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The solar wind interaction with a non-magnetized, electrically non-conducting body is studied using a two-
dimensional electromagnetic full particle simulation. The solar wind magnetic field is introduced into the
simulation scheme as an initial condition together with the electric field generated by the motion of the solar
wind. The solar wind magnetic field controls the direction of the thermal flow of the electrons and causes an
asymmetry of the negative charging of the downstream-side surface. The negative charging and the potential
drop are largest at the position where the solar wind magnetic field is perpendicular to the surface of the non-
magnetized body. In the absence of photoelectrons, the solar wind electrons begin to be expelled by the negative
charging at the terminator and then flow away along the field line producing streaks of enhancements of the
electron density.
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1. Introduction
The solar wind interaction with a non-magnetized body

is quite different from that which occurs in the case of the

Earth. In the absence of a global magnetic field, the solar

wind plasma can directly access a body or its atmosphere.

The interaction processes depend on the scale size of the

body, the presence or absence of an ionosphere and the

electric conductivity of the surface of the body. In this

paper, the solar wind interaction with a non-magnetized,

non-conducting body having no ionosphere is studied using

a two-dimensional electromagnetic full particle simulation.

This analysis might be applicable to the Moon or asteroids.

The solar wind interaction with a non-magnetized body

such as the Moon is characterized by particle absorption

and surface charging (Freeman and Ibrahim, 1975). The

solar wind particles that hit the Moon are absorbed by the

surface, creating a plasma cavity called the lunar wake be-

hind the Moon (Schubert and Lichtenstein, 1974, and refer-

ences therein). Because the electron thermal speed is higher

than the solar wind speed, the nightside surface of the Moon

is hit only by electrons and becomes negatively charged

(Colwell et al., 2007, and references therein). The negative

charging of the nightside surface of the Moon was observed

by the Lunar Prospector (Halekas et al., 2002, 2003, 2005,

2008).

Recent observations by Kaguya and Chandrayaan have
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provided new findings concerning the Moon (e.g., Saito et

al., 2008; Tsunakawa et al., 2010; Futaana et al., 2010).

Among these are several phenomena which indicate asym-

metries associated with the direction of the interplanetary

magnetic field (IMF). Nishino et al. (2009a, b) found two

types of intrusion of solar wind protons into the central

wake near the Moon due to the Larmour motion of the

protons together with the inward electric field at the wake

boundary (type I), and with the solar-wind pickup of the

scattered protons at the dayside lunar surface (type II), both

of which show strong asymmetry controlled by the direction

of the IMF. Futaana et al. (2010) reported a Chandrayaan-

1 observation of another type of proton entry into the near

wake along the magnetic field in the solar wind frame of

reference.

It has also been found by Kaguya plasma wave observa-

tion (LRS/WFC-H) that there exists an asymmetric struc-

ture of electron density profile at the wake boundary de-

pending on the direction of the IMF. The electron density is

often enhanced at the wake boundary of the northern hemi-

sphere when the Bz component of the anti-sunward IMF

is positive (that is, directed northward). The electron den-

sity enhancement occurs on the southern hemisphere when

the Bz component of the anti-sunward IMF is negative (di-

rected southward). The north-south asymmetry reverses for

the sunward IMF (Kasahara et al., personal communication,

2010).

To understand the phenomena that are considered to be

controlled by the solar wind magnetic field, it would be

helpful to examine the basic role of the interaction of the

solar wind magnetic field with non-magnetized bodies us-
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Table 1. Choice of parameters.

Run ve/c λD/RO �x/λD �e/ωe φB riL/RO reL/RO �t

#1 0.1 0.25 1/3.2 12 −45◦ 0.94 0.029 0.005

#2 0.1 0.25 1/3.2 12 −15◦ 0.94 0.029 0.005

#3 0.05 0.125 1/1.6 12 −45◦ 0.47 0.014 0.005

#4 0.05 0.125 1/1.6 0.75 −45◦ 7.54 0.23 0.016

ing numerical simulations.

To deal with the solar wind interaction with a non-

magnetized, non-conducting body on which surface charg-

ing plays an important role, it is desirable to treat the elec-

trons as particles. Particle-in-cell codes have been used to

study solar wind interaction with non-magnetized obstacles

by several authors (Farrell et al., 1998; Birch and Chapman,

2001, 2002; Guio and Pécseli, 2004, 2005), but they did not

include surface charging in their simulation because their

interests focused rather on the infilling of the wake, the ion

acceleration, or the phase space structures in the wake.

Kimura and Nakagawa (2008) included surface charging

in their 2-dimensional, full-particle electromagnetic code

to calculate the electric field at the wake boundary. They

succeeded in reproducing the ambipolar electric field at the

wake boundary, the ion acceleration into the central void,

the surface charging of the nightside surface, and the in-

tense electric field at the terminator simultaneously in a self-

consistent manner, but they did not include photoemission

or the solar wind magnetic field.

In this paper, the solar wind magnetic field is included

in the electromagnetic full particle simulation. The effects

of photoelectrons, although they are of crucial importance,

are not included in order to concentrate on the role of the

magnetic field. The crustal magnetic fields and the solar

wind protons reflected by the lunar surface (Saito et al.,

2008) give rise to a variety of interesting phenomena, but

in this paper we limit ourselves to the basic cases of a

non-magnetized body immersed in the solar wind having

an intrinsic velocity distribution.

2. Numerical Simulation
2.1 Two-dimensional electromagnetic PIC simulation

A 2-D, full-particle electromagnetic code (Birdsall and

Langdon, 1985) is used in this study. The simulator is the

same as that used by Kimura and Nakagawa (2008), with

the exception that it now allows for inclusion of the solar

wind magnetic field.

We solve the equation of motion of 7.86×106 ions and as

many electrons that are initially distributed over a 20RO×
20RO simulation box (−5RO < x < 15RO, −10RO < y <

10RO, where RO is the radius of the obstacle ) except for

the inside of the obstacle. The initial velocity distributions

are shifted Maxwellian
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for electrons, where vsw is the solar wind speed and vi and

ve are the thermal speeds of ions and electrons, respectively.

We set the ratio vi : vsw : ve = 1 : 8 : 32. As the simulation

starts, the plasmas flow down the simulation domain due

to the anti-sunward bulk velocity (vsw, 0, 0), forming the

plasma cavity behind the obstacle. The particles that leave

the simulation box at the downstream end are removed from

the simulation domain.

The particles that collide with the obstacle are also re-

moved from the simulation box after giving their electric

charge to the surface of the obstacle. The electric charges

are fixed to each position of the collision, on the assumption

that the obstacle is electrically insulating. No emission of

secondary electrons is considered.

On removal of these particles, as many particles are in-

jected from the upstream boundary. To reduce the time for

the calculation, we use a high-speed solar wind, vsw =
0.025c (or 0.0125c), together with the electron thermal

speed ve = 0.1c (or 0.05c), which leads to a Debye length

λD ≡ ve/
√

2ωp as large as 0.25RO (or 0.125RO), where

ωp is the plasma frequency. The Debye length is typically

of the order of 10–100 m in the average solar wind, so it

should be noted that not all the results of the present sim-

ulation can be applied directly to a large obstacle such as

the Moon whose radius is 104 to 105 times as large as the

Debye length. The scaling of this simulation is rather more

suitable for a smaller object such as an asteroid.

It should also be noted that the effects of photoelectrons

are not included in this simulation. Thus, we cannot discuss

the electric potential on the dayside surface of the obsta-

cle. It might also change the electric field structure at the

terminator.

Table 1 summarizes the parameters for 4 simulation runs.

Details of the simulation scheme are fully described in

Kimura and Nakagawa (2008).

2.2 Inclusion of the solar wind magnetic field
A uniform magnetic field B = (B cos θB, B sin θB, 0)

is defined at 256 × 256 grids over the simulation domain

as an initial condition, where θB is the angle between the

magnetic field and the solar wind flow along the x axis.

We start with θB = −45◦ to represent the direction of the

average solar wind magnetic field.

The magnitude of the magnetic field is chosen so that

the ion Larmour radius riL is smaller than the radius of

the obstacle RO. As riL = vi/�i = 32ve/�e and RO =
4λD (or 8λD) in our simulation, we require an electron

cyclotron frequency �e larger than 8
√

2ωp (or 4
√

2ωp).

Consequently, the Alfvén speed becomes larger than the

speed of light c and any magnetic distortion propagates

faster than the speed of light. So it should be noted that

we cannot discuss the deformation of the magnetic field in
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Fig. 1. Two-dimensional plots of the ion density ni (left) and the electron density ne (right) around the obstacle (outlined with a white circle) for the

simulation run #1. The solar wind flows from the left to the right. The solar wind magnetic field is −45◦ from the x-axis.

this simulation. We employ �e/ωp = 12 in simulation runs

#1 to #3, and then relaxed the condition to �e/ωp = 0.75

in simulation run #4.

The time step �t is set so that it satisfies the Courant con-

dition and is smaller than 10−2 times the electron cyclotron

period 2π/�e.

In order to reproduce the frozen-in condition of the solar

wind, the electric field E = −Vsw × B generated by the

motion of the solar wind magnetic field past the obstacle

is introduced as an initial condition. Otherwise, the plas-

mas cannot flow with the solar wind magnetic field but are

guided by the external magnetic field. After that, the mag-

netic field and the electric field are calculated by solving

Maxwell’s equations with the FDTD method.

3. Result
3.1 Plasma structure

Figure 1 shows the ion and electron densities around

the non-magnetized obstacle in the solar wind magnetic

field with θB = −45◦, obtained from simulation run #1.

The Debye length is 0.25RO and the ion Larmour radius

is 0.94RO for this run. This is a snapshot at the time t =
4.5 × 102ω−1

p (90000 steps), when the solar wind has swept

the simulation domain twice.

An ion void is formed behind the obstacle. The ions can-

not reach the downstream-side surface of the obstacle be-

cause the thermal speed is smaller than the bulk speed of

the solar wind. The ion density structure is nearly sym-

metric with respect to the x-axis. Compared with the case

with no magnetic field (figure 1 of Kimura and Nakagawa,

2008), no influence of the magnetic field is recognized in

Fig. 1.

The electrons, whose thermal speed is much higher than

the solar wind bulk speed, can reach the downstream-side

surface of the obstacle. The negative charge accumulating

on the surface expels the following electrons, creating an

electron void. The mechanism is the same as in the non-

magnetized solar wind, but the difference is that the elec-

trons can go upstream only along the magnetic field lines,

due to the small Larmour radius reL. The number flux of the

electrons per unit area of the surface of the obstacle is large

at the position where the magnetic field is perpendicular to

the surface. As a result, the charge density is thought to be

larger in the negative-y region, producing a larger area of

depressed electron density than in the positive-y region.

In addition to the asymmetry of the electron void, en-

hancements of electron density were found streaking from

the vicinity of the terminator. In the right panel of Fig. 1, a

ridge of electron density enhancement runs from (x, y) =
(0.5, −2) to (4.5, −5) in units of RO, accompanied by a

slight depression next to the enhancement. On the positive-

y side, a faint but broad enhancement extends from (0, 1.5)

to (−3, 5) RO upstream. It should be noted that the streaks

extend far beyond the Debye length. The streaks are not

parallel to the magnetic field. The angle between the ridges

of the electron density and the solar wind direction (along

the x-axis) is −37◦ in the negative-y region deviating by

8 degrees from the solar wind direction, and 131◦ in the

positive-y region, with 4 degrees of deviation.

Figure 2 shows the bulk velocities of ions and electrons

averaged over about 120 particles in each bin. The motion

of ions, whose Larmour radius is 0.94 RO, is not affected by

the presence of the solar wind magnetic field. Because of

their low thermal speed, it takes time for the ions to get to

the center of the void, whilst they are convected away by the

solar wind. Thus, they cannot reach the downstream-side

surface of the obstacle and the central wake region near the

obstacle is completely void of ions.

In contrast, electrons are found in the center of the wake

near the obstacle surface, except for a part of the negative-

y area. In the positive-y side of the central void, the bulk

speed is sometimes very high.

Upstream of the obstacle, the bulk velocity of the elec-

trons is nearly the same as the convection velocity of the
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Fig. 2. Bulk velocities of ions and electrons averaged over each bin of 256 × 256 cells. The results from simulation run #1.
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Fig. 3. Flux of the electrons. The result of the simulation run #1.

solar wind. They begin to be skewed away at the termina-

tor of the obstacle being expelled by the negative charges

on the downstream-side surface of the obstacle. The ex-

pelled electrons flow away along the magnetic field being

convected by the motion of the magnetic field, producing

the streaks of enhancement of the electron density as seen

in Fig. 1.

Figure 3 shows the flux of the electrons. The electrons

expelled away from the terminator on the negative-y side

carry significant flux. On the positive-y side, the effect of

the expelled electrons is not very large. It is also found

that the high speed electrons in the positive-y region of

the central void as seen in Fig. 2 do not contribute much

electron flux into the void because of their low number

density.

3.2 Electric field structure
Figure 4 shows the electric potential calculated with the

relaxation method from the electric field and charge density

obtained from the simulation run #1.
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Fig. 4. A gray scale map of the electric potential φ around the obstacle

for simulation run #1, normalized with φ0 ≡ mev
2
e /q0. The dark

color indicates the negative potential. The negative potential on the

downstream side surface of the obstacle is asymmetric with respect to

the x axis.

A potential drop was found on the downstream side of the

obstacle. It extends as far as 3.3RO due to the electrons in

the central wake. On the nightside surface of the obstacle,

the largest potential drop is found in the negative-y sector

at which the solar wind magnetic field is perpendicular to

the surface of the obstacle. The potential drop is as large

as φ ∼ −2.8φ0 at x ∼ 0.7RO on the negative-y sector,

while on the positive-y sector, the maximum potential drop

is φ ∼ −1.7φ0 at around x ∼ 0.3RO, where φ0 ≡ m0v
2
e /q0.

The magnitude of the potential drop is comparable to the

floating potential of an artificial satellite in the solar wind

plasma without photoelectrons (e.g., Fahleson, 1967).

The weak negative potential in the lower left area of

Fig. 4 is due to the enhancement of the electron density as
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Fig. 5. (a) A gray scale plot of the magnitude of the electric field and (b)

a vector presentation of the direction of the electric field overlaid on the

magnetic field (gray bars), obtained from simulation run #1. The solar

wind magnetic field deviates −45◦ from the x-axis.

observed in Fig. 1. The negative potential on the upper right

area is not real; it is due to the periodic boundary condition

of the simulation.

Figure 5(a) shows the magnitude of the electric field

|E | =
√

Ex2 + Ey2 caused by the distribution of the elec-

tric charges around the obstacle. It does not include the

solar wind electric field generated by the motion of the so-

lar wind magnetic field past the obstacle (−Vsw × B field)

in the z-direction.

As well as in the non-magnetized solar wind (Kimura and

Nakagawa, 2008), we observe the electric fields at the wake

boundary. They are asymmetric with respect to the x-axis.

The most intense electric field is found at the termina-

tor, where the neutral surface exposed to the solar wind and

the negatively-charged surface on the downstream side are

adjacent to each other. The magnitude is as large as 2.0E0

on the positive-y side, where E0 ≡ meveωp/q0. The elec-

tric field on the negative-y side occupies a larger area but

the magnitude is somewhat weaker (E ∼ 1.6E0) than the

positive-y side, because the potential gradient is not so large

Fig. 6. A schematic illustration of the electrons’ access to the surface of

the obstacle in the solar wind with the magnetic field (a) θB = −45◦ and

(b) θB = −15◦ measured from the x axis. The solar wind flows from

left to the right (in the x direction).

due to the larger extent of negative charge on the surface.

Corresponding to the enhancements of the electron den-

sity, streaks of enhanced electric fields are also recognized

in Fig. 5(a). In the vicinity of the obstacle, the electric field

has a component parallel to the magnetic field as shown in

Fig. 5(b). This accelerates the electrons in the direction par-

allel to the magnetic field.

4. Discussion
4.1 Magnetic field control of the surface charging

In contrast with the non-magnetized solar wind case,

in which the solar wind electrons are able to access the

nightside surface of the obstacle freely from any direction

(Kimura and Nakagawa, 2008), the motion of the electrons

in the magnetized solar wind case is controlled by the solar

wind magnetic field. The electrons are confined within a

Larmour radius to the magnetic field line and we can more-

or-less approximate electron flow to be along the magnetic

field. Only the electrons on the magnetic field lines that

connect with the obstacle can contribute to surface charg-

ing.

Figure 6(a) illustrates an example of the magnetic field

with the angle θB = −45◦ measured from the flow direc-

tion of the solar wind. The thermal electrons come from

the upper left, or the lower right, direction along the field

lines. The electron flux arriving at the obstacle per unit

area on the surface should be largest at around −45◦ and
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Fig. 7. The electric potential φ for the simulation run #2, in which the

magnetic field direction is θB = −15◦ measured from the x-axis. The

potential is normalized with φ0 ≡ mev
2
e /q0.

135◦, where the magnetic field is perpendicular to the sur-

face. (Precisely speaking, the positions shift slightly due to

the solar wind bulk velocity.) As we assume the body to be

non-conducting, the electric charge accumulates at the po-

sition of impact and does not migrate on the surface. The

electric charge on the upstream-side surface can be easily

neutralized by the incoming solar wind ions and only the

electrons that reach the downstream-side surface contribute

to the charge accumulation. On the positive-y side, a small

area in the vicinity of the terminator (45◦ < θ < 90◦)

collects electrons from the upstream side. A small num-

ber of field lines are connected with the positive-y side and

they intersect the surface at an oblique angle. On the other

hand, a large area of the negative-y side and a part of the

positive-y side extending from −90◦ to 45◦ collects a larger

number of electrons, with the maximum near θ ∼ −45◦.

Thus, the surface charging and the potential drop are ex-

pected to be large on the negative-y side. On the positive-y

side, the potential drop should be smaller and shifted to the

terminator. The negative charging would vanish at around

θ ∼ 45◦ where the magnetic field lines do not intersect the

surface. These features are consistent with the electric po-

tential shown in Fig. 4.

Figure 6(b) shows an example of the magnetic field with

θB = −15◦. In this case, a wide range of the downstream-

side surface −90◦ < θ < 75◦ is covered by the electron

flux coming from downstream, and only a small area near

the terminator of the positive-y side is hit by the electrons

from upstream. Figure 7 shows the result of simulation run

#2 for the magnetic field direction θB = −15◦. Compared

with Fig. 4, the position of the maximum potential drop has

shifted to the center of the void, consistent with Fig. 6(b).

The asymmetry is less significant because a wide area of

the downstream side is exposed to the electron flux from

downstream. The negative potential of the central wake

extends far beyond 7RO, as in the non-magnetized solar

wind case (figure 2 of Kimura and Nakagawa, 2008).

The asymmetry of the electric field structure vanishes

when the magnetic field is parallel, or perpendicular to the

solar wind flow. The asymmetry is caused by the oblique

magnetic field; it would be most significant at the helio-

spheric distance of 1 AU, where θ ∼ −45◦ on average. On

the Moon, for example, the negative charging and the max-

imum potential drop are expected to be shifted to the dusk-

side of the nightside surface. Since the solar wind magnetic

field is variable, there would be sudden changes of charge

and discharge as observed by Apollo missions (Colwell et

al., 2007, and references therein) at abrupt changes of the

magnetic field direction.

4.2 Streaks of the enhanced electron density
In the absence of photoelectrons, the electrically-neutral

surface on the upstream side of the non-magnetized body is

not an obstacle as seen from the electrons of the upstream

solar wind. Only the negatively-charged surface is the ob-

stacle that expels the electrons. Figure 8 shows the elec-

tric potential as seen from the electrons (that is, reversed

in sign) plotted against the distance along a magnetic field

line. Initially, the magnetic field line upstream of the non-

magnetized body (which crosses the x-axis at x = −2

in Fig. 8) is nearly equipotential. A potential difference

as large as 2φ0 appears on the field line at the terminator

(which crosses the x-axis at x = −1 in Fig. 8). The elec-

trons that cannot climb up the potential difference are accel-

erated away from the terminator by the electric field com-

ponent parallel to the magnetic field, and flow down along

the field line. The electrons, once accelerated, keep going

along the field line although the potential gap is restricted

to a small area near the obstacle.

We can estimate the speed of the electron flow v|| along

the magnetic field line to be v|| ∼ 2ve. The electrons flow

down along the magnetic field line, while the field line is

convected down at the solar wind speed vsw = 0.25ve.

Combining the thermal velocity (v|| cos θB, v|| sin θB, 0)

with the convection velocity (vsw, 0, 0) as illustrated in

Fig. 9, we obtain the flow direction −40◦ measured from the

direction of the solar wind flow. On the positive-y side, the

electrons flow along the magnetic field line against the solar

wind bulk flow with the velocity (−v|| cos θB, −v|| sin θB, 0)

and the flow direction as seen from the obstacle is 129◦ from

the solar wind direction. These are consistent with the di-

rection of the streaks of the electron enhancements, −37◦

and 131◦, as has been observed in Fig. 1.

In the case of the magnetic field whose direction is θB =
−15◦ from the x-axis, the flow directions of the accelerated

electrons are calculated to be −13◦ and 163◦. Figure 10

shows the electron density obtained from the simulation run

#2 with θB = −15◦. The electron enhancements streak

in the direction −14◦ measured from the x-axis on the

negative-y side and in the direction 160◦ on the positive-y

side, although this is rather faint due to the very small area

of negative charge on the surface near the terminator on the

positive-y side. They agree with the above expectations.

4.3 Dependence on the Debye length
In general, the spatial extent of the electric field caused

by the surface charging is of the order of the Debye length.

In this paper, a Debye length λD as large as 0.25RO has been
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Fig. 9. A schematic illustration of the motion of electrons accelerated by

the surface potential.

employed. There might be a concern that the effect of the

surface charging is limited for an object whose radius RO is

much larger with respect to the Debye length.

Figure 11 shows the result of the simulation run #3, for

which the Debye length is reduced to be 0.125RO by slow-

ing down the electron thermal speed. The solar wind bulk

speed and the ion thermal speed are also reduced in the

same proportion. As expected, the spatial extent of the elec-

tron void around the terminator is smaller in Fig. 11(a) than

in Fig. 1. On the other hand, the void in the central wake is

essentially the same.

The asymmetry of the potential structure is clearer in

Fig. 11(b) than in Fig. 4. The largest potential drop is

φ ∼ −3φ0. (Note that φ0 is also reduced by slowing down

the electron thermal speed ve.) As the ratio of the potential

drop to the electron thermal energy is nearly the same as

before, the electrons gain as much flow speed as before and

the streaks of electron enhancement appear in Fig. 11(a).

The potential drop in the downstream wake extends far

beyond 7 RO in Fig. 11(b), differently from the larger Debye

length case in Fig. 4. The relative importance of the wake

potential to the surface charging increases for a larger scale

obstacle.
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Fig. 10. The electron density ne obtained from the simulation run #2. The

solar wind flows from left to right. The solar wind magnetic field is

−15◦ from the x-axis.

4.4 Weaker magnetic field case
We have employed an intense magnetic field �e = 12ωp

and there might be a concern that the control by the mag-

netic field is too strong in these simulations. So we car-

ried out another simulation run (#4) in which the magni-

tude of the magnetic field is as small as �e = 0.75ωp. In

this case, the ion Larmour radius riL is as large as 7.54RO,

i.e. the ions are almost non-magnetized, and the electron

Larmour radius reL is 0.23RO, larger than the Debye length

λD = 0.125RO. Figure 12 shows the electric potential ob-

tained from run #4. The asymmetry of the potential struc-

ture is recognized, although it is not as clear as in Fig. 11(b),

due to the large electron Larmour radius. It shows that the

magnetic field control of the surface charging of the non-

magnetized obstacle is significant, as long as the electron

Larmour radius is smaller than the size of the obstacle.

4.5 Comparison with observations at the Moon
Limitation of the scale size of the obstacle with respect to

the Debye length, together with the absence of photoemis-
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Fig. 11. (a) The electron density ne and (b) the electric potential φ

for the reduced Debye length case λD = 0.125RO, obtained from the

simulation run #3 at time t = 9.0 × 102ω−1 (180000 steps) when the

solar wind flow has swept the simulation domain twice. The potential is

normalized with φ0 ≡ mev
2
e /q0.

sion, prohibits us from making a direct comparison of the

simulation result with the observations made at the Moon.

Too small a ratio of the obstacle size to the Debye length

magnifies the effect of surface charging with respect to the

potential drop at the wake boundary. Nevertheless, some

aspects of the model can be compared with the lunar data.

Such a comparison would help elucidate what aspects of

the model are appropriate for all scale sizes of objects and

which are more limited to smaller objects.

As we have seen in Section 4.2, the potential drop at the

terminator is of the order of 2φ0, which corresponds to 60–

80 V for the typical solar wind electrons having a thermal

energy of 15–20 eV. This is consistent with the Apollo

SIDE observation of 70 eV ions accelerated by the negative

lunar surface potential (Freeman and Ibrahim, 1975) and

a surface potential as low as −100 V on some terminator
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Fig. 12. Electric potential in a weak solar wind magnetic field, obtained

from the simulation run #4, at time t = 9.4 × 102ω−1 (60000 steps)

when the solar wind flow has swept the simulation domain a little more

than twice.

crossings (Lindeman et al., 1973).

The largest potential drop on the nightside surface of the

obstacle, 3φ0, which corresponds to 90–120 V, is consistent

with a lunar surface potential of −120 V inferred from the

Lunar Prospector observation of the electrons at an altitude

of 20–40 km (Halekas et al., 2002), but somewhat smaller

than the newly found potential drop of −200 V near the

edge of the wake (Halekas et al., 2008). Halekas et al.

(2008) also reported that the surface potential drop with

respect to the local plasma is smaller in the central wake

than near the wake boundary. No such signature is found

in this simulation. Halekas et al. (2008) attributed this to

secondary electrons, which are not included in the present

simulation.

The minimum electron density obtained by Lunar

Prospector in the lunar wake (figure 6 of Halekas et al.,

2005) appears to be shifted slightly to the duskside, con-

sistent with the result of the present simulations. This is

likely, because the magnetic field lines of the average IMF

at 1 AU are perpendicular to the dusk-to-night surface of

the moon.

It is difficult to apply the wake potential obtained from

the simulation with a large Debye length to the lunar obser-

vations. In the classical theory of a plasma expansion into

a vacuum (Samir et al., 1983), the electrons were thought

to rush into the void faster than the ions due to the faster

thermal speed. However, in the present simulation with

nightside surface charging, the electrons are retarded by the

negative charging of the downstream-side surface, and can-

not precede the ions. Figure 13(a) shows the ion and elec-

tron densities for several distances from the obstacle, ob-

tained from simulation run #3. In the vicinity of the obsta-

cle (x = 1RO), the ions enter the void faster than the elec-

trons, producing a positive excess of charge in the vicinity

of the wake boundary which affects the potential structure

as observed in the top panel of Fig. 13(b). Such an effect of
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Fig. 13. (a) The ion and electron densities ni, ne (gray and black curves, respectively) and (b) the electric potential φ (black) overlaid on the density

difference ni − ne (gray), obtained from the simulation run #3 at time t = 9.4 × 102ω−1, the same as in Fig. 11. The potential is normalized with

φ0 ≡ mev
2
e /q0.

the surface charging should be more limited within a small

area.

A negative excess of charge is found in the central wake

at x = 2 − 3RO in Fig. 13 and disappears at 4RO. At

x = 3RO, well beyond the Debye length from the obstacle

(although the Debye length becomes large in a low density

plasma), the potential drop in the central wake with respect

to the ambient solar wind is about 0.5φ0–1φ0. If we as-

sume that this is the wake potential and that the wake po-

tential is essentially independent of the Debye length, as

long as the ratio of the thermal speeds to the solar wind

speed is kept constant, it is not necessary to evaluate it in

terms of the electron thermal energy mev
2
e /q0, but rather,

we can convert it directly into volts using ve = 0.05c for

the simulation run #3. It is calculated to be 0.64–1.3 kV.

This is much stronger than it appears in Fig. 11 in which

the surface charging effect is magnified. Although this is

a very rough estimation, it is of the same order as the po-

tential of −442 V estimated from the WIND observation of

backstreaming electrons (Farrell et al., 1996) and −480 V

estimated from NOZOMI observation of counterstreaming

electrons (Futaana et al., 2001).
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This simulation reproduced the streaks of the electron en-

hancement along the magnetic field line on the same hemi-

sphere as the electron enhancement detected by Kaguya

LRS/WFC-H, but with a slight difference in the location.

This might be due to the effect of surface charging, or the

absence of photoelectrons in this simulation. Photoelec-

trons might affect the position of the first contact of the

magnetic field line with the negative surface density. At

present, we cannot conclude that they are the same phe-

nomena or not.

The horizontal ion entry along the magnetic field lines

as reported by Futaana et al. (2010) is not observed in the

present simulation.

5. Conclusion
A two-dimensional, electromagnetic particle-in-cell sim-

ulation has revealed that the solar wind magnetic field con-

trols the direction of the thermal flow of the solar wind elec-

trons onto a non-magnetized, non-conducting obstacle im-

mersed in the solar wind flow. The accumulation of the

negative charge on the downstream surface of the obsta-

cle is largest at the position where the solar wind magnetic

field is perpendicular to the surface. The asymmetry of the

surface charging causes an asymmetry of electric potential

structure.

In the absence of photoemission, the solar wind electrons

on the equipotential magnetic field line suddenly gain po-

tential energy on arrival of the field line at the negatively

charged surface at the terminator. The electrons begin to

flow down the field line away from the obstacle, forming

streaks of enhanced electron density. It is likely that the

photoelectrons and secondary electrons, that were not in-

cluded in the present simulation, modify the surface charg-

ing near the terminator and the position of the electron en-

hancements around the terminator. Their inclusion will be

necessary in future studies.
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