
N A S  T E C H N I C A L  

M E M O R A N D U M  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
? 

NASA TM X- 52866 

ROLE 0% THE SURFACE IN THE MEASUREMENT OF 

THE LEI DEN FR zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOS% TEM PERAPU RE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
by Kenneth J. Baumeister, Robert E. Henry, and Frederick F. Simon 
Lewis Research Center 
Cleveland, Ohio 

TECHNICAL PAPER proposed for presentation at the Special session on 
Augmentation of Convective Heat and Mass Transfer of the American 
Society of Mechanical Engineers Winter Annual Meeting 

'' New York, New York, November 29 -December zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3, 1970 

* 



€IDLE OF THE SURFACE IN THE MEASUREMENT OF THE LEIDENFROST TEMPERATURE 

by Kenneth J. Baumeister, Robert E. Henry, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA* and Frederick F. Simon 

ABSTRACT 

National Aeronautics and Space Administration 
Lewis Research Center 

Cleveland, Ohio 

Aluminum, brass, stainless steel, gold plated copper, 
and pyrex glass surfaces were used to investigate the 
effect of surface properties zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAon the Leidenfrost tempera- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

2 ture. The initial drop radius, heater surface character- 
istics, and liquid subcooling were related by a conduction 
model to the hidenfrost point. The model indicated the 
important parameters effecting the Leidenfrost point. 
Using this model, most of the variation of Leidenfrost 
temperature reported in the literature could be delineated. 
Also, for practical purposes, experimental evidence in- 
dicates a possible equivalence between the hidenfrost and 
the minimum temperature in a pool boiling system. Sur- 
face roughness and contamination, particularly for water, 
are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsb~wn to have extremely large effects on the Leiden- 
frost and minimum temperatures. 

The Leidenfrost point, thus, is not a unique property 
of the fluid: Consequently, the nature of the surface must 
be considered when estimating the efficiency of boiling 
heat transfer in quenching operations or in spray cooled 
systems. 

In 

SYMBOLS 

C 

ii 

specific heat of heater plate 

time average heat transfer coefficient zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
k 

NT dimensionless group, 6etoo/kpC 

9 heat flu 

thermal conductivity of beater surface 

% critical heat flu 

qmin heat 5u at Tmin 

RO radiusof drop, see Fig. 3 

r radius 

T plate temperature 

TL liquid temperature 

TLeid Leidenfrost temperature 

TLeid, iso ideal isothermal value of TUid 

TUid, meas measured value of Thid associated with 
point B’ in Fig. 2 

Tmin 

Tmin, iso 

TO 

TP 

Tsat 

t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
t* 

tevap 

t 

V 

We 

Z 

Z* 

ff 

P zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
rl 

‘IO zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 

P 

surface temperature associated with point B 
in Fig. 1 

ideal isothermal value of Tmin 

initial plate temperature 

surface temperature of plate 

saturation temperature 

time 

dimensionless time 

time for a liquid drop to completely evaporate 

characteristic time 

velocity of drop normal to surface just before 
impact 

2 Weber number (We = pLv Ro/u 

axial direction perpendicular to plate 

dimensionless z, Kz/k 

thermal diffusivity, ( k /Cp)  

@Ck)-l 

dimensionless radius, k / k  

dimensionless surface radius, &%/k 

(T - TL)/(To - TL) 

plate density 
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drop density PL zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
U drop surface tension zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
7- dimensionless time, @t/kpCp 

INTRODUCTION 

In recent years, the familiar pool boiling curve 
shown in Fig. 1, and the droplet evaporation curve(i-ll) 
shown in Fig. 2, have been the object of intensive study. 
In particular, the prediction and experimental determin- 
ation of the minimum temperature Tmh, and the Leiden- 
frost temperature TLeid, have received much attention. 
A knowledge of these temperatures is important for a 
basic understanding of boiling, a s  well as for quenching 
studies, cool down of cryogenic pumps, spray cooling, 
liquid droplet removal in mist section of boilers, and in 
the transition from nucleate to film boiling. The latter 
example is important in nuclear reactor safety consider- 
ations. 

For spray cooling, the heat removal efficiency de- 
pends on whether the surface against which the drops 
impinge has a temperature above or below the Leidenfrost 
temperature. If the wall temperature is below the Leiden- 
frost temperature, high heat transfer rates associated 
with nucleate boiling occur, while if the surface temper- 
ature is above the Leidenfrost temperature,. lower heat 
transfer rates associated with film boiling occur. It will 
be shown herein that the Leidenfrost point is  not a unique 
property of the fluid. Consequently, the surface-fluid 
combination establishes the type of boiling (film or nucle- 
ate) which will occur. Thus, the heat transfer coefficient 
in these systems can be enhanced (or reduced) by an order 
of magnitude simply by changing the properties of the sur- 
face zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAso a s  to increase or decrease the Leidenfrost tem- 
perature. 

The Leidenfrost temperature is also important in 
constant q systems. In a constant q (heat flux) system, 
a question of stability must be considered if a small vapor 
patch of film boiling should occur. Will the vapor patch 
grow and engulf the whole coolant channel or wi l l  it col- 
lapse and disappear? Semeria and Martinet(") predicted 
that stability would depend on the value of the minimum 
temperature squared. Simon et al(l3? zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA14) pointed out that 
any error in the prediction of the minimum temperature 
will be greatly magnified in the squaring process. Thus, 
all the parameters which affect the minimum or  the Lei- 
denfrost temperature should be clearly delineated. 

At the present time, however. there seems to be 
considerable uncertainty in the literature as to what is the 
Leidenfmt temperature or minimum temperature for a 
given fluid. 

point data for a given fluid. Water, for example, gives 
evidence of wide scatter in the reported data. 

Bell(l) states that at the present time there is no 
unique value of the Leidenfrost temperature for a given 
fluid, and that there is insufficient information available 
to predict the Leidenfrost temperature. He further states, 
"One must either guess from the most similar experi- 
mental cases available, or better still yet, test one's own 
case experimentally. 'I 

Table I displays a variety of Leidenfrost and minimum 

The purpose of the present paper is to explain why 
there are large variations in the Leidenfrost measurements 
and to delineate the important parameters involved in the 
measurement of the Leidenfrost temperature. Also, the 
present paper will consider under what conditions the min- 
imum temperature Tmin might be deduced from meas- 
urements of TLeid. For if it is desired to measure the 
minimum temperature of a new fluid, the Leidenfrost tech- 
nique would be preferred because of its simplicity. 

There are a number of experimental factors that could 
account for the large variations in the measured values of 
the Leidenfrost temperature reported in Table I. For ex- 
ample: 

1. How does the placement of the drop on the surface 
affect the Leidenfrost temperature? 

2. How does the extremely short but very important 
temperature reduction beneath drop affect the Leidenfrost 
temperature? Here, the properties of the supporting plate 
a s  well a s  liquid properties and subcooling Wvern the 
magnitude of the temperature transient. 

(fouling) and chemical reactions have on the Leidenfrost 
temperature 7 

4. For a given heated surface, how does wettability zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 
liquid contact angle - effect the Leidenfrost temperature? 
This report will deal with item 2 and 3 above. 

First, an analytical conduction model wil l  be con- 
structed which will indicate the important dimensionless 
groups which affect the transient plate temperature beneath 
a liquid drop in a Leidenfrost boiling experiment. From 
consideration of these dimensionless groups, the cffect of 
changes in surface properties, liquid subcooling and liquid 
volume on the Leidenfrost temperature can be seen. 

predicted trends and to ascertain the effects of surface 
rougimess and contamination on the Leidenfmt and mini- 
mum temperature. 

3. What effect wil l  surface roughness, contamination 

Second, experiments will be presented to verify the 

SURFACE TEMPERATURE CRlTERIA 

Physical Situation 

Consider a surface whose temperature i s  above the 
Leidenfrost temperature TLeid. When a drop approaches 
and touches(2o) this surface, a vapor layer will begin to 
form under the drop. The exact mechanism by which the 
heat is transferred to the drop to generate the vapor layer 
i s  unknown; however, a comprehensive discussion of the 
possible heat transfer mechanisms is given by Harvey. (20) 
Thus, upon impact of the drop, the surface temperature 
begins to decrease, because of the heat transferred to the 
drop. 

ition or  nucleate boiling will occur and the drop will seem- 
ingly explode. On the other hand, if the initial plate tem- 
perature is greater than T h i d ,  and if the fall in surface 
temperature is not too severe, thc rapor generated beneath 
the drop will coalesce and form an insulating film. Iierc, 
the liquid no longer touches (wets) the surfacc, esccpt 
possibly for small liquid spikcs which can penetrate the 
vapor Layer. (21) The drop will now evaporate slowly in 
thc Leidenfrost boiling state where the vapor film supports 
the drop. 

If the surface temperature falls sufficiently, trans- 
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In zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmeawing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthe Leidenfrost temperature, the exper- 
imenter sets a plate at  an initial temperature To, ejects 
a liquid drop on to the surface, and measures the time it 
takes for the liquid drop to evaporate. Next he plots his 
vaporization time data against To as  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAshown in Fig. 2 and 
determines the Leidenfrost temperature, T u i d ,  meas 
from this curve. In this type of experiment, however, the 
experimenter generally does not measure the transient 
temperature directly beneath the drop at the plate surface, 
he only measures the initial temperature of the surface. 
But, as  previously discussed, the initial surface temper- 
ature will fall when the liquid comes in contact with it. 
Thus, the 9rue11 value of the Leidenfrost temperature is 
the real wall temperature that exists under the drop in the 
short period after the drop makes contact with the sur- 
face. In all cases the surface temperature will decrease; 
consequently, the actual Leidenfmst temperature wil l  
always be less than the initial plate temperature asso- 
ciated with point B in Fig. 2. 

The Leidenfrat temperature, therefore, measured 
on a surface which does not experience any temperature 
drop, TLeid, isO (an isothermal surface) will be somewhat 
less than the measured Leidenfrost temperature on a real 
surface which experiences a temperature drop, assuming 
that both surfaces have the same surfaces finish and wet- 
ting characteristics. Thus, 

TLeid, is0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA< TLeid, meas 

since the surface temperature is measured before the 
liquid is placed on the surface. 

The parameters which affect a decrease in surface 
temperature beneath the drop can mw be found by con- 
sideration of the transient conduction equation in the 
heated plate. It must be emphasized that the following 
considerations apply only to the very short time in which 
the initial transient has occurred, perhaps 100 msec. The 
end of this short initial transient is designated by time, 
t. For times greater than t m ,  the drop enters a steady 
state of nucleate, transition, or film boiling. The tran- 
sient time t m  is negligible compared to the evaporation 
time scale shown in Fig. 2. However, the thermody- 
namics which occurs during this short transient controls 
which of the boiling regimes in Fig. 2 the drop will enter. 

Conduction Model 

Consider a hot semi-infinite solid at initial temper- 
ature To, as  shown in Fig. 3. A drop of liquid is now 
placed gently on the surface. If liquid is injected onto the 
surface with a sufficient vebcity, mechanical breakup 
will occur and the present analysis will not apply. This 
will be discussed later. For simplicity, during the initial 
but very short transient period, the unlmown time de- 
pendent heat transfer coefficient is represented by a time 
averaged heat transfer coefficient designated 'li. For this 
simple model, liquid properties and liquid subcooling w-ill 
affect the surface temperature through the parameter h. 
At present, as  Harvey(2o) points out, we just dD not 
understand what is happening during this extremely short 
complex transient process to be any more specific. WC 
will, however, consider general effects that would result 
from a decrease or  increase in E. 

Since the drop is symmetric a b u t  the origin, the 
governing energy equation in the =lid material becomes 

with the conditions 

(3) t = O  2 2 0  T = T o  

aT t . 0 - k -  

(4) 

az 
z=O 
r a 0  

t > O -  limit 
z-00 

T = To 

Introducing the following dimensionless variables 

into Eq. (2) gives 

where 

T - TL 
e=- 

To - TL 

- 
hr zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq = -  
k 

(5) 

and t, is a short characteristic time which is of suf- 
ficient length zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs0 either 8tead.v state nucleate or Leiden- 
frost boiling could be established. The initial conditions 
and boundary conditions become 

t * = o  z * 2 0  0 = 1  (13) 
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The dimensionless number zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN, tells zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAus under what 
conditions the measured value of the Leidenfrost temper- 
ature TLeid,meas will be equal to the Leidenfmt tem- 
perature on an isothermal surface TLeid, iso. 

dependent temperature gradient will be large and the tem- 
perature beneath the drop falls; the surface is nonisother- 
mal. On the other hand, for small NT the change in sur- 
face temperature will be very small; the surface is nearly 
isothermal. 

We can better comprehend the above ideas and get a 
better physical feeling for the effect of the dimensionless 
parameter N, by considering the solution of Eq. (11) for 
the case of an infinite drop zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA('lo zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= m). In this special case, 
Eq. (11) becomes 

By inspection of Eq. ( l l j ,  if NT is large, the time 

where we have chosen the new dimensionless time zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT to be 
of the form 

The solution to Eq. (16) with the conditions (14) and 
(15) is given in Ref. (22) (p. 71) and i s  shown in Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4, a s  
the curve marked q,. The temperature drop is smaller 
for finite zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAqo because of radial conduction effects. 

Assuming the ratio of t/t, is order 1, 

t - = O(1) 
t, 

that is, sufficient time has occurred for the drop to enter 
the nucleate or film boiling state, then the abscissa in 
Fig. 4 is equivalent to N,. 

As was previously stated, for small N, drop in sur- 
face temperature will be quite small, and we label (arbi- 
trarily) this region when N, c 0.01 the '(isothermalfv re- 
gion. For N, > 0.1 the surface will be v(nonisothermal. v (  

The region between these two regions is arbitrarily labeled 
the Tntermediaterv region in Fig. 4. 

Any change in the system, therefore, whickdecreases 
N,, such as increased k, p ,  C ,  or decreased h will make 
the surface more nearly isothermal. Furthermore, an in- 
crease in rjo will increase the temperature drop maklng 
the surface nonisothermal. However, this only occurs in 

the nonisothermal region where the qo curves fan out. 
However, in the isothermal region the radius of the drop 
will have little effect, since a drop of infinite radius does 
not effectively lower the surface temperature. 

Conduction Criteria 

Consequently, after the liquid touches the surface, the 
surface temperature of the plate Tp will be equal to the 
initial surface temperature To when N, approaches zero, 
that is, 

limit Tp = To 
N7-0 

Under the condition of small N,, the surface temperature 
will remain isothermal during the experiment. Therefore, 
when condition (19) holds, the measured value of the Leiden- 
frost temperature TLeid meas, will be equal to the iso- 
thermal value of the hidenfrost temperature T u i d ,  iso 
under the conditions of the particular experiment. That is, 

- 
limit TLeid, meas - TLeid, iso 
N,+O 

As  will be discussed later, Tuid, iso may not be solely 
a property of the fluid under consideration. Rather 
TLeid, iso is a complicated function of other system param- 
eters, for example surface roughness and surface con- 
tamination. 

In correlating the experimental data to be presented 
later, it is convenient to write N, a s  the product ?t and 
P where 

The parameter p contains the important surface ma- 
terial properties, while Qt, implicitly contains the 
effects of liquid properties, subcooling and some surface 
roUghne66 effects. These effects wil l  be superimposed on 
the thermal property effects contained in 0. Then a s  an 
approximation to Eq. (19), assume 

limit Tp = To 
0-0 

For finite value of the product e t , ,  Eqs. (19) and (22) 
have the same limiting value. Equation (20) can also be 
written in the form 

limit TLeid, meas = TLeid, iso 
P O  

The key property group kpC has been observed to be an 
important parameters in  drop impingement studies for large 
Weber number(23) and for Tmin in flow film boiling. (24) 

Measurement of Tmin 

In a pool boiling system, consider a hypothetical sur- 
face which remains at a fixed temperature even when liquid 
comes in contact with it. In principle, there should be 
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some zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAminimum temperature T such that if the surface 
temwrature is below T m  nu%?ate or transition hi l ing 
will occur On the other hand, if the surface temperature 
is greater than T m  the vapor generated at the surface 
will coalesce and film boiling will occur. 

steady state constant temperature pool boiling measure- 
ment of Tmh, since by definition the surface is held at 
constant temperature. In reality, however, fluxations in 
the so-called steady state heat transfer coefficients will 
cause a time dependent surface temperature variation. 

active and quiet. (25) In film boiling, vapor domes alter- 
nately shift positions a s  the liquid-vapor interface adjusts 
to the unstable body force. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(26* 27) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. Finally, in transition 
boiling, extremely large variations in the heat transfer 
coefficient occur along the surface, due to alternate 
wetting and dewetting. 

To reduce the effebt of the temperature fluctuations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAin 
the pool boiling experiment, the criteria given by Eqs. (19) 
and (22) is applicable. The equivalent form of Eqs. (20) 

and (23) becomes 

At first glance, no criteria should be required for the 

For example, in nucleate boiling, sites are alternately 

and 

limit Tmin = Tmh, iso zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
P-0 

EXPERIMENTAL EQUIPMENT AND PROCEDURE 

Stainless steel, brass, aluminum, gold plated copper, 
and pyrex glass heating surfaces approximately 12 cm in 
diameter and 1.5 cm thick were fabricated and instrument- 
ed for use in this study. The metal surfaces were polished 
to a glass-like finish. After a fine lathe cut, the surfaces 
were sanded with silicon paper (320, 400, 500, 600) in the 
order given. Then, the surfaces were hand and wheel 
buffed with Tripoli 3 X  abrasive powder and then (Simi- 
chrome) polished. Finally the surface was cleaned with a 
dry cloth. A roughness indicator gave a 3 to 4 rms pin. 
measurement of the surface. The pyrex glass had the 
same rms range. 

An 1100-W hot plate was used to slowly bring each of 
the surfaces up to an equilibrium temperature. From zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtwo 
to four Chromel-Alumel thermocouples (24 gauge) posi- 
tioned about 1/32 in. beneath the surface were used to 
measure the surface temperature. 

surfaces were measured and vaporization time curves 
such as  shown in Fig. 2 were pbtted. The liquid was 
placed on the heated surface by the use of hypodermic sy- 
ringes, a small calibrated glass beaker and a small metal 
ladle. A 0.032 milliliter (ml) distilled water drop and a 
0.0125 ml ethanol drop were obtained with a calibrated 
syringe. A small marked glass beaker, which was used to 
scoop up boiling water, was calibrated to give a 6 ml drop. 
It was estimated that the standard deviation for the large 
drop was 0.5 ml. 

liquid temperature becomes difficult for runs other than 

The vaporization times of liquid zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdrops placed on these 

In using the syringe, however, control of the bulk 

br room temperature. Therefore, the liquid drop from 
the syringe was sometimes placed in a metal ladle heated 
to about 550' C. The drop immediately went into the 
Leidenfrat state, consequently the liquid temperature was 
always very near saturation value. The ladle was imme- 
diately (within 1 sec) placed on the bot test surface and 
rotated. The drop skidded off a feather edge to the test 
surface. It fell about 0.02 cm, thereby minimizing the 
possibility of it entering a metastable state. For a 0.02 cm 
fall from the ladle to the surface, the Weber number (We = 
pLv2Ro/o) is of the order of 0.1. For large Weber num- 
bers, the drops bounce and break up. Wachters(28) and 
Harvey(20) have experimentally investigated dynamic effects 
of falling drops impacting on heated surfaces for Weber 
numbers much greater than 1. 

A conventional stop watch accurate to a tenth of a sec- 
ond was used to measure the Vaporization time of the liquid 
drops on the hot surface. 

DISCUSSEON OF RESULTS 

Vaporization Time Curves 

The vaporization time curves for ethanol and water 
drops are shown in Figs. 5 to 7 for various surface ma- 
terials, liquid temperatures, and drop volumes as  indicated 
in the figures. 

sharply downward, corresponding to point B' in Fig. 2. 
For the pyrex glass surface, shown in Fig. 5, &me of the 
nucleate boiling and natural convection range is seen. As 
seen in these figures, the Leidenfrost temperatures for the 
different surfaces are significantly different, as also seen 
in the tabulation of table 11. The additional data in table I1 
will be discussed shortly. 

The Leidenfrost point occurs where the curves break 

Surface Fouling or Contamination 

Before investigating the effects of the surface prop- 
erties, let's consider the effect of contamination of the 
surface by the liquids. For water, in Fig. 5, a large 
scattering of the data is seen in the plate temperature range 
from 150' to 2 7 9  C. In this range the drop bounces and 
vibrates on the surface. Godleski and Bell(3) discuss in 
detail the bouncing and swirling of drops which, we believe, 
accounts for much of the data scatter. But why do small 
drops vibrate in this temperature range? Hoffman(2s) 
suggests that the formation of an oxide layer or perhaps 
partial wetting of the plate could account for the vibration. 

A most interesting phenomean occurred when the very 
first drop was placed on a freshly polished aluminum sur- 
face at a plate temperature of 167' C ,  as shown in Fig. 5. 
The drop remained in quiescent film boiling at this tem- 
perature. No bouncing or swirling of the drop was seen. 
This point was always easily reproduced on a freshly pol- 
ished surface. 

A freshly polished aluminum (3 to 4 rms pin.) was 
heated to 167' C and held at this temperature for GO min- 
utes, see Fig. 8. Then a water drop was placed on the 
surface. It went into quiescent film boiling and reproduced 
the original first drop data point shown in Fig. 5. Thus, 
the additional amount of surface oxidation that occurred 
duringthe GO minute heating did not affect the results. 

5 



As zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAadditional b p s  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~f liquid W B E ~  placed on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthe war- 
face, however, the vawrization tim? of the drops began 
to decrease and sputtering and vibration began to occur, 
see Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8.  The surface was apparently being contam- 
inated. A large 6 ml drop was then vaporized on the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsur- 
face to accelerate the contamination. After the 6 ml drop 
vaporized, the vaporization times of the small drop was 
one order of magnitude shorter than on the clean fresh 
surface. 

Figure 9 shows the Leidenfmst temperature of water 
on freshly polished surfaces to be approximately 1520 C, 
which is nearly 75' C lower than on the conventional con- 
taminated surface (upper curve in fig. 9 will be discussed 

surface looks clean and highly polished to the naked eye. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
' . polished surface no significant decrease was found from 

that in Fig. 6 (see table II). Apparently, the surface be- 
comes contaminated upon liquid solid contact. For the 
small drops, however, the drop can move to an uncon- 
taminated portion of the surface after the initial con- 
tact. This is not possible with large 6 ml drop. mu- 
ble distilled water, a s  well a s  every possible precau- 
tion was used to keep the system clean, in this partic- 
yJar case. 

At  present, the contamination is believed by the 
authors to be brought on by the reaction of water with the 
fresh aluminum surface, or  by deposits due to possible 
hardness in the water, or by deposits fmm dissolved salts. 

To prevent surface reaction, a relatively inert gold 
plated copper surface was then used to measure the va- 
porization times of large double distilled water drops. The 
first drop was placed on the surface at a plate temper- 
ature of 189' C. The large drop went into conventional 
Leidenfrost film boiling. This point is shown in Fig. 9. 

The nature of surface changed after the drop evaporated. 
It would appear that very minute impurities were depo- 
sited on the surface. Perhaps, the water more easily 
wets a contaminated surface and prevent stable film boil- 
ing from occurring at the same temperature. 

The vaporization time curves for ethaml are shown 
in Fig. 7 for various surface materials and liquid temper- 
atures as  indicated in the figure. The results were not 
strongly dependent on the surface contamination. Whether 
the surface was freshly polished o r  contaminated with 
water and ethanol drops, the vaporization times were 
nearly identical. In Fig. 7, the d symbols indicates data 
taken on a freshly polished surface. As seen in Fig. 7, a 
small drop and a large 6 ml liquid drop have the same 
Leidenfrost temperature. From this the authors concluded 
that the Leidenfrost temperature for small or large drops 
are identical for an isothermal surface provided such fac- 
tors as surface fouling Q not enter the problem. 

in Fig. 9 agrees quite well with the value of 155 reported 
in table I by Blaszkowska and Zakrzewka. The value In 
table I was found by merely observing the drops by eye. 
The authors, no doubt, assumed the drop to be in film 
boiling when a drop vibrated and bounced on the surface. 
This crude technique of judging may account for the low 
value of 142 degrees reported by Bovtingny. (18) 

. later). It should be pointed out, that the contaminated 

When large 6 ml liquid drops were placed on a freshly 

. 

The new value of the Leidenfrost temperature of 1520 C 

Effectof 0 Variations 

The surface with the smallest value of p should give 
the best approximation for an isothermal surface and con- 
sequently the lowest value of the Leidenfrost temperature. 
Plotting the Leidenfrost points from Figs. 5 to 7 in Figs. 10 
and 11, we see the expected decrease in the measured 
values of the Leidenfrost temperature for decreasing 0. 

frost temperatures are nearly the same for the aluminum 
and brass surface. Consequently, we could assume that 
both surfaces are for  all practical purposes isothermal. 
From Fig. 10, for 0 less than &lo-3 (hr 
surface can be assumed to be isothermal. 

Figure 12 gives further proof of this assumption. The 
temperature history of stainless steel and aluminum sur- 
faces are illustrated for various initial surface and bulk 
fluid temperatures after a 6 ml water drop reaches the 
surface. A s  seen in the figure, a large temperature drop 
occurs in the stainless steel surface while little or no 
temperature drop occurs in the aluminum surface. The 
drop in temperature on the stainless steel surface most 
likely accounts for the shift upward of the stainless steel 
data to the Qtted line shown in Fig. 6. Notice in Fig. 12, 
that the actual plate temperature which stainless steel 
begins to nucleate boil is 250' C. This i s  quite near the 
measured value for the aluminum and brass surface. 

We believe that the relatively high value of p for 
stainless steel accounts for the higher values of Leiden- 
frost temperatures reported from measurements on stain- 
less steel in table I as  well as in the present data in table II. 

A s  seen in Fig. 10, the measured values of the Leiden- 

F2/btu2), the 

Effect of qo Variations 

Notice in Fig. 4, that the effect of the initial liquid 
radius 'lo has a very small effect on the temperature drop 
in the isothermal region. Since aluminum and brass fall 
into this region we might expect very little radius effect on 
the Leidenfrost point. This is confirmed in Figs. 10 and 
11. A s  shown in those figures, the measured values of the 
Leidenf- temperature were nearly independent of the 
initial drop volume. The water data is based on the con- 
ventional contaminated surface, while the ethanol data is 
independent of surface contamination. 

On the other hand, stainless steel is not an isothermal 
surface as shown by the temperature plot in Fig. 12. Con- 
sequently, stainless steel falls into the intermediate region 
designated in Fig. 4.  In this region, the conatant qo lines 
begin to fan out. As  a result, we can expect the Leiden- 
frost temperatures to be sensitive to the initial drop radius. 
Gottfried, Lee, and Bell(4) observed an effect of initial 
radius on the Leidenfrost temperature. In Ref. (4), for 
example, on a stainless steel surface, the Leidenfrost 
temperature for a 0.0154 ml water drop is approximately 
25 degrees lower than for a 0.032 ml drop. Both drops 
were at room temperature. In the present study, a s  shown 
in Fig. 10, the larger drop (6 ml) has a Leidenfmst tem- 
perature approximately 20' C higher than the smaller drop. 
This is a relatively small change, and in fact data in 
Ref. (5) for water on a stainless steel surface did not show 
this result. This radius effect, however, should 11c even 
more pronounced on a surface with high 0. 

6 



Subcooling Effects 

During the initial experimentation, subcooled and 
saturated water drops were tested on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAboth the aluminum 
and brass plates. In general, saturated and subcooled 
drops had the same Leidenfrost temperature. Conse- 
quently, most of the data taken to determine the Leiden- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
fmst point on aluminum and brass were for subcooled con- 
ditions, as  this was the easiest to do experimentally. Some 
early experimental results of BorishanskyW confirm that 
the Leidenfrost temperature is independent of subcooling. 

According to Bradfield, (30) however, subcooling has 
a large affect on Tmin for a pool. The difference be- 
tween pool and Leidenfrost boiling probably results from 
the fact that small subcooled liquid drops quickly heat to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

, the saturation temperature. 
For the highly nonisothermal glass surface, however, 

a large subcooling effect was seen. The increase in ii 
for subcooling shifted the value of N7 further into the 
nonisothermal region. Here, for a fixed zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAqo, a much 
larger temperature drop would occur. A s  verified in 
Fig. 7, the Leidenfrost temperature for subcooled ethanol 
on glass is 100' C higher than the value for saturated 
ethanol. Room temperature water could not be made to 
Leidenfrost boil on glass, even after heating the upper sur- 
face of the glass with a propane torch. 

Minimum Temperature 

Beren~on(~ l )  working with a pool boiling apparatus 
measured the temperature at the minimum point for pen- 
tance on inconel, nickel, and copper surfaces under steady 
state constant temperature boiling conditions. The mini- 
mum temperature for his various materials has been re- 
plotted as  a function of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp in Fig. 13. The minimum tem- 
perature decreases as p decreases, in the similar man- 
ner as  in the Leidenfmst experiments. 

Surface Rouphness and the Minimum Temperature 

Hosler and Westwater(lg) measured a steady state 
minimum temperature for water of 258' C on an aluminum 
surface (see table I) which was polished with "0  gauge" 
emery paper. This value was slightly higher than the 
measured Leidenfrost temperature for a 6 ml water drop 
on aluminum (Tb id ,  meas = 235O zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc). 

polished. Therefore, the highly polished surface was 
roughened with 0 gauge emery paper in order to compare 
the measured value of T b i d ,  meas to the experimental 
value of Tmin by Hosler and Westwater. 

The experimental results for the roughened surface 
are shown in Fig. 14. As seen in this figure, the meas- 
ured value of the Leidenfrost temperature is 265O C, which 
is, for all practical purposes, the same value as  meas- 
ured by Hosler and Westwater. 

A recent paper by Cumo, Farello, and Fer rard l l )  
shows the same trend for increased surface roughness. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA 

course sandblasted surface has a Leidenfrost temperature 
70' C greater than a smooth lapped surface. 

Because of the agreement with the present experimen- 
tal results shown in Fig. 14 with those of Hosler and West- 
water, we suspect an equivalence between T h i d  and 

In the present study, bowever, the surface was highly 

T,in under certain conditions. In fact, for large satura- 
ted drops with similar surface conditions, the two may be 
identical. 

CONCLUSIONS 

As  seen in the present set of experimental data, sur- 
face contamination, k, p ,  C, drop volume, liquid subcool- 
ing, and surface roughness can account for the variations 
in the Leidenfrost and minimum temperatures reported in 
the literature. 
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E-5828 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Liquid 

Water 
Ethanol 
Benzene 

TABLE I. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- COMPARISON OF LEIDENFROST AND MINLMUM TEMPERATURES MEASURED 

(Degrees Centigrade) 

Boiling 
point 

100.0 
78.4 
80.0 

Godleski Gottfried, Lee, 
Bell(3) and Bell(4) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

ssl =I 

320 280 
17 5 17 8 
180 185 

TLeid, meas 
(small drops) 

Tamura Kutateladze Blaszkow ska Boutigny(l8) 
Tanasawa(lO) Borishanski(15) Zakrzewka(17) [ Ag] 

1 SSI I ?I 1 A-Bl 

1 302 250 157 142 
18 5 170 112 1 195 17 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 117 

--- 
--- 

TLeid, meas 
(large drop) 

Tmin 

1 . 258 
--- 

I --- 

[ S S ]  - Stainless steel 
[ A-B] - Aluminum-Bronze alloy 
[Ag] - Silver zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
[A l l  - Aluminum 
[ ?] - Not given 



TABLE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAII. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- LEIDENFROST TEMPERATURES MEASURED 
IN PRESENT PAPER 

NO0 

305 

230 

230 

--- 

155 

Plate material r 
--- 

325 

235 

235 

265 

>ZOO 

Pyrex glass 
(3-4 rms) 

Stainless steel 
(3-4 rms) 

Brass 
(3-4 rms) 

Aluminum zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt (3-4 rms) 

Aluminum 0-  
gauge (25 rms) 

Aluminum 
(fresh polish) 
(3-4 rms) 

Brass (fresh 
polish) 
(3-4 rms) 

Gold fresh 
polish (very 
smooth) 

(Degrees Centigrade) 

Water I Ethanol 

0.032 ml drop 

TL 
1000 c 

515 

305 

6 ml drop I 0.0125 ml drol 

26' C 100' C 
TL I TL 
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Figure 1. - Conventional pool boi l ing curve. 
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LEIDENFROST 
FILM BOILING 

INITIAL SURFACE TEMPERATURE, To 

Figure 2. - Evaporation t ime curve of l iquid drops in 
contact with hot surface for drops of equal volume 
and equal in i t ia l  temperature. 
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F igu re  4. - Effect of N, on sur face  temperature.  
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Figure 6. - Total vaporization t ime of 6 m l  water drops on  
polished aluminum, brass, and steel surfaces. 
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Figure 8. - Effect of increased surface contaminat ion 
on  vaporization t ime of a water drop on a n  a lu -  
m i n u m  surface at 167". 
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Figure 9. - Lowering of Leidenfrost temperature by meas- 
urement of vaporization t ime on freshly polished alu- 
m inum and ine r t  gold surfaces. 
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F igu re  10. - Effect of sur face  mater ia l  a n d  i n i t i a l  d rop  
vo lume o n  t h e  Leidenfrost tempera ture  of water. 
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Figure 11. - Effect of surface mater ia l  on the Leidenfrost 
temperature of ethanol. 
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Figure  12. - TemQerature 1/32 inch beneath sur face  
a f te r  6 ml  drop o f  water reaches t h e  heat ing  surface. 
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Figure 13. - Min imum temperature as a function of p 
for n-pentane (Data - Berenson, ref. 31). 
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F igure 14. - Effect of sur face roughness on  t h e  
Leidenfrost temperature of 6 m l  water drops 
o n  a n  a l u m i n u m  surface. 


