–35]. 
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Other Hog1p targets include Sgd1p, a novel essential nuclear protein. SGD1was identified as a 
high-copy-number suppressor of the osmosensitive phenotype of pbs2D and hog1D deletion  
mutants [36,37]. In addition, Hog1p interacts and phosphorylates the transcription factor Smp1 upon 
osmotic stress controlling a subset of the responses induced by the MAPK [38]. Activated Hog1p can 
phosphorylate the Rck2p protein kinase, which participates in G2 checkpoint control and the osmotic 
stress triggered attenuation of protein synthesis [39,40].  

In addition to the HOG signaling pathway, c-AMP dependent kinases have been shown to affect 
gene expression under osmotic stress [41]. However, this response is not exclusive to osmotic stress 
but a general stress response to a variety of additional stimuli such as nutrient starvation, heat shock, 
and oxidative stress among others [42–44]. Osmotic shock can also stimulate the production of 
compounds such as phosphatidylinositol-3,5-bisphosphate, which could participate as a second 
messenger in the activation of the osmotic signaling response [45]. 

3. Hog Pathway in Aspergillus nidulans 

As in the case of S. cerevisiae, the HogA (SakA) pathway of A. nidulans (Figure 1) is activated in 
the osmotic [13,14,46–48] and oxidative [46,47] response by the A. nidulans Ssk1p ortholog, SskA. 
Interestingly, a sakA null mutant presented only slight sensitivity to high osmolarity stress, indicating 
that osmoregulation in A. nidulans differs from that described in yeast [14,46]. Other upstream 
components of this pathway are the Sln1p homolog, TcsB [49]; the Ypd1p ortholog, YpdA [14,48]; 
and also NikA, a dispensible Mak2-type histidine kinase in the osmotic stress response that has been 
demonstrated to transmit fungicide-induced stress signals such as those generated in the presence of 
fludioxonil and iprodione [48,50] (Figure 1). A tcsB deletion (tcsB) mutant did not present  
an osmosensitive phenotype [51] most likely due to redundancy of function with other histidine kinase 
genes present in A. nidulans genome [48,52]. However, the A. nidulans TcsB–YpdA–SskA system 
might have a role similar to that of Sln1p–Ypd1p–Ssk1p proteins in yeast [14]. A non-essential sensor 
kinase, TcsA, may be involved in conidiation [53] however, a TcsA–YpdA–response regulator 
signalling pathway has not been demonstrated.  

Interestingly, it is likely that the Sho1p signaling pathway in A. nidulans might not be involved in 
osmoregulation but instead may be carrying out other signaling functions [54]. A. nidulans PbsB 
(homolog to S. cerevisiae Pbs1p) lacks a typical Pro-rich motif necessary for the binding with  
Sho1p [14,55]. Furthermore, proteins such as ModA, a Cdc42p-like protein [56], similar to Sho1p, 
have a role in morphogenesis. SteC, similar to Ste11p, regulates sexual development [57]. Differently 
from yeast, A. nidulans PbsB MAPKK activates another Hog1p ortholog, MpkC, not present in yeast. 
Although MpkC is not necessary for osmoregulation, overexpression of mpkC suppresses the slight 
high-osmolarity sensitivity of hogA strains [14]. An A. nidulans orthologue of S. cerevisiae Skn7p, 
SrrA, plays a role in both oxidative stress and osmotic stress resistance [47,48]. 

Little is known about SakA and YpdA import/export to the nucleus, although putative orthologues 
of Gsp1p (RanA), Nmd5p importin and Crm1p (KapK) export factor have be identified [12]. 
Dephosphorylation of HogA/SakA in A. nidulans is mainly unknown, except for the up-regulation of 
ptpA (encoding a putative protein phosphatase) when the fungus is exposed to osmotic stress [13]. 
Several SakA-dependent regulators have been identified, such as RpdA (Rpd3p ortholog), AtfA 
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(putative ortholog of S. pombe Atf1) [58,59], and RcoA (S. cerevisiae Tup1 ortholog). Msn2p/Msn4p-
type protein, MsnA, has been found in A. nidulans, and was shown to be induced by different types of 
stress [13]. In A. nidulans, potential target genes of SakA and SrrA (S. cerevisiae Skn7p homolog) 
includes gfdB (S. cerevisiae GPD2 ortholog) [13,60] and enaA [13].  

The process of osmotic adaptation by activation of the HOG pathway, in both yeast and filamentous 
fungi, results in the biosynthesis and accumulation of compatible molecules such as proline, trehalose, 
polyols and glycerol to counterbalance the osmotic pressure and prevent loss of water. In A. nidulans, 
SskA (S. cerevisiae Ssk1p homolog) regulates the expression of genes involved in conidial tolerance to 
stress, including genes involved in glycerol and trehalose metabolism (gfdA and gfdB, glycerol-3-
phosphate dehydrogenases; gldB, glycerol dehydrogenase; tpsA, trehalose-6-phosphate synthase; orlA, 
trehalose-6-phosphate phosphatase; treB, neutral trehalase) [13,61–65]. 

4. Examples of the Osmoadaptation Signaling Pathway in Other Aspergilli 

Regulatory pathways including those signaling pathways responsive to stress are relatively 
conserved, but not identical, in the genus Aspergillus [12]. For example, conserved SakA plays an 
important role in the oxidative stress response in the opportunistic human pathogen and gliotoxin-
producer Aspergillus fumigatus, while the TcsB histidine kinase was not crucial [66]. In A. fumigatus, 
MpkC plays other roles such as in carbon source utilization, however it was not determined to be 
involved in osmoadaptation [67]. Aspergillus niger, an important citric acid, gluconic acid and 
hydrolytic enzyme producing fungus, does not have TcsB-type histidine kinase homologs. Other 
aspergilli, such as A. nidulans mentioned above, present TscB but it is dispensable in the 
osmoadaptation response. It is likely that TcsB is dispensable or not present in other aspergilli [51,66].  

Interestingly, the important aflatoxin-producer Aspergillus flavus harbors two orthologs of the A. 
nidulans SskA response regulator in its genome (ORFs AFL2G_06337 and AFL2G_12585), and two 
orthologs of the A. nidulans ortholog RpdA histone deacetylase (ORFs AFL2G_08263 and 
AFL2G_03062). This suggests that A. flavus has a more sophisticated osmotadaptation system 
compared to other aspergilli that may include genes with redundant functions. 

5. Role of the Osmotic Stress-response Pathway on Fungal Development and Secondary 
Metabolism 

The study of the HOG pathway and its implications in morphological development and secondary 
metabolism in filamentous fungi are still at the earliest stages. In A. nidulans, a sakA deletion mutant 
shows development and cell-specific phenotypes [46]. This mutant is characterized by premature 
sexual development. In addition, deletion of sakA results in conidia that are highly sensitive to 
oxidative and heat shock stress and lose viability overtime. This evidence supports the role of SakA as 
a repressor of sexual development and asexual spore stress resistance and survival. As mentioned in 
section 3, another member of the A. nidulans HOG pathway, SskA is important in regulating the 
tolerance of conidia to osmotic stress. SakA was also shown to be involved in conidia viability in  
A. fumigatus, where the sakA mutant presented alterations in conidia germination in a nitrogen source-
dependent manner [68]. The bZip-type transcription factor AtfA (putative ortholog of S. pombe Atf1), 
that functions downstream of the HogA MAPK in the course of fludioxonil and osmotic stress 
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response, is also involved in conidia stress tolerance [58,59,69,70]. Also in A. fumigatus, mutations in 
MA21, a homolog of the S. cerevisiae transmembrane sensor kinase SHO gene, showed a reduction in 
growth and germination rates. It demonstrated irregular hyphal morphology with a decrease in 
phialides and conidia [71]. Development is also affected by osmoregulation in dimorphic fungi such as 
Candida albicans, where the HOG homolog is necessary for chlamydospore formation [72].  

Additionally, studies on A. nidulans SteC revealed its role in morphogenesis. Deletion of the steC 
gene results in a slower growth rate, increase of branched hyphae, alteration of conidiophore 
morphology, inhibition of heterokaryon formation and a blockage of cleistothecial development. The 
gene is transcriptionally activated during asexual development and controls the phosphorylation of two 
putative MAP kinases [57]. Also, RcoA (homolog of S. cerevisiae Tup1p) affects growth and 
sexual/asexual development in A. nidulans [73,74]. The response regulators SrrA and SskA are not 
only involved in osmotic and oxidative stress signal transduction but also in regulation of asexual 
development in A. nidulans. Deletion of any one of these genes results in a reduction in conidiation 
and spore viability [48]. 

The evidence provided by A. nidulans studies as well as studies in other fungi clearly indicates a 
connection between the osmotic stress regulatory system and fungal development. Recently in our 
laboratories we found that osmotic stress caused by high concentrations of sodium chloride, sorbitol or 
potassium chloride positively affects vegetative growth leads to an increase in conidiation in A. flavus 
(Duran et al., manuscript in preparation). Han et al. [75] also reported an increase of conidiation in the 
presence of high amount of sorbitol in A. nidulans. In contrast, in a study by Mert and Ekmekci [76] 
where A. flavus was inoculated on NaCl medium, a reduction of conidia was observed. The A. flavus 
strains are genetically diverse and they have been sub-divided into two strain types, S and L, based 
differences in sclerotial size [77]. It is possible that this variability in conidiation could be the result of 
different A. flavus strains used in these studies leading to different responses to osmotic stress and 
salinity. It is also possible that other culture conditions could have caused the observed differences in 
conidiation under induced osmotic stress. In addition, our recent study showed the light-dependent 
global regulator VeA, known to control sexual/asexual morphogenesis and secondary metabolism in 
filamentous fungi [78], to be associated with the osmotic-stress response in A. flavus (Duran et al., 
manuscript in preparation and Figure 1). Specifically, osmostress enhances hyperconidiation in the  
A. flavus veA deletion strain, suggesting that veA is involved in modulating osmotic stress-induced 
conidiation. On the other hand, salinity stress has been shown to have an inhibitory effect on the 
formation of sclerotia in fungal species, including Sclerotinia sclerotiorum, Rhizoctonia solani and 
Sclerotium rolfsii [79]. In the mycotoxin producer Aspergillus ochraceus osmotic stress had little 
effect on sclerotia production, [80]. In Botrytis cinerea sclerotia production was also reduced as 
osmotic stress increased [81]. In A. flavus, hyperosmotic media caused a delay in sclerotial maturation 
(Duran et al., manuscript in preparation). These studies suggest that under stress caused by 
hyperosmolarity the fungus favors investment of material and energy towards developmental programs 
(conidiation) that are conducive to survival via dissemination to a more favorable environment versus 
survival in the unfavorable hyperosmotic environment.  

Previous studies support an association of fungal morphogenesis with secondary metabolism, 
including mycotoxin production [82]. Aflatoxin is one of the most potent natural carcinogenic 
compounds described. Surprisingly, hyperosmotic levels of NaCl, KCl or sorbitol did not affect the 
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biosynthesis of this mycotoxin (Duran et al., manuscript in preparation). Some osmotic stress genetic 
response elements have been demonstrated to be linked to toxin production in A. nidulans, specifically, 
RcoA (Tup1p homolog) affects not only fungal growth and development, but also is necessary for the 
production of sterigmatocystin in A. nidulans [83]. Additionally, osmotic stress does affect the 
production of other secondary metabolites in aspergilli, for example pigments. The A. fumigatus sakA 
deletion mutant is unable to produce pigmentation as observed in the wild-type strain, indicating that 
secondary metabolism is affected by the HOG signaling pathway in this fungus [68]. 

Across fungal genera, the role of MAPK cascades in the osmotic stress response is quite diverse. In 
the filamentous fungus Fusarium graminearum, a significant relationship between osmotic stress and 
secondary metabolism has been observed. F. graminearum is a common pathogen of grain producing 
crops. Among the several secondary metabolites generated by this fungus, the synthesis of 
trichothecene toxins and a reddish colored pigment called aurofusarin are affected by osmotic stress. 
Ochiai et al. [84] described the participation of several histidine kinases, components of the osmotic 
response signalling pathway, in the regulation of secondary metabolism of F. graminearum. These 
authors showed that production of trichothecenes is markedly suppressed by NaCl, without a 
significant effect on fungal growth. A null mutant of FgOs1 (encoding the osmosensor histidine 
kinase) produced a reduced amount of the red pigment aurofusarin however it was unaltered in its 
ability to produce trichothecenes. Deletion null mutants of FgOs4 (encoding MAPKKK), FgOs5 
(MAPKK), and FgOs2 (MAPK) all showed markedly enhanced pigmentation and failed to produce 
trichothecenes, coinciding with a marked reduction of expression of Tri4 and Tri6 (trichothecene 
biosynthetic pathway and regulatory genes). In the maize pathogen, Cochliobolus heterostrophus, 
hog1 mutants are more pigmented than the wild-type and demonstrate smaller appressoria and reduced 
virulence [85]. In cpmk1 (hog1 homolog) mutants of Cryphonectria parasitica, there was an increase 
in osmosensitivity along with reduced pigmentation, conidiation, and virulence on chestnut trees 
compared to a wild-type strain [86] In the rice pathogen, Magnaporthe grisea, osm1 (hog1 homolog) 
mutants were more sensitive to osmotic stress and showed some morphological defects. However, 
glycerol accumulation and appressorial turgor generation was unaltered compared to wild-type and 
virulence was not affected [87]. 

6. Conclusions 

The ability to adapt is essential for filamentous fungi and yeast to survive and proliferate under  
non-optimal osmotic environments. Fungi sense and then transduce external changes in osmotic 
pressure mainly through cellular signaling pathways such as the HOG pathway that is mediated by 
MAPK cascades. Activated MAPKs phosphorylate a number of substrates including transcriptional 
activators that in turn modulate patterns of gene expression and subsequent protein synthesis. In fungi, 
responses to osmotic stress include the production of osmoprotectant compounds such as glycerol, 
reorganization of the cytoskeleton, and cell wall biogenesis. A fungus’ response to high osmotic 
pressures in an artificial environment such as during an industrial fermentation that utilizes controlled 
environmental and nutritional parameters is fairly straightforward. However, during a host-fungal 
pathogen interaction, the degree to which a fungus’ response to changes in osmotic pressure impacts 
its ability to successfully invade and survive in the host is not so clear. During the infection process, a 
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pathogenic fungus would be expected to encounter a complex nutritional milieu upon lysis of plant 
cells that may include increased osmotic pressure. The entomopathogenic fungus, Metarhizium 
anisopliae, kills insects by direct penetration of the cuticle followed by multiplication in the 
hemolymph. The solute-rich hemolymph is characterized by high osmotic pressure [88] that could 
initiate a stress response in the fungus. M. anisopliae strains that were defective in the MOS1 
osmosensor (SHO1 in yeast) displayed increased sensitivity to osmotic pressure as well as reduced 
virulence against larvae of Manduca sexta [89]. In the case of a plant necrotophic fungus, the 
breakdown of cell walls by fungal hydrolases and the generalized hypersensitive response by the host 
plant may result in the invading fungus being isolated in a region of high osmotic pressure. In addition, 
activation of the Hog1 MAPK pathway has been observed in Candida albicans cells exposed to the 
human antimicrobial peptide, histantin 5 [90]. It is possible that antimicrobial compounds elicited by 
the host may also trigger activation of the osmotic stress response in an invading plant or human 
pathogenic fungus leading to accumulation of osmolytes such as glycerol and reorganization of cell 
wall structure in an attempt to stave off death. With the ever increasing number of organisms whose 
genomes and proteomes have now been sequenced and annotated, it should be possible to better 
elucidate the impact that genes involved in the osmotic stress response have on host-fungal  
pathogen interactions.  

The literature cited in this review indicates that the osmoadaptative response is conserved but not 
identical in different fungi and that it is intimately linked to morphogenesis. The ability to alter 
morphogenic programs in response to changes in osmotic pressure can play a significant role in the 
fungus’ capacity to survive and flourish in nature. One developmental response to an increase in 
osmotic stress often observed in fungi is an increase in conidiation. This increases the fungus’ chances 
of survival as conidia can be dispersed by wind over wide areas thus removing the fungus from an 
inhospitable environment and potentially allowing it to take up residence in a more favorable 
environment. Furthermore, some of the studies mentioned in this review have also shown that in some 
cases the response to osmotic stress by fungi is linked to the biosynthesis of natural products, including 
mycotoxins. However, examples of this are few and more studies will be necessary to gain further 
insight into the interaction between osmotic stress regulation and secondary metabolism. 
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