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ABSTRACT 
  

 HIV infection contributes substantially to global morbidity and mortality, 

with no immediate promise of an effective vaccine or cure. One major obstacle to 

vaccine development and therapy is to understand why HIV replication persists in 

a person despite the presence of viral specific immune responses. The emerging 

consensus has been that these immune cells are functionally ‘exhausted’ or 

anergic, and thus, although they can recognize HIV infected cells, they are 

unable to effectively keep up with rapid and dynamic viral replication in an 

individual. Negative checkpoint receptors (NCRs) are associated with immune 

dysfunction during chronic HIV infection. The goal of this study is to characterize 

an emerging NCR, TIGIT, in the context of HIV infection. The overall hypothesis 

is that TIGIT will be increased during HIV infection and limit anti-HIV responses, 

targeting the TIGIT pathway will reinvigorate existing anti-HIV T cell effector 

functions. Thus, these studies were conducted to elucidate the role of TIGIT in 

progressive HIV infection. 

 We have identified a combination of NCR pathways that can be targeted, 

TIGIT and PD-1 that may be responsible, at least in part, for making these 

immune cells dysfunctional and exhausted and thus unable to control the virus. 

We show that by blocking the TIGIT and PD-1 pathway, we can reverse the 

defects of these viral-specific CD8 T cells. Furthermore, we extend our findings 

to the clinically relevant nonhnuman primate model of HIV/AIDS. In addition, we 

identify potential predictors of immune reinvigoration from clinically obtainable 

samples. Our findings will give new directions to vaccines and therapies that will 

potentially reverse these dysfunctional cells and allow them to control HIV 

replication, but also serve in enhanced “shock and kill” HIV curative strategies. 
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DISSERTATION HIGHLIGHTS 

 

• HIV infection leads to an expansion of TIGIT+ CD8 and CD4 T cells in the 

blood and gut 

• TIGIT+ CD4 T cells are associated with HIV persistence 

• TIGIT+ CD8 T cells correlate with disease progression and are regulated 

by common gamma chain cytokines 

• TIGIT selectively dampens HIV-specific CD8 T cell responses 

• Blockade of TIGIT reinvigorates pre-existing anti-HIV CD8 T cell 

responses 

• Co-blockade of TIGIT and PD-L1 synergize to reinvigorate anti-HIV CD8 T 

cell responses than a single blockade alone 

• As a preclinical model we identified similarities and differences between 

huTIGIT and rhTIGIT in a nonhuman primate SIV model of HIV/AIDS 

• cART suppressed HIV infection results in an increase of Fusobacteria 

abundance in the gut  

• Increased abundance of Fusobacteria in the gut is associated with a 

decreased magnitude of anti-HIV CD8 T cell reinvigoration by TIGIT 

blockade 
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INTRODUCTION 
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Epidemiology 

 

 Human immunodeficiency virus (HIV) was introduced to the human 

population between 1915-1941 through multiple zoonotic infections from simian 

immunodeficiency virus (SIV) infected nonhuman primates [3, 4]. A recent study 

suggests that HIV subtype B has been circulating throughout the United States of 

America as a widespread epidemic since 1970 [5]. However, it wasn't until 1981 

when the Centers for Disease Control (CDC) first reported several cases of 

young, homosexual men presenting with Pneumocystis carinii pneumonia and 

Kaposi’s Sarcoma, which is not normally seen in young immunocompetent adults 

[6]. A few weeks later, the CDC reported 26 homosexual men from New York 

and San Francisco with similar symptoms [7]. All individuals showed signs of a 

compromised immune system with a hallmark depletion of cluster of 

differentiation (CD) 4 T cells. Several years later, two independent groups 

identified a blood-borne T cell lymphotropic retrovirus, that was later named HIV, 

as the etiological agent that causes the destruction of the immune system 

leading to acquired immunodeficiency syndrome (AIDS) and the onset of 

opportunistic infections resulting in death [8-10]. 35 years later, HIV has become 

a worldwide pandemic and currently remains a global health concern. In 2015, 

the CDC estimates there were 2.1 million new cases, 36.7 million individuals 

currently living with HIV and 39 million AIDS-related deaths. A majority of the 

infection is focused in Sub-Saharan Africa, which accounts for about 65% of all 

new HIV infections. Cutting edge research along with better treatment 

implementation approaches, increased awareness, and improved prevention has 

slowed worldwide HIV infection rates by 6% since 2010 and AIDS-related deaths 

by 45% since the peak in 2005 [11].  

 HIV is a blood-borne retrovirus that is predominantly transmitted through 

sexual contact, via percutaneous and prenatal routes [12-16]. The risk of HIV 

infection is dependent on the type of exposure or behavior and can range from a 
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CDC estimated Per-Act Probability of 9,250/10,000 for blood transfusions, 

63/10,000 for needle sharing injection drug use, 138/10,000 for receptive anal 

intercourse, and 8/10,000 receptive penile-vaginal intercourse [17]. HIV infection 

disproportionally affects men who have sex with men (MSM), transgender 

individuals, sex workers, and injection drug users. In the United States of 

America, homosexual and bisexual men account for an estimated 83% while 

heterosexual contact accounts for an estimated 24% HIV diagnosis in 2014. 

 

HIV Phylogeny 

 

 Two types of HIV can lead to a productive infection in humans: human 

immunodeficiency virus type 1 (HIV-1) and human immunodeficiency virus type 2 

(HIV-2). Although, both strains share similarities in the genome arrangement, 

routes of transmission, replication life cycle, and clinical disease, HIV-2 has a 

lower transmissibility, pathogenicity and is mainly confined to West Africa [18, 

19]. 

 Several factors that contribute to the high genetic variability of HIV-1 

include the error-prone reverse transcriptase and lack of nucleic acid 

proofreading [20], high viral turnover rate in vivo [21], host selective immune 

pressures [22], and viral recombination [23]. HIV-1 is categorized into three major 

phylogenetic groups based on viral sequence homology, Major (M), Outlier (O), 

and Non-M/Non-O (N) [24, 25]. HIV-1 Group N infection has only been identified 

in Cameroon and Group O is endemic to West Africa [26, 27]. HIV-1 Group M 

represents the main global circulating virus and is subdivided into subtype clades 

(A, B, C, D, E, F, G, H, J, K, and circulating recombinant forms (CRF)) that are 

geographically distributed. Subtype C is responsible for the majority of HIV-1 

infection in parts of Africa, while Subtype B dominates infection in the Americas 

and Europe [28]. CRF arise from a recombination of multiple subtypes in a single 

infected person [29]. There has been a surge of CRF_AE infections due to an 
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increase in globalization and transportation seen in Thailand, Hong Kong, 

Malaysia and the Philippines [30]. The vast genetic diversity of HIV quasispecies 

has important implications in understanding host-viral evolution leading to better 

diagnostic testing, control of disease progression and therapeutic designs. 

 

*HIV-1 will be referred to as “HIV” unless noted otherwise. 

 

HIV Genome 

 

 HIV is a lentivirus that belongs to the Retroviridae family and is 

characterized to have a reverse transcription of its viral genome and subsequent 

integration into the host genome. The HIV viral genome consists of two copies of 

positive-sense, single-stranded RNA that is ~9kb in length, flanked by 5’ and 3’ 

long terminal repeats and encodes for structural (Gag, Env), enzyme (Pol), 

essential regulatory (Tat, Rev), and accessory (Nef, Vpu, Vpr, Vif) proteins 

required for host cell infection, immune evasion, and propagation of infectious 

virons [31].  

 The group-specific antigen gene (Gag) encodes Gag p55 protein that is 

cleaved to make up structural components of the matrix (p17), capsid (p24) and 

nucleocapsid (p7), and spacer (p6) [32]. The envelope (Env) gene encodes the 

transmembrane glycoproteins gp120 and gp41 that make up viral spikes on the 

surface of the mature viron and are required for host cell recognition, binding and 

fusion [32]. The polymerase (Pol) gene encodes enzymes protease (PR) 

required for cleavage of polyproteins during virus maturation, reverse 

transcriptase (RT) required for transcribing single-stranded viral RNA to double-

stranded viral DNA, and integrase (IN) that mediates HIV proviral insertion into 

the host genomic DNA [33-35]. Essential regulatory proteins are encoded by the 

transcriptional transactivator (Tat) gene, which initiates transcription of viral RNA 

while Rev increases nuclear export of viral mRNAs [36, 37]. The accessory 
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proteins Nef, Vpu and Vif encoded increase pathogenicity and immune evasion. 

Nef is one of the first viral proteins produced and has the ability to downregulate 

the expression of cluster of differentiation (CD) 4 and Human Leukocyte Antigen 

(HLA) Class I [38, 39]. The Vpu protein increases viral progeny release and is 

responsible for degrading CD4 in the cytoplasm [40]. The Vpr protein plays a role 

in forming the pre-integration complex (PIC) and facilitating nuclear import of the 

double stranded HIV DNA template in the absence of mitosis [41]. The Vif protein 

has co-evolved to overcome the antiviral host restriction factor APOBEC3G [42]. 

All together, the HIV genome encodes proteins required to produce infectious 

virons and maintain a persistent infection. 

 

HIV Structure 

 

 The HIV virion is approximately 120nm in diameter [43]. The viral RNA 

and enzymes (IN, RT) are enclosed by the viral capsid (p24) and matrix protein 

(p17) [44]. The core of the virus is surrounded by the matrix protein and is 

integrated into the external lipid bilayer envelope derived from the host cell [45]. 

The surface of the viron is covered in trimetric glycoprotein spikes, made of 

gp120 and gp41 that mediate viral tropisms and membrane fusion [46]. 

 

HIV Life Cycle 

 

 HIV replication can be divided into several steps that include entry, 

uncoating, reverse transcription, integration, transcription, translation, assembly, 

budding and maturation. HIV primarily targets host cells expressing the CD4 and 

CC-chemokine receptor 5 (CCR5) or CXC-chemokine receptor 4 (CXCR4) 

receptors namely CD4 T lymphocyte cells (CD4 T cell), macrophages and 

microglial cells [47]. Entry begins with the binding of gp120 to the CD4 receptor 

along with one co-receptor (CCR5 or CXCR4) resulting in a gp41 mediated 
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membrane fusion [43, 48]. The viral capsid is uncoated in the cytoplasm to 

release HIV RNA, enzymes and proteins [44]. HIV RNA is reverse transcribed by 

RT to produce a double-stranded HIV DNA template [34]. The lack of 

proofreading and the error-prone HIV RT promotes mutations (1/1700 error rate 

of incorporated nucleotide) resulting in the extremely high genetic variability of 

HIV [20, 49]. Vpr forms a nucleoprotein PIC that transports the pre-integrated 

HIV DNA into the nucleus [50]. The viral protein IN facilitates the integration of 

HIV DNA into the host chromosome [51]. This integrated HIV DNA, or provirus, 

can be transcribed as a cellular gene. The viral proteins Tat and Rev control the 

host transcriptional machinery to produce and export mRNA from the HIV 

provirus in an infected cell nucleus. Tat stimulates the transcription of the proviral 

5’LTR promoter region by directing cellular transcription elongation factor (P-

TEFb) to RNA polymerases [52]. HIV mRNA transcripts undergo splicing to 

produce a full range of mRNAs required to encode viral proteins [53]. Rev is 

responsible for exporting intron-containing viral mRNA out of the nucleus [54]. 

Translation of the HIV mRNA and protein synthesis occurs in the cytoplasm. Viral 

assembly happens near the plasma membrane to include all of the components 

required for infecting a new cell. Two copies of viral RNA and viral enzymes (PR, 

RT and IN) are packaged into the viral envelope and bud off of the host plasma 

membrane [55]. The Gag-Pol polyprotein is cleaved by the viral protease to 

produce a mature viron capable of infecting a new host cell [56]. 

 

HIV Infection and Disease Progression 

 

 HIV can be transmitted during sexual contact, from sharing intravenous 

needles, from blood transfusions, and mother-to-child [57]. Infectious virus is 

present in the plasma of blood, female genital secretions, and male seminal fluid 

[58, 59]. HIV acquisition through mucosal tissues is one of the leading causes of 

infection. At the site of infection, through micro-abrasions in the mucosa 
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epithelium, the virus gains access to tissue resident CD4 T cells and antigen 

presenting cells (APCs) to create a local focus of infection [60]. Tissue resident 

dendritic cells (DCs) are able to capture whole virus and facilitate trans-infection 

of CD4 T cells [61]. Infected CD4 T cells and APCs migrate to draining lymph 

nodes and eventually distal lymph nodes along with other tissues within two 

weeks of infection. The follicular dendritic network is able to retain infectious virus 

within immune privileged B cell follicles contributing to lymph node fibrosis and 

improper reconstitution of CD4 T cells [62]. Furthermore, follicular CD4 T cells 

(Tfh) are the main source of virus during disease progression [63]. 

 HIV disease progression can be divided into an acute phase, chronic 

phase, and AIDS. The acute clinical manifestations include fever, generalized 

lymphadenopathy, nonspecific rash and malaise [64]. In the absence of 

combined antiretroviral therapy (cART), viral replication continues with a peak in 

plasma viremia to about 10^6 copies/mL at about 4 weeks after initial infection 

and slowly declines to a viral set point as the individual immune system begins to 

control the virus [65]. Concurrently, the CD4 T cells, which become infected with 

HIV, decline quickly from ~1000 cells/mL to ~500 cells/mL due to viral cytopathic 

effects (CPE), chronic inflammation, and adaptive immune killing [65]. The CD4 T 

cell nadir, the lowest ever CD4 Count, will establish an immunological set point 

that will determine how well CD4 T cell counts recover after acute infection [66]. 

The dynamics of acute HIV viremia and antibody seroconversion are categorized 

into Fiebig stages I-VI that are based on sequential gain in positive HIV clinical 

diagnostic tests starting with Fiebig I viral RNA by polymerase chain reaction 

(PCR), Fiebig II p24 and p31 enzyme-linked immunosorbent assay (ELISA), and 

Fiebig III-VI HIV-specific antibodies by ELISA and western blot [67, 68]. 

Currently, fourth generation immunoassays are redefining Fiebig stage I acute 

HIV infection into two groups with depending on the levels of HIV RNA and DNA 

[69]. Three-to-nine weeks after infection the CD8 T cell responses and anti-HIV 

antibody titers begin to rise and partially control virus replication [70, 71]. 
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Although, HIV-specific CD8 T cell responses are more effective than anti-HIV 

antibodies at controlling virally infected cells [72], both arms of the adaptive 

immune response contribute to the overall control of virus.  

 The chronic infection phase can last from one to twenty years with 

individuals experiencing little-to-no clinical symptoms, termed “clinical latency”. 

The virus slowly replicates throughout the body with a gradual loss of both 

circulating and tissue based CD4 T cells. The high density of CD4 T cells in gut 

associated lymphoid tissues (GALT) is most impacted. Depletion of GALT CD4 T 

cells leads to intestinal permeability and microbial translocation resulting in 

persistent peripheral immune activation [73]. HIV infection within the thymus 

contributes to CD4 T cell decline and regenerative failure [74]. Furthermore, HIV 

infection within secondary lymph nodes causes fibrosis and severely affects CD4 

T cells’ ability to survive and reconstitute the peripheral CD4 T cell population 

[62].  

 The AIDS phase is defined by the depletion of CD4 T cells to less than 

200 cells/ml in blood, increased plasma viremia and exhibitions of opportunistic 

infections or cancers that include pneumocystis, pneumonia, candidiasis, Kaposi 

sarcoma, and wasting syndrome. During the final phase, without treatment, 

individuals only survive for about 3 years [75]. 

 Disease progression rates vary depending on the infected individual. 

There is some evidence that host human leukocyte antigen (HLA) genetics, 

immune function, viral genetic variability, and co-infections may affect the 

progression rate to AIDS [76]. HIV infected individuals can be grouped based on 

their progression to AIDS. “Rapid progressors” have a fast decline in CD4 T cells 

and progress to AIDS within four years of primary HIV infection [76]. The majority 

of infected individuals are “intermediate progressors”, which have persistent 

detectable plasma viremia and slow decline in CD4 T cells and progress to AIDS 

within 6-10 years [75]. “Long-term non-progressors (LTNP)” are individuals that 

maintain a normal CD4 count (>500 cells/µl) with low detectable plasma viremia 
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(<10,000 viral copies/ml) for up to 10 years in the absence cART [77]. A small 

subset of individuals, “elite controllers”, are able to sustain spontaneous control 

of virus (<50 viral copies/ml) while maintaining normal CD4 counts in the 

absence of cART [78]. “Immunological non-responders (INR)” make up 30% of 

individuals on therapy, which fail to recover CD4 T cells (<500 cells/µl) despite 

achieving complete suppression of plasma viremia [79]. Each unique group of 

infected individuals has contributed to studies revealing novel and differential 

immune mechanisms driving HIV disease progression.  

 

HIV Diagnosis 

 

 Blood tests for HIV are the most common definitive way to diagnose HIV 

infection. These test include viral RNA (PCR), p24 (ELISA), HIV specific antibody 

(ELISA), and HIV specific antibody (western blot). The CDC recommends using a 

fourth generation antigen-antibody assay followed by an antibody assay that can 

differentiate between HIV-1 and HIV-2 as conformation [80]. 

 Rapid antibody tests can screen for HIV infection from a finger stick of 

blood or oral fluid within thirty minutes and is extremely useful in public testing 

bars, drop in clinics, or health fairs. However, the current rapid HIV tests have 

limited sensitivity in detecting HIV during an acute infection [81]. All rapid test 

results should be confirmed with an antigen-antibody assay. 

 The U.S. Preventative Services Task Force recommends that clinicians 

screen adolescents and adults (15-65 years) for HIV infection at least once, and 

every 3-6 months for individuals at risk [82]. Individuals at risk include male-to-

male sexual contact, injection drug use, anal or vaginal sex without condom use, 

and individuals who exchange drugs or money for sex. 
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Non-human primate model of HIV/AIDS 
 

 Animal models provide invaluable information in the search for an HIV 

cure. Non-human primates are the most physiologically relevant model to study 

HIV/AIDS and allows for invasive interrogation of the disease in cellular and 

anatomical compartments, study of host-viral interaction, analytical treatment 

interruption and pre-clinical drug or vaccine testing.  

 Simian immunodeficiency virus (SIV) and HIV share similarities in the viral 

genome, gene products, and structure. Over 40 species of African green 

monkeys, sooty mangabeys and mandrills are natural hosts for SIV. Upon acute 

infection, the natural hosts have high levels of sustained plasma viremia, rapid T 

cell turnover and activation of innate and adaptive immunity [83]. However, the 

SIV infection does not result in chronic immune activation, depletion of peripheral 

CD4 T cells, or destruction of lymph node architecture [83]. As is observed in 

HIV, non-natural hosts, such as Rhesus macaques (RM) (Macaca mulatta), more 

closely resemble HIV pathogenesis. The commonly used strains of macaque-

adapted SIV (SIVmac239, SIVmac251, or chimeric simian/human 

immunodeficiency virus (SHIV)) have been used to experimentally challenge 

RMs [84]. A single dose challenge, through intravenous or intrarectal route, is 

sufficient to establish a robust infection [85]. Similar to HIV infection, SIV-infected 

RMs experience ongoing plasma viral replication and depletion of peripheral and 

GALT CD4 T cells [85]. SIV disease progression is more rapid compared to HIV 

infection with SIV infected RMs showing AIDS-related illnesses within 2-3 years 

without therapeutic intervention. Similar to cART treatment for HIV-infected 

individuals, combinational antiretroviral therapy regimens consisting of four/five-

drugs can be administered orally or subcutaneously to persistently suppress 

plasma viral replication in SIV infected RMs, providing robust in vivo models for 

HIV persistence and innovative therapeutic curative strategies [86]. 
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HIV Pathogenesis 

 

 HIV infects a small portion of cells that make up the immune system, 

specifically cells that express CD4 cell surface receptor molecule and co-receptor 

C-C chemokine receptor type 5 (CCR5) or C-X-C chemokine receptor type 4 

(CXCR4), this includes activated memory CD4 T cells [87], follicular helper CD4 

T cells [63], and cells of myeloid lineage [88]. During untreated pathogenic 

infection, direct and indirect effects, such as viral cytopathic effect and systemic 

chronic immune activation, drive CD4 T cell depletion in the peripheral blood and 

secondary lymphoid tissues leading to immune dysfunction and increased 

susceptibility to opportunistic infections and the onset of AIDS and death.  

 HIV-infected individuals classified by their disease progression provide 

insights into pathogenic HIV-associated immune activation. For instance, CD8 T 

cells from cART suppressed, chronically HIV-infected individuals express high 

levels of immune activation markers such as CD38 and HLA-DR as well as 

increased levels of proliferating T cells compared to HIV-uninfected individuals 

[89]. The activation of CD8 T cells shows a stronger correlation with decreased 

survival time than viral loads or CD4 counts [90]. Residual immune activation, in 

the absence of replicating virus in the plasma, correlates with increased morbidity 

and mortality [91]. HIV-infected individuals that are able to spontaneously control 

viral replication, “elite controllers”, show higher levels of immune activation 

compared to HIV-uninfected and cART suppressed individuals, and have a 

higher rate of developing HIV-related comorbidities [92]. HIV-infected “long-term 

non-progressors” display reduced levels of immune activation while maintaining 

CD4 T cell counts despite having high plasma viremia [93]. Finally, as previously 

mentioned, the non-human primate natural hosts to SIV have sustained plasma 

viremia and massive acute CD4 depletion, however they do not experience 

chronic immune activation and do not progress to AIDS. Reducing immune 

activation is an important component to HIV cure strategies. 
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Secondary lymphoid tissues, such as the gut mucosa, are largely affected by HIV 

infection and contribute to chronic HIV-associated immune activation. During 

acute HIV infection there is a massive depletion of CCR5 expressing CD4 T cells 

in the gut [94], including the CD4 T helper cells 17 (Th17), a subset which is 

crucial for maintenance of the mucosal intestinal barrier [95]. Compromised 

mucosal integrity along with the loss of intestinal epithelial cells and disruption of 

tight junctions result in microbial translocation and systemic bacteremia leading 

to persistent peripheral immune activation and inflammation [96]. A deeper 

understanding of immune function in the gut will be required to restore gut 

integrity and reduce immune activation during chronic HIV infection.  

 Lymph nodes are anatomical compartments that are responsible for 

generating effective immune responses [97], crucial for T cell homeostasis [98] 

and the main site for HIV replication and persistence [99-102]. Several functional 

and structural changes occur during pathogenic HIV infection. Follicular dendritic 

cells trap live virus and facilitate follicular helper CD4 T cell (Tfh) infection in 

germinal centers of lymph nodes [63, 103, 104]. Activated T regulatory cells 

(Tregs) produce TGF-β1 leading to collagen deposition [105] that damages the 

fibroblastic reticular cell (FRC) network [106]. This leads to decreased IL-7, an 

important cytokine in promoting naïve T cell survival, resulting in improper T cell 

hemostasis and impaired CD4 T cell reconstitution [106]. Additionally, the FRC 

remains damaged despite viral suppression during cART [106]. This vicious cycle 

of HIV replication and immune activation impacts cellular immune function and 

promotes viral persistence. Targeting HIV persistence in lymph node will need to 

be considered in future HIV cure strategies.  

 

Treatment and Prevention of HIV infection 
 

 With the advent of anti-retroviral (ARV) drugs, individuals infected with HIV 

are now living decades longer than before. There are currently five classes of 
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Food and Drug Administration (FDA)-approved ARV drugs available in the USA 

as follows: fusion inhibitors, nucleoside/nucleotide reverse transcriptase inhibitors 

(N(t)RTI), non-nucleoside reverse transcriptase inhibitors (NNRTI), protease 

inhibitors and integrase inhibitors. Each class of ARVs works by targeting a 

specific stage in the HIV life cycle that is crucial for producing replication 

competent viral progeny. As standard of care, cART is required to simultaneously 

suppress multiple steps of the HIV lifecycle to control viral replication and reduce 

drug resistance. cART consists of two N(t)RTIs plus (one NNRTI or 

protease/integrase inhibitors) [107]. Recent studies suggest that immediate 

initiation of cART, regardless of CD4 count, leads to better long-term immune 

consequences and public health benefits of reducing risk of transmission [108, 

109].  

 Despite the remarkable success of cART in controlling viral replication and 

reducing AIDS-related deaths, several drawbacks are associated with the lifelong 

therapy. The patient and doctor must consider toxicity, cost and adherence to 

drug regimens. Some factors that might be responsible for an individual failing to 

respond to treatment are non-adherence [110], drug resistance [111, 112], host 

genetic polymorphisms [113] and drug malabsorption [114]. HIV infected 

individuals in resource limited-countries, including Sub-Saharan Africa, have 

limited access to healthcare where cART may not be optimal. Moreover, cART 

fails to eradicate the viral reservoirs of the virus [115]. If cART is interrupted from 

an infected individual, the virus rapidly and robustly rebounds [116]. Furthermore, 

cART fails to restore complete immune health [117] with survival rates 

significantly reduced compared to HIV-uninfected individuals [118]. Moreover, 

cART does not fully reduce immune activation, which contributes to non-AIDS 

comorbidities such as cardiovascular disease, cancer, kidney disease, liver 

disease, neurological impairment, and bone diseases [117]. More effective 

therapies and strategies will be required to manage and eliminate HIV infection. 
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 No effective cure or vaccine exists. The recommended prevention of HIV 

infection is to avoid high-risk behavioral activities that include unprotected sex or 

sharing needles. Programs such as The Joint United Nations Program on 

HIV/AIDS (UNAIDS) aim to educate the community, break social stigma and 

increase awareness about HIV infection. The UNAIDS ambitious strategy to 

coordinate global action in response to the HIV/AIDS epidemic is to have 95% of 

all individuals know their HIV status, 95% of infected individuals on cART and 

95% of infected individuals with undetectable viral loads by 2030 [119].  

 ARVs can be used as powerful tools to potentially prevent HIV infection. 

Truvada, a combination of Tenofovir and Emtricitabine (both NRTIs), is the first 

FDA-approved ARV to be used as a daily pre-exposure prophylaxis (PrEP) to 

reduce HIV acquisition in at-risk populations. PrEP has been shown to be very 

effective in reducing sexual transmission when combined with risk-management 

counseling and condom use [116]. However, poor daily adherence is associated 

with decreased PrEP efficacy [116]. PrEP must be taken on a daily schedule to 

maintain optimal plasma drug consternations to prevent HIV acquisition. The two-

drug regimen combined with Lopinavir/Ritonavir can also be used as Post-

Exposure Prophylaxis (PEP) within 72 hours after a single high-risk HIV 

exposure [120]. The same two-drug backbone plus Efavirenz are used to prevent 

mother-to-child transmission by virally suppressing the HIV-infected mother 

before giving birth and during breast-feeding [120]. The effectiveness of ARV 

intervention will ultimately rely on community education and engagement, access 

to ARVs in resource-limited setting, and high level of compliance and adherence.  

 
HIV Vaccine Approaches 

 

 Vaccines are one of the best strategies to prime the immune system to 

produce durable long-lasting protection against infections. However, as of today, 

there are no effective vaccines that prevent HIV infection. Conventional efforts to 

generate an HIV vaccine have failed due to the genetic diversity of HIV, limited 



	 15	

correlates of vaccine protection, viral escape mutations, heavily glycosylated Env 

spikes and early viral integration into the host genome. An ideal HIV vaccine 

should elicit both humoral and cellular responses that generate sterilizing 

protection against HIV acquisition and establishment of the viral reservoir across 

multiple serotypes. 

 Six vaccine efficacy trials during 1987 – 2013 have all failed except one 

with modest efficacy. Of note, the 2007 STEP trial and 2013 HVTN trial used a 

replication-incompetent adenovirus type 5 (Ad5) vector containing HIV DNA Gag, 

Pol, and Nef to prime the immune system. Both trials were discontinued due to 

an increased HIV acquisition in the vaccinated arms [121, 122]. However, the 

first evidence that an HIV vaccine may be protective was observed in the RV144 

Thailand trial. The RV144 vaccine used a prime/boost strategy, individuals were 

“primed” with a replication-incompetent canarypox vector containing HIV DNA 

Env, Gag and Pro (ALVAC) and “boosted” with recombinant Env gp120 protein 

(AIDSVAX) in hopes of generating both humoral and cellular responses [123]. 

The results of the RV144 trial showed a modest vaccine efficacy of 31.2% at 42 

months [124]. Interestingly, Env mediated antibody-dependent cellular 

cytotoxicity (ADCC) against the gp120 variable loop 2 and T cell responses 

correlated with decreased HIV risk of infection suggesting that humoral and 

cellular components may be required for an effective HIV vaccine [124]. Building 

off these results, a new vaccine clinical trial (HVTN 702) is scheduled to 

commence in South Africa in 2017. The HVTN 702 vaccine candidate is based 

on the RV144 ALVAC/AIDSVAX vaccine with modified components and 

vaccination regimen designed to increase the magnitude and duration of 

protective humoral and cellular immune responses.  

 Several research groups have identified antibodies from HIV-infected 

individuals that have the ability to neutralize a diverse pool of HIV isolates. These 

broadly neutralizing antibodies (bnAb) have been characterized to target five 

different sites on the HIV Env trimer: the CD4 binding site (CD4bs), the V3 and 
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V1V2-glycan sites, gp120-gp41 sites and the gp41 membrane proximal external 

region (MPER) [125, 126]. Passive administration of the bnAb PGT121, targeting 

the V3 glycan-binding site, to SHIV infected RMs resulted in viral control with no 

antibody neutralization escape in a several infected animals [127]. In a small 

clinical trial, passive administration of CD4bs bnAb 3BNC117 to HIV-infected 

individuals was able to suppress plasma viremia for four-weeks, however an 

emergence of resistant viral strains were observed [128]. Comparably, 

administration of CD4bs bnAb VRC01 resulted in an eight-week delay in viral 

rebound after analytical treatment interruption [129]. These data suggest that 

passive bnAb therapy may be an important component to HIV eradication 

strategies and vaccines. The next-generation of bnAbs are being modified in vitro 

to increase breadth, potency and serum half-lives [130, 131]. Nonetheless, a 

deeper understanding is required to identify preferential structures, 

conformations and sequences of Env immunogens that can induce bnAbs as an 

HIV vaccine. 

 In recent novel non-human primate vaccination studies, rhesus macaques 

(RMs) vaccinated with rhesus cytomegalovirus (rhCMV) vector expressing SIV 

proteins (rhCMV/SIV) were protected against repeated SIVmac239 challenge in 

approximately 50% of RMs [132, 133]. The rhCMV/SIV vaccine was later found 

to induce broad, diverse MHC-E restricted SIV-specific CD8 T cell responses that 

were able to clear pathogenic SIV infection [134]. These data suggests that 

lentiviral reservoirs are susceptible to antiviral CD8 T cell mediated cellular 

immunity. Future studies will be required to determine if similar immune 

responses can be recapitulated in humans. 

 Novel vaccine strategies should be a two-pronged approach. The first 

should focus on sequential rounds of engineered Env immunogens to induce 

potent bnAbs that can block or reduce acquisition of HIV infection. The second 

should potentially use a CMV-based vector to induce broad cellular responses to 

control breakthrough infections. Furthermore, the immune response should be 
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long lasting and able to block multiple routes of infections across global HIV 

serotypes.  

 
HIV Reservoirs 

 

 Despite therapeutic advances, the main obstacle to eliminating virus from 

cART suppressed HIV-infected individuals are HIV reservoirs that harbor 

replication competent virus driven by T cell survival and homeostatic proliferation 

[135]. There have been several cellular (CD4 T cells, macrophages, follicular 

dendritic cells) and anatomical (brain, gut, male urogenital tract, lymph nodes) 

reservoirs described [136]. RM studies suggest that SIV reservoirs, able to 

sustain a productive infection, are seeded as early as three days post-infection 

[137]. HIV can establish a reversibly nonproductive infection in CD4 T cells 

termed “latency” [138]. Latently infected cells contain a copy of the HIV provirus, 

however they do not transcribe HIV or produce any viral proteins, thus making 

them invisible to recognition by the immune system and resistant to cART [139]. 

Moreover, the half-life of the latent reservoir is estimated to be 44 months, 

suggesting it would take 73.4 years to eliminate one million latent cells on 

suppressive cART [140]. Identifying latent cells that harbor HIV provirus has 

been pursued with great interest with one study suggesting that CD32a marks 

CD4 T cells harboring replication competent provirus [141]. Several mechanisms 

that contribute to the transcriptional silencing of HIV include sequestration of host 

transcriptional factors, epigenetic silencing, transcriptional interference, and 

inhibition of RNA polymerase II [139]. The majority of latently infected cells reside 

in anatomical sanctuaries where cART concentrations may not be optimal. These 

sites include the lymph node [63] and gut associated lymphoid tissue (GALT) 

[142] and serve as the main source for HIV replication and production [143]. 

Future HIV cure strategies should focus on targeting latently infected cells and 

anatomical sites to disrupt and eliminate viral reservoirs. 
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Microbiota 

 

 There is an estimated ten trillion bacteria that live on and in the human 

body in symbiosis [144]. A majority of the commensal bacteria is focused in the 

gastrointestinal tract and play intricate roles in the development and function of 

the systemic immune system [145, 146]. The evidence of immune mediated 

diseases such as Chron’s disease, asthmas, diabetes, in addition to multiple 

sclerosis have been implicated with an alter microbial composition [147, 148]. 

Furthermore, the impact of microbiota-derived factors on the immune 

development is observed in specific-pathogen free mice, they develop significant 

differences in their immune cellular composition at mucosal sites [146]. Altering 

the microbial composition with fecal microbiota transplantation is an established 

way to treat Clostridium difficile [149]. However, to completely change the 

microbiota after neonatal establishment seems to be extremely difficult [150]. A 

better understanding of the mechanisms driving microbiota reconstitution along 

with the host-microbial immunological relationship is warranted. 

 During HIV infection, the gut is one of the earliest targeted sites of 

infection, it contains a high concentration of CCR5-expressing T cells resulting in 

CD4 T cell depletion and impaired immune reconstitution [151, 152]. Massive 

viral replication in the gut leads to the destruction of the epithelial barrier, 

indirectly leading to microbial translocation and altered community composition 

[73, 153]. Moreover, the early initiation of cART only partially restores gut 

mucosa integrity [154]. A better understanding of the roll the gut microbial 

composition plays during cART-suppressed HIV infection will help to inform 

future HIV cure strategies. 
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Introduction to Adaptive Immunity 

 

 The mammalian immune system plays an essential role in defending 

against pathogens and cancers. The immune response can be divided into two 

arms: innate and adaptive immunity. The innate immune system is composed of 

immune cells and complement proteins that can recognize and respond rapidly to 

nonspecific antigens [155]. Initial inflammation is generated by tissue resident 

innate immune cells (macrophages, neutrophils, dendritic cells (DCs), natural 

killer (NK) cells etc.) to prevent the spread of infection, promote tissue 

regeneration and recruit additional immune cells to initiate the expansion and 

differentiation of the adaptive immune response [155]. The adaptive immune 

system responds ~7-15 days after the initial antigen stimulation. Cell-mediated 

and antibody responses are produced by activated T cells and B cells, 

respectively. Antigens are processed into peptides and presented by major 

histocompatibility complexes (MHC) (known as human leukocyte antigens (HLA) 

in humans) to activate T cells. Three signals are required for T cell activation. 

First, antigen presenting cells (APCs) display peptide fragments restricted by 

HLA class I (HLA-A, HLA-B, HLA-C) to naïve CD8 T cells or by HLA Class II 

(HLA-DR, HLA-DP, HLA-DQ) to naïve CD4 T cells. Second, a positive co-

stimulation signal by CD28 T cell surface receptors to the B7 ligand is expressed 

on APCs. Third, cytokines are required to regulate the magnitude and duration of 

the immune response. Naïve CD8 T cells differentiate into effector cytotoxic CD8 

T cells that are capable of killing infected cells presenting antigen specific to its T 

cell receptor. Conversely, activated helper CD4 T cells interact with B cells to 

promote clonal expansion and antibody production. T cell and humoral mediated 

immunity are responsible for clearing the antigen and providing immunological 

memory for a faster more efficient response to the same antigen in future 

encounters [155].  
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T cell development 

 

 T cells are a type of lymphocytes that play an essential role in adaptive 

cell mediated immunity. They arise from hematopoietic stem cells from the bone 

marrow that migrate to the thymus where they undergo maturation and become 

immature thymocytes. These immature thymocytes, that do not express CD4 or 

CD8 (double-negative), undergo T cell receptor (TCR) germline DNA V(D)J 

recombination which contributes to the enormous T cell diversity [155]. The 

double-negative thymocytes go on to simultaneously express both CD4 and CD8 

(double-positive) and go through a “positive selection” process that ensures the 

TCR is able to recognize self-HLA molecules. Successful selection (not too 

strong or too weak) results in survival signals and expression of either CD4 or 

CD8 (single-positive) [155]. A “negative selection” process follows to remove any 

thymocytes that react with self-derived peptides [155]. Single positive thymocytes 

that have successful TCR recombination capable of recognizing peptide-HLA 

complexes with the correct affinity exit the thymus as naïve T cells ready to 

interact with cognate antigen peptides presented by APCs. 

 

CD8 T cells in HIV infection 
 

 Cytotoxic “Killer” CD8 T cells are one of the main cellular components of 

the adaptive immune system. Their TCR is capable of recognizing specific 

antigenic peptides presented by HLA-I complexes on infected cells while 

minimizing nonspecific bystander tissue damage. Priming of naïve CD8 T cells in 

secondary lymphoid organs by APCs results in differentiation and proliferation of 

antigen-experienced effector CD8 T cells [156]. At the peak of the primary 

response, effector CD8 T cells recognize infected cells, form an immunological 

synapse, and produce a variety of cytokines (interferon gamma, tumor necrosis 

factor alpha, interlukin-2, interlukin-4) [157] in addition to releasing cytotoxic lytic 

granules containing perforin and granzymes [158] resulting in cell lysis or 
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apoptosis. Alternatively, CD8 T cells can induce apoptosis by engaging death-

inducing receptors on infected cells [159]. During immune contraction, after the 

infection is cleared, a portion of antigen-induced effector CD8 T cells revert to a 

long-lived memory state capable of responding rapidly to similar antigens in 

future encounters [160]. 

 CD8 T cells play an important role in influencing the outcome of HIV 

infection. Several lines of evidence suggest CD8 T cells are responsible for the 

control of HIV replication during the clinical latency phase of chronic HIV 

infection. Gag-specific CD8 T cells are able to recognize HIV infected cells 

before viral integration and viral protein production [161]. The emergence of HIV-

specific CD8 T cells is associated with the post-peak decline of plasma viremia 

[162, 163]. Individuals with peptides restricted by specific HLA-I allele (HLA-B*57 

and HLA-B*27) elicit a greater CD8 T cell response and have decreased disease 

progression to AIDS [164, 165], with similar observations reported in SIV infected 

RMs with Mamu-B*08 and Mamu-B*17 [166, 167]. “Elite controllers” exhibit 

greater CD8 T cell polyfunctionality and in vitro killing [168, 169]. Additionally, 

when CD8 T cells are depleted from SIV infected RM on suppressive cART, 

there is an increase of plasma viremia, which becomes controlled upon CD8 T 

cell reconstitution, suggesting that CD8 T cells contribute to the control of 

HIV/SIV replication during suppressive cART [170]. However, despite the 

compelling evidence, CD8 T cells fail to clear the infection in a majority of HIV 

infected individuals. 
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CD8 T cell Dysfunction in HIV Infection 

 

 During unresolved chronic viral infections and cancers, low levels of 

persistent antigen and immune inflammation cause the impairment of antigen-

specific CD8 T cells, termed “T cell exhaustion” (Figure 1.1) [2, 171]. The 

Fig.1.1 T cell exhaustion. Clearance of acute infection results in a highly 

polyfunctional population of memory CD8 T cells able to quickly respond to 

similar future antigens. However, persistent antigen and inflammation results in 

a loss of polyfunctional CD8 T cells associated with the simultaneous 

expression of negative immune checkpoint receptors. Figure adapted from [2]. 

Reprinted with permission. 
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concept of CD8 T cell exhaustion was originally defined in the chronic 

lymphocytic choriomeningitis virus (LCMV) murine model. During the course of 

chronic LCMV infection, virus-specific CD8 T cells were activated but failed to 

produce any antiviral effector functions [172]. T cell exhaustion was later defined 

as having a progressive loss of polyfunctionality, starting with decreased 

interleukin 2 (IL-2) and tumor necrosis factor alpha (TNFα) production, leading to 

diminished proliferative and cytotoxic capacity and ultimately lacking the ability to 

produce large amounts of interferon gamma (IFN-γ) [173]. Concurrently, immune 

regulation contributes to T cell exhaustion, where there is a stepwise 

upregulation of negative immune checkpoint receptors (NCRs) at the cell surface 

of exhausted T cells that actively inhibit immune functions [173]. NCR pathways 

are an important immune “check-and-balance system” for maintaining self-

tolerance and prevention of autoimmunity [174]. A key feature of T cell 

exhaustion is the simultaneous expression of multiple NCRs on T cells, such as 

programmed death 1 (PD-1), T cell immunoglobulin mucin-domain 3 (TIM-3), 

lymphocyte activation gene 3 (Lag-3), Cytotoxic T- Lymphocyte associated 

protein 4 (CTLA-4), CD244, CD160 and others [171, 175]. The overexpression of 

these NCRs effectively dampens the T cell effector responses, ultimately 

resulting in the inability to control or eliminate chronic viral infections and 

cancers. 

 Increased expression of NCRs on viral-specific CD8 T cells such as PD-1, 

TIM-3 and LAG-3 during chronic HIV/SIV infection is associated with increased 

viral loads and accelerated disease progression [176-180]. Because NCR 

signaling is initiated by ligand-receptor interactions, they are susceptible to 

disruption by antibodies or recombinant forms of the ligands or receptors. 

Blocking these pathways with monoclonal antibodies has shown to restore viral-

specific T cell effector functions in vitro [176, 178-180]. Targeting multiple 

pathways has shown to synergistically improve antiviral T cell effector functions, 

implying that the NCR pathways are non-redundant and functionally independent 
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[179, 181]. Blocking the PD-1 pathway has been shown to reinvigorate SIV-

specific CD8 T cells and reduce plasma viremia while delaying viral rebound after 

cART interruption in vivo [182, 183]. Interestingly, targeting these pathways such 

as PD-1 and CTLA-4 has shown clinical benefit in cancers, generating durable 

responses and progression-free survival [184]. However, only a subset of 

individuals respond to treatment, suggesting additional mechanisms may be 

limiting the immune response [184]. Identifying additional NCR pathways during 

chronic HIV/SIV infection will inform interventions to restore T cell exhaustion and 

better control or clear the viral infection. 

 

HIV Cure and Sustainable Remission Strategies 

 

 The “Berlin Patient”, is the only individual who has been cured of HIV to 

date. He was infected with HIV for 11 years and on stable cART when he 

developed acute myeloid leukemia for which he received two sequential bone 

marrow transplants from donors with a mutant CCR5 (CCR5Δ32) gene [185]. 

Individuals with a homozygous CCR5Δ32 allele have been reported to be 

resistant to M-tropic HIV strains [186]. Remarkably, after the transplants when he 

stopped cART, the virus did not rebound nor could any virus be detected in his 

blood or tissues [185, 187]. Unfortunately, when similar hematopoietic stem cell 

transplantations were performed in two other HIV infected individuals, known as 

“The Boston Patients”, the virus rebounded several months after analytical 

treatment interruption [188]. Ultimately, this procedure has a high risk of 

comorbid complications and may not feasible to scale up as a global HIV cure. 

 Several innovative approaches have been proposed to target the viral 

reservoir. Multiple groups are developing gene-editing and cell-based therapies 

to target the viral reservoir. Gene-editing with CRISPR/Cas9, zinc-finger 

nucleases or transcription activator-like effector nucleases (TALEN) systems can 

disrupt CCR5 or CXCR4 expression, potentially protecting cells from infection 
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[189-191]. Using a similar gene-editing technique, Kaminski and colleagues were 

able to excise the entire HIV proviral genome from latently infected T cells in vivo 

in mice [192]. Another group has engineered anti-HIV chimeric antigen receptor 

(CAR) T cells based on bnAbs that can recognize and kill infected cells in vitro 

[193]. It has also been suggested to transcriptionally lock the virus into a “deep 

latency” with gene silencing or pharmacological agents to prevent reactivation 

after analytical treatment interruption [194-196]. Nonetheless, further studies will 

be required to deliver these systems in vivo and translate theses approaches into 

clinical applications. 

 One HIV cure strategy of interest is the “shock and kill” approach, which 

involves flushing out virus and eliminating infected cells (Figure 1.2). Latency-

reversing agents (LRAs) are used to reactivate cells harboring latent virus 

(shock), then in combination with cART, the immune system will be able to 

recognize and eliminate the infected cells (kill) [1].  

 The LRAs are classified into groups based on their mechanism of 

reactivation. LRAs include protein kinase C (PKC) agonists, histone deacetylase 

inhibitors (HDACi), histone methylation inhibitors (HMTi), DNA methyltransferase 

inhibitors (DNMTi), inhibitors of bromodomain and extra-terminal proteins (BET), 

Toll-like receptor agonist, retinoic acid-inducible gene I (RIG-I) agonist, immune 

checkpoint blockade and unclassified agents such as disulfiram [197-200]. 

Several small clinical trials have assessed the ability of these LRAs to reactivate 

viral production from the stable latent reservoir in vivo, however there was little 

impact on the size of the viral reservoir [201-206], suggesting additional immune 

mechanisms may be required for elimination of reactivated latently infected cells. 

A combination of attack plans will most likely be required to impact viral 

persistence while improving immune function to eliminate or control viral 

infection. 
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Fig.1.2 “Shock and Kill” HIV Cure strategy. Figure represents the HIV cure 

strategy to flush out latent HIV and eliminate infected cells while protecting 

new cells from being infected with cART. Figure adapted from [1].  
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Background for research questions 

 

 HIV infection remains a global health concern with an estimated 36.9 

million individuals living with HIV and a total of 39 million HIV related deaths at 

the end of 2015. Despite therapeutic advances an effective HIV cure or vaccine 

does not exist. Current combinational antiretroviral therapy is able to suppress 

plasma viremia to undetectable levels, however it fails to target the integrated 

provirus and eradicate the infection. As a result, HIV infected individuals must 

adhere to therapy for life at a significant finical cost and potential long-term side 

effects. 

 In the absence of treatment, HIV infection is brought partially under control 

by the infected person’s immune system, specifically by an immune system cell 

called a cytotoxic “killer” CD8 T cell. The response of these cells and HIV during 

the early stages of infection is crucial and will determine how the disease will 

progress. Over time, the immune damage mediated by HIV infection affects the 

function of the CD8 T cell even if with the addition of combination antiretroviral 

therapy (cART).  

 During unresolved chronic HIV infection, low levels of persistent antigen 

and immune inflammation cause viral specific CD8 T cells to become impaired 

and unable to eliminate virally infected cells. CD8 T cells begin to coordinately 

upregulate a series of negative checkpoint receptors (NCR) that increases the 

threshold necessary for activation. PD-1 is an early NCR associated with loss of 

proliferative capacity, while TIM-3 marks a more dysfunctional subset with 

diminished proliferative and cytokine capacity. Interfering with these NCR 

pathways alone or in combination has shown to restore cytoxicity and increased 

suppression of HIV infected CD4 T cells, however not all properties of exhausted 

cells are restored, implying that these pathways are non-redundant mechanisms 

of maintaining immune tolerance. Furthermore, adaptive resistance to PD-1 

blockade has shown upregulation of alternative NCRs to compensate against 
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single blockade, identifying additional NCRs is imperative to developing novel 

therapies to restore immune functions.  

 A recently described NCR, T cell immunoreceptor with immunoglobulin 

and ITIM domains (TIGIT: also known as Vsig9, Vstm3 or WUCAM), has shown 

to be expressed on CD8 T cells and NK Cells and has indirect and direct 

inhibitory effects. Exploration of TIGIT and other NCRs during HIV infection is 

critical to identifying novel immune pathways as targets to restore immune 

function and control or eliminate the virus. 

 

Long-term goal and Objectives 

 

 Our long-term goal is to understand mechanisms driving immune 

dysfunction that mediate the HIV disease progression and develop effective 

immune-based therapies for prevention or eradication of HIV infection. 

 To accomplish the objectives of this study, cutting edge 

immunophenotyping, immune pathway blockades, multiplex assays, genetic 

analysis and bioinformatics were employed to assess the role of TIGIT in HIV 

and SIV infection to identify immune pathways that can be targeted during cART 

suppressed HIV/SIV infection.  

 We hypothesize that HIV/SIV infection will result in an expansion of 

TIGIT+ T cells that which contributes to immune dysfunction, furthermore 

targeting the TIGIT pathway with novel targeted reagents will restore effector 

functions and contribute to the clearance of HIV infected cells. 
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Aims 

 

Paper I: To investigate the role of TIGIT on CD8 and CD4 T cells in HIV and SIV 

infection and the relationship with disease progression and viral persistence. 

 

Paper II in preparation: To explore the role of TIGIT and TIGIT Ligands in the 

blood and tissues during cART suppressed HIV infection. 

 

Significance 

 

 The proposed research is an innovative approach to identify and 

characterize multiple immune pathways that can be potentially targeted to 

increase the immune capacity to eliminate infected cells during HIV infection. HIV 

infection remains a global health concern for which there is no effective cure or 

vaccine. Individuals on suppressive cART have increased non-AIDS 

comorbidities, decreased life expectancy and significant economic strain 

compared to HIV-uninfected population controls. The results from this study can 

be applied to “shock and kill” strategies currently being evaluated to eradicate 

HIV infection in vivo. This study will provide insight into immune dysfunction and 

HIV persistence, which will have a significant impact in the development of 

targeted therapeutics to enhance anti-HIV immunity. 
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CHAPTER 3 
 

TIGIT MARKS EXHAUSTED T CELLS, CORRELATES WITH DISEASE 
PROGRESSION AND SERVES AS A TARGET FOR IMMUNE RESTORATION 

IN HIV AND SIV INFECTION 
 

Chew et. al. PLoS Pathogens 2016 Jan 7;12(1):e1005349 
 

*Originally published in the Peer Review Journal PLoS Pathogens. Chew GM, 
Fujita T, Webb GM, Burwitz BJ, Wu HL, Reed JS, et al. (2016) TIGIT Marks 
Exhausted T Cells, Correlates with Disease Progression, and Serves as a Target 
for Immune Restoration in HIV and SIV Infection. PLoS Pathogens 12(1): 
e1005349. doi:10.1371/journal.ppat.1005349 
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SPECIFIC AIMS 
 

Specific Aim I: Determine the role of TIGIT on T cells during progressive 
HIV infection 
 A: To evaluate the expression of TIGIT on CD8 and CD4 T cells 

 during HIV infection 

 Hypothesis: TIGIT expression will be elevated on T cells during chronic 

 HIV infection. 

 Rationale: Chronic antigen exposure and persistent inflammation leads to 

 an increase of other negative checkpoint receptor expressions (TIM-3, 

 PD-1, LAG-3). 

 B: To determine the role of TIGIT and T cell dysfunction during HIV 

 infection 

 Hypothesis: T cells expressing TIGIT will have impaired effector function. 

 Rationale: Engagement of TIGIT results in blunted T cell functions, such 

 as proliferation, cytotoxicity and production of cytokines. 

 C: To determine the relation of CD4 T cells expressing TIGIT and the 

 CD4 viral reservoir 

 Hypothesis: CD4 T cells expressing TIGIT will be enriched for HIV DNA. 

 Rationale: Negative checkpoint receptors inhibit T cell activation, which 

 will prevent viral transcription and may be involved in maintaining the viral 

 reservoir. 

 

Aim II: Assess the role of TIGIT in the physiologically relevant non-human 

primate model of HIV/AIDS 

 A: Evaluate the expression of TIGIT in Rhesus macaques during 

 SIV infection 

 Hypothesis: Rhesus macaques will have an increased expression of 

 rhesus TIGIT (rhTIGIT) during SIV infection. 
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 Rationale: Non-human primates are close genetic relatives of humans and 

 when infected with SIV lead to AIDS-like diseases, mimicking HIV disease 

 progression and immune exhaustion. 

 B: Determine the role of rhesus TIGIT and T cell dysfunction during 

 SIV infection 

 Hypothesis: T cells expressing rhTIGIT will have impaired effector 

 functions. 

 Rationale: Engagement of negative checkpoint receptors on T cells results 

 in blunting T cell functions such as proliferation, cytotoxicity and 

 production of cytokines. 

 

Aim III: Determine the effects of blocking the TIGIT pathway on 

reinvigorating existing T cell effector functions during HIV/SIV infection 

 A: Test the activity of blocking human and rhesus TIGIT with  

 monoclonal antibodies 

 Hypothesis: Blocking the TIGIT pathway will increase pre-existing T cell 

 effector function in response to HIV/SIV antigens. 

 Rationale: Preventing engagement of other negative checkpoint 

 receptors results in improved T cell functions. 

 B: Determine the synergistic effects of simultaneously blocking 

 multiple NCR pathways reinvigorating existing T cell effector 

 functions 

 Hypothesis: Blocking multiple negative checkpoint receptor pathways will 

 lead to a greater increase of anti-HIV/SIV T cell functions compared to 

 single blockade alone. 

 Rationale: Preventing engagement of multiple negative checkpoint 

 receptors results in synergistic enhancement of T cell effector functions. 
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ABSTRACT 
 

 HIV infection induces phenotypic and functional changes to CD8 T cells 

defined by the coordinated upregulation of a series of negative checkpoint 

receptors that eventually result in T cell exhaustion and failure to control viral 

replication. We report that effector CD8 T cells during HIV infection in blood and 

SIV infection in lymphoid tissue exhibit higher levels of the negative checkpoint 

receptor TIGIT. Increased frequencies of TIGIT+ and TIGIT+ PD-1+ CD8 T cells 

correlated with parameters of HIV and SIV disease progression. TIGIT remained 

elevated despite viral suppression in those with either pharmacological 

antiretroviral control or immunologically in elite controllers. HIV and SIV-specific 

CD8 T cells were dysfunctional and expressed high levels of TIGIT and PD-1. 

Ex-vivo single or combinational antibody blockade of TIGIT and/or PD-L1 

restored viral-specific CD8 T cell effector responses. The frequency of TIGIT+ 

CD4 T cells correlated with the CD4 T cell total HIV DNA. These findings identify 

TIGIT as a novel marker of dysfunctional HIV-specific T cells and suggest TIGIT 

along with other checkpoint receptors may be novel curative HIV targets to 

reverse T cell exhaustion.  
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INTRODUCTION 

 

  During chronic viral infections, high antigenic loads continually stimulate T 

cells leading to progressive loss of function termed “T cell exhaustion” [2]. 

Throughout this period, T cells increase expression of several inhibitory immune 

receptors that raise the threshold for activation, resulting in suppressed immune 

responses. While Programmed Death Receptor-1 (PD-1) was one of the earliest 

surface markers of immune exhaustion identified [176, 177, 180, 182, 207, 208], 

we have shown that the surface glycoprotein, T cell immunoglobulin- and mucin 

domain-containing molecule (Tim)-3, defines a state of T cell exhaustion with 

diminished proliferative and cytokine capacities in chronic viral infection [178, 

209]. Thus, the upregulation of these and other negative checkpoints receptors 

may serve as potential targets for the reversal of T cell exhaustion. 

Indeed, blocking the interaction of T cell negative checkpoint receptor 

pathways using targeted reagents against PD-1/Programmed Death-Ligand 1 

(PD-L1), Tim-3, Lymphocyte-activation gene 3 (Lag-3) and CD160 has shown 

promise in reversing CD8 T cell exhaustion [178, 181, 182, 210, 211]. Reagents 

targeting many of these receptors are rapidly advancing in the clinic and are 

showing efficacy in the control of viral infectious disease [212] as well as anti-

tumor immunity [213-218]. A single dose of an antibody against PD-1 led to 

sustained clearance of hepatitis C virus infection in a small subset of individuals 

[212]. Blockade of the PD-1/PD-L1 axis in vivo demonstrated efficacy in restoring 

simian immunodeficiency virus (SIV)-specific T cell and humoral immunity, and 

led to a reduction of SIV viremia and in immune activation. However, this did not 

completely control virus, suggesting that additional therapies are needed. 

Importantly, not all features of the exhausted T-cells are restored by interfering 

with a single pathway [177, 178, 180, 207, 219]. Synergistic simultaneous dual 

blockade has yielded more promising responses suggesting these co-inhibitory 

molecules are non-redundant [179, 181, 218, 220].  
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T cell immunoreceptor with immunoglobulin and ITIM domains (TIGIT) is a 

recently described immune checkpoint receptor that belongs to the CD28 family 

and contains an extracellular IgV domain, a transmembrane domain, and a 

cytoplasmic tail containing two-immunoreceptor tyrosine-based inhibitory motif 

(ITIM) [221]. It has been reported to be expressed on natural killer (NK) cells, 

CD8 and CD4 T cell subsets [221] and is induced upon activation [221-225]. 

TIGIT competes with DNAM-1, a co-stimulatory molecule, and TACTILE, a co-

inhibitory molecule, for the poliovirus receptor (PVR) a member of the nectin 

family of adhesion molecules that is expressed on dendritic cells (DCs) [221, 

222, 226]. Several murine and human studies strongly suggest that TIGIT is a 

negative modulator of T cell and NK cell function [223, 227-229]. A number of 

plausible mechanisms exist by which TIGIT can mediate inhibition of T and NK 

cell activation. Signaling through the TIGIT/PVR pathway with the standard 

recruitment of phosphatases via the intracellular ITIM domain of TIGIT can curtail 

T cell and NK cell responses [224]. This interaction has been shown to induce 

tolerogenic DCs to release the immunosuppressive cytokine IL-10 [223, 229]. 

Furthermore, disruption of DNAM-1 homodimerization by TIGIT can abrogate the 

positive co-stimulatory signals required for activation [217]. Recently, potent anti-

viral and anti-tumor responses related to enhanced CD8 T cell effector activity 

were generated following synergistic dual blockade of PD-L1 and TIGIT in the 

mouse model of chronic lymphocytic choriomeningitis virus (LCMV) infection 

[217] and ex-vivo in patients with advanced melanoma [230]. 

To date, these results have not been replicated in any human viral 

disease, but overexpression of both TIGIT and PD-1 on virally exhausted T cells 

suggests that this is a promising avenue of exploration as a viable strategy to 

increase control or eliminate viral infections through T cell modulation. Given the 

potential to restore anti-HIV-specific CD8 T cell responses by synergistic 

modulation of negative checkpoint receptors, we investigated the expression and 
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function of TIGIT in HIV disease pathogenesis, and in the SIV non-human 

primate model of HIV/AIDS.  

 

RESULTS 

 

Expansion of TIGIT+ T cells during HIV infection and correlations with 

clinical parameters of HIV disease progression, T cell activation, and the 

CD4 cell-associated HIV DNA content. 

 We assessed the surface expression of TIGIT on T cells from peripheral 

blood mononuclear cells (PBMCs) from HIV-infected individuals that were either 

acutely infected (AI), non-controllers (NC), cART suppressed (AS), or elite 

controllers (EC), and compared these results to age-matched HIV-uninfected 

donors (HD) (Table 3.1; Figure 1A-D; Supplemental Figure 3.1A,B). We 

observed a significant expansion in the frequency of TIGIT+ CD8 T cells in HIV-

infected participants (AS; 44.95%; EC 56.7%; NC, 64.5%), even among those 

with viral suppression, relative to HD (median: 28.05%; Figure 3.1C). We 

observed a non-significant trend in the expansion of TIGIT+ CD8 T cells in AI 

(40.4%) relative to HD (Figure 3.1C). TIGIT+ CD4 T cells were significantly 

elevated among NC (24.5%) compared to HD (16.05%) (Figure 3.1D).  

 Among the HIV-infected NC, TIGIT+ CD8 T cells inversely correlated with 

CD4 T cell counts, but not with CD8 T cell activation or plasma viral load (Figure 

3.1E; Supplemental Figure S1E). TIGIT+ CD4 T cells did not correlate with CD4 

cell counts in NC (Figure 3.1F). Among the EC, TIGIT+ CD8 T cells trended to 

correlate with CD8 T cell activation, while frequencies of TIGIT+ CD4 T cells 

correlated with CD4 T cell activation (Figure 3.1G,H). We did not observe any 

other significant correlations with TIGIT+ T cells (Supplemental Figure 3.1C-

F,G,I). Given the high levels of TIGIT in the midst of viral suppression, we 

assessed the relationship between TIGIT and the cellular HIV content in highly 

purified CD4 T cells among HIV-infected “cART initiators” who met strict selection 
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criteria of well documented and long-term persistent viral suppression (L-AS; 

Table 3.1). We did not observe a correlation with the frequency of CD8 T cell or 

CD4 T cell TIGIT expression and HIV RNA from purified CD4 T cells 

(Supplemental Figure 3.1H,J). However, the frequency of TIGIT+ CD4 T cells 

positively correlated with purified CD4 T cell HIV DNA content, but not with 

frequency of TIGIT+ CD8 T cells (Figure 3.1I,J). These data indicate that TIGIT 

expression on CD4 T cells may be linked to chronic HIV disease pathogenesis, 

residual immune activation, and the cellular HIV DNA content among those with 

viral suppression. 

 

Phenotype and function of TIGIT on CD8 T cells during HIV infection. 

HIV infection leads to an expansion of intermediately differentiated 

memory CD8 T cells that are not fully mature effectors [231-233]. We profiled the 

pattern of TIGIT expression in the heterogeneous CD8 T cell subpopulations and 

found TIGIT was significantly expanded on the CD8 T cell 

intermediate/transitional and effector subsets with the highest expression of 

TIGIT on the effector CD8 T cell subset (Figure 3.2A; Supplemental Figure 2A-E) 

compared to AS. In the naïve population TIGIT expression was relatively stable 

with only a significant difference seen between HD and the non-controllers 

(Figure 3.2A). We did observe a statistically significant difference in TIGIT 

expression between the HD and AI group in the memory CD8 T cell population 

(Figure 3.2A). Thus, TIGIT is expanded on the intermediate/transitional and 

effector CD8 T cell subsets during chronic HIV infection, consistent with a role for 

TIGIT as potential regulator of intermediate/transitional and effector T cell 

responses. 

 We next profiled the expression of TIGIT on viral-specific CD8 T cells from 

chronically HIV-infected participants using matched HLA-I restricted pentamers 

for various HIV and CMV peptide epitopes. TIGIT was expressed on over half of 

all CD8 T cells for specific for HIV Gag (55.3%), Polymerase (54.7%), Envelope 
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(54.3%), Nef (52%), and also for CMV pp65 (57.8%) (Figure 3.2B,C). 

Comparable levels of TIGIT on HIV and CMV specific CD8 T cells were observed 

on a per cell basis as measured by Geometric Mean Fluorescence Intensity 

(GMFI) (Figure 3.2C).  

We next assessed the effector phenotype and functional properties of 

TIGIT expressing CD8 T cells to determine whether they retain features of 

immune exhaustion. We found that most of the TIGIT expressing CD8 T cells co-

expressed PD-1 with the frequency of TIGIT+ PD-1+ CD8 T cells significantly 

expanded in chronic HIV infection (AS, 18.65%; EC, 20.85%; NC, 38.15%) 

compared to HD (13.65%) (Figure 3.3A,B). The frequency of TIGIT+ PD-1+ CD8 

T cells inversely correlated with CD4 T cell counts (Fig 3.3C) and positively 

correlated with plasma viral load levels (Figure 3.3D) among all chronically HIV-

infected individuals. We observed significantly higher frequencies of TIGIT+PD-

1+ co-expression on HIV-Gag-specific CD8 T cells compared to non-HIV-Gag-

specific CD8 T cells derived from PBMCs (Figure 3.3E-G). Furthermore, the 

majority of the TIGIT+PD-1+ HIV-Gag-specific CD8 T cells retained a 

transitional/intermediate memory (CD45RA-CCR7-CD27+) phenotype (Figure 

3.3H-J). These results suggest TIGIT may render a large fraction of viral specific 

CD8 T cells vulnerable to negative regulation. 

Given the high expression of PD-1 among TIGIT+ CD8 T cells, we 

evaluated the functional status of the TIGIT expressing cells. We stained T cells 

with the nuclear antigen Ki-67, which is associated with cellular proliferation, and 

observed that TIGIT+ cells expressed significantly more Ki-67 than TIGIT- CD8 T 

cells (Figure 3.4A,B). However, in contrast, Ki-67 expression was equivalently 

distributed between PD-1+ and PD-1- CD8 T cells (Figure 3.4C,D). Using 

intracellular cytokine staining, in response to stimulation with an overlapping 

15mer HIV Gag peptide pool, we observed that TIGIT+ CD8 T cells produced 

significantly less IFN-γ, TNF-α and IL-2 compared to TIGIT- CD8 T cells (Figure 

3.4E,F). We observed phenotypically the majority of the HIV specific cytokine 
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responsive CD8 T cells lacked TIGIT and PD-1 dual expression and were 

minimally represented in the TIGIT+PD-1+ subset. However, single expressing 

cells retain some functional responses (Figure 3.4G).  

To directly assess the functionality of the TIGIT+PD-1+ subset in HIV 

infected individuals, CD8 T cells expressing TIGIT and/or PD-1 on their surface 

were sorted to high purities (Supplemental Figure 3.3A,B), stimulated with or 

without anti-CD3 + anti-CD28 Dynabeads, and assessed for changes in TIGIT 

and PD-1 expression and their capacity to secrete 13 different cytokines. We 

found CD8 T cells lacking TIGIT (TIGIT-PD-1- and TIGIT-PD-1+) robustly 

upregulated TIGIT upon stimulation (Supplemental Figure 3.3B,C). Irrespective 

of PD-1 expression, the TIGIT expressing (TIGIT+PD-1- and TIGIT+PD-1+) cells 

only marginally increased TIGIT expression (Supplemental Figure 3.3B,C) upon 

stimulation. We harvested the supernatants and observed that TIGIT+PD-1+ 

cells had the lowest secretion of all cytokines assessed in comparison to the 

other three subsets (Supplemental Figure 3.3D). TIGIT+PD-1- cells produced 

less cytokines than TIGIT-PD-1+ cells. These data are partially in alignment with 

results observed in Figure 4G. However, it was notable that IL-10 production was 

almost exclusively produced by the TIGIT-PD-1+ cell subset. These data 

suggests that TIGIT+ CD8 T cells, particularly TIGIT+PD-1+ co-expressing CD8 

T cells exhibit distinguishing features of exhausted T cells. 

 Next, we evaluated the intracellular granular content of TIGIT expressing 

cells. We observed that TIGIT expressing CD8 T cells contained significantly 

more perforin and granzyme B compared to non-TIGIT expressing CD8 T cells 

(Figure 3.4H,I). We observed no difference in the ability of TIGIT+ CD8 T cells to 

degranulate compared to TIGIT- CD8 T cells when stimulated with HIV Gag 

peptide pool (Figure 3.4J,K). However, upon stimulation with anti-CD3 + anti-

CD28 Dynabeads, TIGIT+ cells degranulated less than TIGIT- cells (Figure 3.4J-

L).  
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Induction of TIGIT on CD8 T cells during HIV infection. 

 To explore the regulation of TIGIT expression we stimulated HIV-specific 

CD8 T cells from chronically HIV-infected individuals with HIV Gag peptides. HIV 

Gag peptide stimulation did not significantly increase the expression of TIGIT on 

HIV-specific CD8 T cells, although we did observe an upregulation of TIGIT in a 

subset of individuals (Figure 3.5A-C). Several common gamma-chain (γ-chain) 

cytokines have been shown to directly upregulate negative checkpoint receptors 

on CD8 T cells during retroviral infections [234]. To further understand the 

mechanism driving TIGIT upregulation, we explored the capacity of γ-chain and 

non-γ-chain cytokines to regulate TIGIT expression (Figure 3.5D-F). We found 

that IL-2 and IL-15 prominently led to a significant increase in TIGIT expression 

on CD8 T cells from HIV-infected individuals unlike non-γ-chain cytokines IL-12 

and IL-18 (Figure 3.5E). This effect was not evident on CD8 T cells derived from 

HIV-uninfected participants (Figure 3.5F). Correspondingly, TIGIT expression on 

CD4 T cells was upregulated primarily by IL-2 and IL-15 in HIV-infected 

individuals (Supplemental Figure 3.4A). IL-21 stimulation increased TIGIT 

expression on CD8 T cells, but not CD4 T cells (Supplemental Figure 3.4B). 

These data suggests that TIGIT expression may be regulated by a peripheral 

cytokine milieu dominated by γ-chain cytokines present during HIV infection. 

 

Effects of anti-TIGIT and anti-PD-L1 mAb blockade on HIV-specific CD8 T 

cell cytokine and proliferative responses. 

 Since TIGIT and PD-1 are co-expressed, and dual blockade in the mouse 

model limits in vivo LCMV replication [217] and elicits anti-tumor CD8 T cell 

responses [230], we evaluated the effects of TIGIT and PD-L1 blockade on HIV-

Gag-specific CD8 T cells using cells from chronically HIV-infected individuals at 

various stages of infection (Table 3.2). To evaluate the ex vivo HIV-specific T cell 

cytokine restoration, we used a modified version of our previously published in 

vitro short-term primary recall blockade assay [178]. Incubation with either anti-
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TIGIT mAb alone or anti-PD-L1 mAb alone significantly increased IFN-γ 

production, however dual blockade of both TIGIT and PD-L1 did not enhance 

IFN-γ responses over anti-TIGIT or anti-PD-L1 alone (Figure 3.6A,B). We also 

observed that only dual blockade of TIGIT and PD-L1 significantly increased IL-2 

production by CD8 T cells (Supplemental Figure 3.5A,B). Given that virus-

specific IL-2 producing CD4 T cells have been associated with disease control in 

HIV infection we assessed the effects of TIGIT blockade on CD4 T cells [235, 

236]. Similarly, only dual blockade of TIGIT and PD-L1 significantly increased IL-

2 production over the single blockades alone from CD4 T cells (Supplemental 

Figure 3.5C,D). 

Single blockade of PD-L1 significantly enhanced HIV-specific CD8 T cell 

proliferation while single blockade of TIGIT did not improve CD8 T cell 

proliferation (Figure 3.6C,D). When both anti-TIGIT and anti-PD-L1 were 

combined there was significant increased CD8 T cell proliferation compared to 

PD-L1 blockade alone (Figure 3.6C,D). Though donor OM115 had the highest 

baseline levels of TIGIT+ CD8 T cells among the group, no significant 

association was seen between the magnitude of IFN-γ production and 

proliferation by TIGIT blockade and baseline TIGIT+ CD8 T cell expression (r = 

0.24, p = 0.257). These data suggests that HIV-specific CD8 T cell proliferation 

can be markedly improved with simultaneous combination blockade of TIGIT and 

PD-L1. 

 

rhTIGIT is elevated on dysfunctional effector CD8 T cells in the SIV rhesus 

macaque model of HIV/AIDS and is associated with SIV disease 

progression. 

 To explore the role of TIGIT in the rhesus macaque model of HIV/AIDS we 

cloned rhesus TIGIT (rhTIGIT) (GenBank: KR534505) and observed that it 

shares 88.11% sequence homology with human TIGIT (Supplemental Figure 

3.6A). We reasoned that rhTIGIT expression and function would mimic our 
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human HIV studies and be replicable in the SIV-infected rhesus macaque model 

of HIV/AIDS. RhTIGIT expression was significantly increased on CD8 T cells 

derived from the lymph node (LN) (38.6%) and splenic (60.9%) compartments 

when compared to SIV-uninfected macaques (LN 10.82% and spleen 25.55%), 

but not in PBMCs (Figure 3.7A; Supplemental 3.6B). Similar to what we observed 

in HIV-infected participants, the frequency of rhTIGIT+ CD8 T cells from PBMC 

did not correlate with plasma SIV viral load. However, we did observe a 

significant correlation with the frequencies of rhTIGIT+ CD8 T cells in LN and 

viral load (Figure 3.7B). 

As observed in human HIV infection, rhTIGIT expression was more 

prominently expressed in SIV infection on effector memory (EM, CD28-CD95+), 

and central memory (CM, CD28+CD95+) CD8 T cells when compared to naïve 

(N, CD28+CD95-) CD8 T cells from PBMCs, LN and from the spleen 

(Supplemental Figure 3.6C). In the tissues, it was notable that TIGIT expression 

was highest on the central memory CD8 T cells when compared to PBMCs 

(Supplemental Figure 6C). As in HIV infection, stimulation with γ-chain cytokines 

such as IL-2 and IL-15 upregulated rhTIGIT on CD8 T cells from SIV-infected 

animals (Supplemental Figure 3.6D). 

 rhTIGIT was also expressed on ~40% of SIV Gag or Tat tetramer specific 

CD8 T cells derived from PBMCs or secondary lymphoid tissues, even in animals 

with full cART suppression of peripheral SIV viremia (Figure 3.7C). This was 

more prominently found in the tissues of SIV-infected animals where higher 

frequency of SIV-specific CD8 T cells co-expressed both rhTIGIT and rhesus 

macaque PD-1 (rhPD-1) (Supplemental Figure 3.6E-H).  

 While the levels of Ki-67 expression did not differ between rhTIGIT+ and 

rhTIGIT- CD8 T cells from SIV-infected rhesus macaques (Supplemental Figure 

3.7A-D), CD8 T cells lacking rhTIGIT from PBMC produced significantly more 

IFN-γ compared to rhTIGIT+ CD8 T cells when stimulated with either phorbol 12-



	 45	

mysistate 13-acetate (PMA) + ionomycin or SIV Gag181-189 CM9 peptide 

(Figure 3.7D,E). 

 Given the similarities of rhTIGIT and human TIGIT, we evaluated TIGIT 

and PD-L1 blockade on SIV peptide stimulated CD8 T cell responses. We found 

that dual blockade of rhPD-L1 and rhTIGIT enhanced SIV-specific CD8 T cell 

proliferation in PBMCs and spleen while single blockade of rhPD-L1 enhanced 

SIV-specific proliferation in the spleen (Figure 3.7F,G). Taken together, rhTIGIT 

pathway is active in the rhesus macaque model of HIV/AIDS and partially mimics 

human TIGIT expression and function during HIV infection. 

 

DISCUSSION 

 

In this report we profiled TIGIT expression on T cells in HIV-infected 

participants with various degrees of viral control and in SIV-infected rhesus 

macaques. We (1) unveil a role for TIGIT+ CD8 T cells in HIV disease 

progression and demonstrate its relation to T cell exhaustion, (2) observe that 

TIGIT appears to associate with the cellular viral reservoir in CD4 T cells, (3) we 

found that co-blockade of TIGIT and PD-L1 lead to a greater restoration of T cell 

function compared with a single blockade, and (4) by successfully cloning 

rhTIGIT (GenBank: KR534505) we reveal the similarities in expression and 

function of rhTIGIT on T cells in the non-human primate model of HIV/AIDS. Our 

findings reveal a novel inhibitory pathway involved in the suppression of T cell 

responses during chronic viral infection, the blockade of which may contribute to 

the reversal of T cell dysfunction in the control or elimination of HIV infection. 

While TIGIT levels on CD8 T cells tracked disease progression (depletion 

of CD4 T cells and T cell activation), this was not evident across the various HIV-

infected groups. There was a significant difference in TIGIT+ memory CD8 T 

cells in acute infection compared to the uninfected group, but not in the global 

CD8 T cell population. This suggests there may be a gradient, with an increase in 
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global TIGIT+ CD8 T cells in acute infection that becomes greater over time, 

which is distributed among the differentiated CD8 T cell populations and may 

differ when compared to other negative checkpoint receptors which are found 

elevated during the early stages of HIV infection [177, 237, 238].  

TIGIT induction appears to be driven by polyclonal TCR stimulation and 

this is a common feature among immune checkpoint receptors [237, 239]. We 

observed HIV-Gag-SL9-specific CD8 T cells did not increase TIGIT expression 

after HIV Gag peptide stimulation as a group, however a subset of individuals 

with moderate levels of TIGIT increased expression after stimulation, and 

individuals that expressed high levels of TIGIT retained expression after 

stimulation. TIGIT remained elevated despite antigen in cART-suppressed 

individuals, previous studies have also shown that common γ-chain cytokines 

maintain the ability to regulate immune checkpoint receptor expression in the 

absence of antigenic stimulation [234, 240]. Our studies align with these previous 

observations and suggest that a cytokine milieu conducive for the maintenance 

of an exhausted T cell profile persists in HIV and SIV infection even during viral 

suppression. 

TIGIT expression was found to be associated with T cell activation 

principally among ECs who represent a small population of HIV-infected 

individuals able to spontaneously suppress their viral load (<50 copies/ml) in the 

absence of cART for prolonged periods of time [241]. However, over time a 

subset of EC loses virologic control and develops viremia and CD4 T cell loss 

[242, 243]. In addition, EC maintain elevated levels of T cell activation despite 

viral control [92, 244]. High TIGIT expression may reflect ongoing immune 

activation in the EC population. The institution of cART in those EC has lead to a 

reduction in immune activation [245, 246]. Given our finding, in addition to cART, 

some EC may benefit from TIGIT blockade to alleviate the persistent T cell 

immune activation thereby reducing the risk of adverse non-AIDS events that 

have been documented to occur in this population, however such strategies need 
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to be considered carefully given the risk of autoimmunity as described in anti-PD-

1 clinical trials in the oncology field [247, 248].  

Viral clearance of the chronic strain of LCMV (clone 13) in mice by 

combined blockade of TIGIT and PD-L1 provided the first evidence of the 

advantages of targeting these two pathways [217]. In addition, targeting TIGIT 

and PD-L1 on CD8 tumor infiltrating lymphocytes in patients with advanced 

melanoma synergistically improves potent anti-tumor responses [230]. Here we 

extend these finding to human and simian retroviral infections. This was 

significant given the expansion of dual expressing TIGIT and PD-1 CD8 T cells in 

HIV infection despite pharmacological or immunological viral suppression. Our 

data shows the presence of TIGIT and PD-1 dual expressing HIV and SIV-

specific CD8 T cells and co-blockade of TIGIT and PD-L1 better enhanced 

proliferation of HIV and SIV-specific CD8 T cell responses compared to single 

blockade. Although we see a significant increase among all HIV-infected 

individuals, it was evident that subsets of weak-responders exist and appear 

heterogeneous irrespective of stage of infection, viral load levels or viral 

suppression. Indeed, combinational blockade of CTLA-4 and PD-1 revealed a 

subset of weak-responders to anti-tumor activity. Different or expanded 

combinations of immune checkpoint blockers with anti-TIGIT may need to be 

considered in the arsenal to improve anti-viral T cell immunity in all individuals.  

 Persistence of the cellular latent HIV reservoir has been a major barrier to 

the eradication of HIV [249]. One proposed strategy is to “Shock” the latently 

infected cells to flush out virus with latency reversal agents (LRAs) [206, 250, 

251]. The development of the “Shock” strategies is advancing at a rapid pace 

with in vivo studies yielding activity in reactivating of latent virus. However, the 

“Kill” component is less well developed. Shan and colleagues demonstrate that 

after reactivation of latent virus from CD4 T cells, CD8 T cells’ activity had the 

capacity to kill latently infected CD4 T cells if appropriate pre-stimulation of HIV 

peptide and IL-2 was provided an in vitro latency assay using Bcl-2 as a survival 
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signal to prolong the longevity of the latent CD4 T cells [252]. Furthermore, 

recent studies show that HIV-infected individuals on cART retain broad HIV-

specific cytotoxic T-lymphocyte responses that are able to target the mutated 

latent virus [253]. Blocking immune checkpoint pathways such as TIGIT and PD-

1/PD-L1 can be harnessed to boost HIV-specific CD8 T cells responses given 

that these pathways persist in the setting of viral suppression. Furthermore, given 

our findings showing the relationship with TIGIT expression on CD4 T cells and 

the total cell associated HIV DNA, it remains unclear what role TIGIT may play in 

the establishment of the reservoir in CD4 T cells, however it is likely related to 

the capacity of TIGIT’s ability control T cell activation or proliferation.  

Our study provides a novel role for TIGIT during HIV disease 

pathogenesis and our demonstration of a role of rhTIGIT in the non-human 

primate model of HIV/AIDS provides a platform to investigate our understanding 

of the complex networks of co-inhibition that can be tailored to each individual or 

viral infection. Improving CD8 T cell functions may further aid in the “Shock and 

kill” approaches being considered to eliminate latent virus and improve T cell 

mediated vaccine responses to prevent or limit infection [1]. 

 

MATERIALS AND METHODS 

 

Study participants 

 We recruited participants from the following cohorts: University of 

California, San Francisco (UCSF) SCOPE and OPTIONS cohorts [178] the 

Hawaii HIV (HHC) cohort, the Toronto-based cohort CIRC (Maple Leaf Clinic and 

St. Michael’s Hospital, Toronto, Canada) [254] and the Duke Human Vaccine 

Institute (DHVI) tissue repository. SCOPE specimens (n = 80) were selected from 

the following groups: untreated non-controllers (n = 20) (participants who had 

never been treated with antiretroviral agents or who had been off therapy for at 

least six months), treated virologic controllers (participants who had an 
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undetectable plasma HIV RNA level for the previous six months while on cART) 

(n = 20), spontaneous “elite” virologic controllers (participants who are untreated 

and who have at least three documented plasma HIV RNA levels <2,000 

copies/ml over at least a 12-month period) (n = 20), Some of these participants 

had persistent plasma HIV RNA levels <75 copies/ml) and HIV-infected “cART 

initiators” (n = 20) who meet strict selection criteria and well documented 

persistent viral suppression for over 1.5 years. Participants with acute HIV 

infection (n = 24) were obtained for the OPTIONS cohort of primary HIV infection 

[178] and age-matched HIV-uninfected (n = 20) (Table 1) and chronically infected 

virally suppressed leukapheresesed individuals were obtained from the HAHC 

cohort [255]. Additional participants with chronic infection at various stages of 

infection were obtained from participants with various levels of viral control from 

the Toronto-based cohort CIRC cohort, HHC, and DHVI.  

 

Ethics Statement 

 All persons gave written informed consent to participate in the study and 

approval for the study was obtained from the University of Hawaii Committee of 

Human Subjects. Samples were obtained from Indian Rhesus macaques 

(Macaca mulatta) housed at the Oregon National Primate Research Center 

(ONPRC), which were SIV infected for other ongoing, unrelated studies. Oregon 

Health & Science University (OHSU) Institutional Animal Care and Use 

Committee (IACUC) Protocol #: 0989. The OHSU Institutional Animal Care and 

Use Committee reviewed and approved all study protocols. All macaques in this 

study were managed according to the ONPRC animal husbandry program, which 

aims at providing consistent and excellent care to nonhuman primates. This 

program is based on the laws, regulations, and guidelines set forth by the United 

States Department of Agriculture (e.g., the Animal Welfare Act and its 

regulations, and the Animal Care Policy Manual), Institute for Laboratory Animal 

Research (e.g., Guide for the Care and Use of Laboratory Animals, 8th edition), 
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Public Health Service, National Research Council, Centers for Disease Control, 

and the Association for Assessment and Accreditation of Laboratory Animal Care 

(AAALAC) International. The nutritional plan utilized by the ONPRC is based on 

National Research Council recommendations and supplemented with a variety of 

fruits, vegetables, and other edible objects as part of the environmental 

enrichment program established by the Behavioral Management Unit. 

Paired/grouped animals exhibiting incompatible behaviors were reported to the 

Behavioral Management staff and managed accordingly. All efforts were made to 

minimize suffering through the use of minimally invasive procedures, anesthetics, 

and analgesics when appropriate. Animals were painlessly euthanized with 

sodium pentobarbital and euthanasia was assured by exsanguination and 

bilateral pneumothorax, consistent with the recommendations of the American 

Veterinary Medical Guidelines on Euthanasia (2013). 

 

Quantifying cellular HIV DNA and RNA 

 Cryopreserved PBMCs were rapidly thawed and enriched for CD4 T cells 

to high purities with an EasySep Human CD4 T cell enrichment kit (Stemcell 

Technologies, Vancouver, British Columbia, Canada). Cellular RNA and DNA 

from PBMC T-cell subsets cells were purified using the AllPrep DNA/RNA kit 

(Qiagen, Ventura CA) as specified by the manufacturer, quantified using a 

Nanodrop (ND-1000) spectrophotometer and normalized to cell equivalents by 

qPCR using human genomic TERT for DNA and GAPDH or RPLP0 expression 

for RNA (Life Technologies, Grand Island NY). Total cellular HIV DNA (integrated 

and unintegrated) and RNA (unspliced and multiply spliced) was quantified with a 

qPCR TaqMan assay using LTR-specific primers F522-43 (5’ GCC TCA ATA 

AAG CTT GCC TTG A 3’; HXB2 522-543) and R626-43 (5’ GGG CGC CAC TGC 

TAG AGA 3’; 626-643) coupled with a FAM-BQ probe (5’ CCA GAG TCA CAC 

AAC AGA CGG GCA CA 3) [256] on a StepOne Plus Real-time PCR System 

(Applied Biosystems Inc, Foster City CA). Cell associated HIV DNA copy number 
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was determined using a reaction volume of 20 µl with 10 µl of 2x TaqMan 

Universal Master Mix II including UNG (Life technologies), 4 pmol of each primer, 

4 pmol of probe, and 5 µl of DNA. Cycling conditions were 50 °C for 2 min, 95 °C 

for 10 min, then 60 cycles of 95 °C for 15s and 59 °C for 1 min. Cell associated 

HIV RNA copy number was determined in a reaction volume of 20 µl with 10 µl of 

2x TaqMan RNA to Ct 1 Step kit (Life Technologies), 4 pmol of each primer, 4 

pmol of probe, 0.5 µl reverse transcriptase, and 5 µl of RNA under identical 

cycling conditions. For HIV DNA measurements, external quantitation standards 

were prepared from pNL4-3 in a background of HIV negative human cellular 

DNA, calibrated to the Virology Quality Assurance (VQA, NIH Division of AIDS) 

cellular DNA quantitation standards. For HIV RNA measurements, external 

quantitation standards were prepared from full length NL4-3 virion RNA followed 

by copy number determination using the Abbott RealTime assay (Abbott 

Diagnostics, Des Plains Ill) and calibrated to VQA HIV RNA standards. Patient 

specimens were assayed with up to 800 ng total cellular RNA or DNA in replicate 

reaction wells and copy number determined by extrapolation against a 7-point 

standard curve (1 – 10,000 cps) performed in triplicate. 

 

Antibodies and flow cytometric analysis. 

 Cryopreserved PBMC were rapidly thawed in warm 10% cRPMI ((RPMI 

1640 medium; (Hyclone, Logan, Utah) supplemented with 10% fetal bovine 

serum (FBS) (Hyclone), 1% penicillin-streptomycin (Hyclone), 10 mM HEPES 

(Hyclone), 2 mM L-glutamine (Hyclone), and 10 µg/ml DNase I (Sigma-Aldrich, 

Dorset, United Kingdom)), washed with PBS + 2% FBS (Hyclone) (complete 

RPMI). Cells were stained for viability with an aqua amine reactive dye (AARD; 

Invitrogen, Carlsbad, California), then incubated with panels of conjugated anti-

human monoclonal antibodies (mAbs) The following directly conjugated mAbs 

used in this study were obtained from BD biosciences (San Jose, California): PE-

Cy5-conjugated anti-CD38 (Clone: HIT2), V450-conjugated anti-CD45RA 



	 52	

(HI100), FITC-conjugated anti-CD45RA (HI100), PerCP-Cy5.5-conjugated anti-

CD27 (M-T271), Alexa Flour 700-conjugated anti-CD4 (RPA-T4), FITC-

conjugated anti-HLA-DR (G46-6), APCH-7-conjugated anti-CD8 (SK1), FITC-

conjugated anti-CD57 (NK-1), APC-conjugated CD107a (H4A3). mAb obtained 

from Beckman Coulter (Fullerton, California) ECD-conjugated anti-CD3 (UCHT1). 

mAbs obtained from eBioscience (San Diego, California) PE-Cy7-conjugated 

anti-CD28 (CD28.2), PerCP-eFluor 710-conjugated anti-TIGIT (MBSA43), PE-

conjugated anti-TIGIT (MBSA43), Mouse IgG1 Kappa isotype control PerCP-

eFluor 710 (P3.6.2.8.1), mouse IgG1 K isotype control PE (P3.6.2.8.1). mAbs 

obtained from Biolegend (San Diego, California) Brilliant Violet 605-conjugated 

anti-CCR7 (G043H7), APC-conjugated anti-PD-1 (EH12.2H7), mouse IgG1 

Kappa isotype control PE (MOPC-21). Qdot 605-conjugated anti-CD8 (3B5) was 

obtained from Invitrogen (Carlsbad, California). In some experiments cells were 

fixed with 1X Lyse buffer (BD Biosciences) followed by 1X BD FACS 

Permeabilizing solution 2 (BD Biosciences) and stained with FITC-conjugated Ki-

67 (35/Ki-67), FITC-conjugated interferon gamma (IFN-γ) (25723.11), Alexa 700-

conjugated Granzyme B (GB11), PE-conjugated perforin (B-D48) (abcam, 

Cambridge, Massachusetts). All cells were washed with PBS + 2% FBS and then 

fixed in 1% paraformaldehyde (PFA, Electron Microscopy Sciences, Hatfield, 

Pennsylvania) before acquiring (within 18 hours) on a custom four laser 

LSRFortessa flow cytometer (BD Biosciences). Between 100,000 to 500,000 

lymphocyte events were collected for each sample. Isotype controls or 

fluorescence minus one (FMO) samples were prepared to facilitate gating. Anti-

mouse or anti-rat IgG-coated beads (BD Biosciences) were individually stained 

with each fluorochrome-conjugated antibody and used for software-based 

compensation. Data were analyzed using Flowjo Software version 9.5 (Treestar, 

Ashland, Oregon).  
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Cell Sorting 

 Cryopreserved PBMCs were rapidly thawed and enriched for CD8 T cells 

to high purities with an EasySep Human CD8 T cell negative selection 

enrichment kit (Stemcell). Cells were surface stained with the following 

combination of mAbs: BV711-conjugated anti-CD3, Alexa 700-conjugated anti-

CD4 (BD Biosciences), PerCP-eFluor 710-conjugated anti-TIGIT (eBioscience), 

Qdot605-conjugated anti-CD8, APC-conjugated anti-PD-1 (Invitrogen). Cells 

were sorted on a BD FACS ARIA and checked for purity. Gating was facilitated 

by isotype controls. 

 

Multiplex cytokine assay 

 The four-sorted populations (TIGT+PD-1+, TIGIT+PD-1-, TIGIT-PD-1+, 

TIGIT-PD-1-) were seeded at 100,000 cells per well in a 96 well culture plate with 

200 µl of 10% cRPMI. Sorted cells were stimulated with anti-CD3 + anti-CD28 

Dynabeads (Life Technologies) for 48 hours in an incubator at 37 °C with 5% 

CO2, supernatants were harvested from the cultures and processed according to 

recommended manufacture procedure with a Milliplex MAP Human High 

Sensitivity T cell Panel (EMD Millipore, Billerica, Massachusetts) for GM-CSF, 

TNF-α, IL-13, IL-12 (p70), IL-10, IL-8, IL-7, IL-6, IL-5, IL-4, IL-2, IL-1b, IFN-

γ. Samples were acquired on a Luminex 200 (EMD Milipore). Samples were run 

in duplicate. The intra-assay CV% for the conditions of each cytokines were 

<10%. 

 

Peptides and polyclonal stimulation  

 123 Overlapping ~15mer HIV clade B gag peptides obtained from the 

National Institute of Health AIDS Reagent Program. Stimulations were performed 

with a final concentration of 10 µg/ml peptide. T cell activator (anti-CD3 + anti-

CD28 mAb Dynabeads) (Life Technologies) followed recommended manufacture 

procedure. 
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Pentamer analysis  

 We used the following Biotin labeled pentamers: A*02:01 SLYNTVATL 

HIV-Gag, A*02:01 ILKEPVHGV HIV-Pol, B*07:02 IPRRIRQGL HIV-Env, B*07:02 

TPGPGVRYPL HIV-Nef, and A*02:01 NLVPMVATV CMV-pp65-NV9. All 

pentamers were obtained from Proimmune Ltd, Oxford, UK. Using protocol 

outlined previously [178] and stained with antibodies against CD3, CD8, TIGIT, 

PD-1, TIGIT isotype control or PD-1 isotype control and acquired on the flow 

cytometer as above. In some experiments PBMCs were stimulated with HIV Gag 

Peptide pool and evaluated for pentamer phenotype. 

 

Anti-TIGIT and anti-PD-L1 monoclonal antibodies  

 The TIGIT antibody clones 11G11 and 23G8 were generated in HuMab 

mice [257, 258] immunized with a TIGIT-Fc fusion protein and selected based on 

their high affinity for TIGIT and ability to block TIGIT/PVR interaction. Clone 

11G11 is a fully human IgG1 antibody that was engineered to contain a well-

characterized set of mutation in the Fc that eliminate FcR interaction [259]. Clone 

23G8 is a fully human IgG2 antibody that cross-reacts with macaque TIGIT. The 

anti-human PD-L1 antibody, clone 12A4, is a fully human IgG4 (S228P) that was 

generated in HuMab mice immunized with PD-L1-Fc. This antibody was selected 

based on its ability to block the binding of PD-L1 to both PD-1 and CD80. 12A4 

cross-reacts with macaque PD-L1. 

 

Peptides and polyclonal stimulation 

 123 Overlapping ~15mer HIV clade B gag peptides obtained from the 

National Institute of Health AIDS Reagent Program. Stimulations were performed 

with a final concentration of 10 µg/ml peptide. T cell activator (anti-CD3 + anti-

CD28 mAb Dynabeads) (Life Technologies) followed recommended manufacture 

procedure. 
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Functional assays  

 In the intracellular cytokine stimulation assay studies, thawed 

cryopreserved PBMCs were stimulated for 12 hours in an incubator at 37 °C with 

5% CO2 with 5 µg/ml brefeldin A and 5 µg/ml monensin (Sigma-Aldrich) culture 

media, DMSO alone, pooled HIV Gag peptides, or anti-CD3/CD28 Dynabeads 

(Life Technologies) in the presence or absence of purified isotype IgG control, 

anti-TIGIT and/or anti-PD-L1 mAbs. After stimulation, the cells were washed and 

stained for viability with AARD and cultured with surface phenotype panel against 

CD8, TIGIT or an isotype control antibody, followed by intracellular staining of 

CD3 and IFN-γ and acquisition on the flow cytometer as above. For the 

proliferation assay, thawed PMBCs were washed two times and resuspended in 

PBS supplemented with 0.01% BSA at a concentration of one million cells per 

milliliter. Cells were labeled with 1mM Carboxyfluorescein succinimidyl ester 

(CFSE) violet-trace (Invitrogen) using protocols previously described [178]. Cells 

were stimulated for seven days with DMSO alone, pooled HIV gag peptides, or 

anti-CD3/CD28 Dynabeads in the presence or absence of purified isotype IgG 

control, anti-TIGIT or anti-PD-L1 at 37 °C with 5% CO2. At the end of the 

stimulation, cells were washed and stained for viability with AARD and cultured 

with surface phenotype panel against CD3, CD8, TIGIT or an isotype control 

antibody and acquired on the flow cytometer as above. 

 

In vitro cytokine stimulation 

 PBMCs were thawed and one million cells were plated per stimulation 

condition. Stimulation conditions included media alone, 25 ng/ml IL-2 (Roche), 50 

IU/ml of IL-12 (MBL international, Woburn, Massachusetts), 50 IU/ml of IL-18 

(MBL international) and 25 ng/ml IL-15 (R&D Systems, Minneapolis, Minnesota). 

Cells were stimulated for six days in an incubator at 37 °C with 5% CO2. After 

stimulation, the cells were washed and stained for viability with AARD cultured 
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with surface phenotype panel against CD3, CD4, CD8, TIGIT or isotype control 

antibody and acquired on the flow cytometer as above. 

 

T cell function in vitro antibody blockade studies. HIV-infected cryopreserved 

PBMC from individuals identified in Table 2 were stimulated for 12 hours in an 

incubator at 37 °C with 5% CO2. Stimulation conditions contained culture media, 

DMSO alone or pooled HIV gag peptides, in the presence of brefeldin A (Sigma-

Aldrich), monensin (Sigma-Aldrich), anti-TIGIT mAb anti-PD-L1 mAb or mouse 

IgG1 isotype control. After stimulation, cells were washed and stained for cellular 

viability with AARD and conjugated antibodies against CD8 and CD4, followed by 

intracellular staining of CD3 and IFN-γ and acquired on a flow cytometer as 

described above. 

 

Statistical analysis  

 The repeated-measures, one-way ANOVA followed by Tukey’s multiple 

comparison, Wilcoxon matched-pairs signed ranked test was used for paired 

tests and the Spearman’s rho test was used for correlation analyses. Measures 

of central tendency are expressed as medians and interquartile ranges (IQRs; 

given in the form 25th percentile, 75th percentile). Statistical analyses were 

conducted using Prism Graphpad release 5.0d (Graphpad Software, San Diego, 

California) or SPSS 22.0 (IBM, Armonk, New York) and the statistical 

significance of the findings was set at a p-value of less than 0.05.  

 

Accession Numbers  

 Indian rhesus macaque (Macaca mulatta) TIGIT (rhTIGIT): GenBank 

KR534505 
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TABLES 

 

TABLE 3.1: Participant Characteristics  

 
 



	 59	

TABLE 3.2: Description of participants for in vitro mAb blockade 
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Figure 3.1: Expression of TIGIT on T cells during HIV infection. 

Cryopreserved PBMCs were thawed and surface phenotyped for TIGIT 

expression. Representative flow cytometry flow plots showing TIGIT expression 

on (A) CD8 or (B) CD4 T cells compared to fluorescence minus one (FMO) 

control. Graphs show compiled data of TIGIT expression on (C) CD8 and (D) 

CD4 T cells stratified by disease: HIV-uninfected healthy donors (HD, X; n = 20), 

acute HIV-infection (AI, open diamond; n = 24), aviremic cART suppressed (AS, 

open triangles; n = 20), aviremic elite controllers (EC, open squares; n = 20), and 

chronic HIV viremic non-controllers (NC, open circles; n = 20). P values were 

calculated using one-way ANOVA, followed by Tukey’s multiple comparisons 

test. Graphs show correlation of total chronic infected (+: AS, EC, and NC; left 

panel, n = 60) and non-controllers (right panel, n = 20) frequency (%) of (E) 

TIGIT+ CD8+ and (F) TIGIT+ CD4 T cells against clinical CD4 Count 

(cells/mm3). Graphs show correlation of total chronic infected (+: AS, EC, and 

NC; left panel, n = 60) and elite controllers (right panel, n = 20) frequency (%) of 

(G) TIGIT+ CD8 and (H) TIGIT+ CD4 T cells against frequency (%) of T cell 

activation (CD38+HLA-DR+). Graphs show correlation of frequency (%) of (I) 

TIGIT+ CD8 and (J) TIGIT+ CD4 T cell among aviremic HIV infected “ART 

initiators” with known duration of long-term viral suppression from the SCOPE 

cohort (L-AS, n = 19, open inverted triangles) versus copies of CD4 T cell 

associated HIV DNA per million CD4 T cells (log10). Spearman’s rho tests were 

performed for correlations. 
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Figure 3.2: TIGIT expression on CD8 terminal effector T cells and HIV-

specific CD8 T cells. Cryopreserved PBMCs were thawed and surface 

phenotyped for TIGIT expression on CD8 T cell compartments. (A) Graph shows 

compiled frequency (%) of TIGIT+ CD8 T cell expression in differentiated 

compartments stratified by disease status. HIV-uninfected donors (HD, X; n = 

20), acute infected (AI, open diamond; n = 24), cART suppressed (AS, open 

triangle; n = 20), elite controller (EC, open square; n = 20), non-controllers (NC, 

open circle; n = 20). P values were calculated using one-way ANOVA, followed 

by Tukey’s multiple comparisons test (*p < 0.05; **p < 0.01; ***p < 0.001). 

PBMCs from HLA-A*02:01 or HLA-B*07:02 HIV chronically infected individuals 

were stained with matched HLA pentamers presenting HIV and CMV epitopes 

and anti-TIGIT. (B) Representative flow cytometry plots of pentamer-specific CD8 

T cells using HLA-A*02:01 HIV Gag SLYNTVATL (A2*SL9), HLA-A*02:01 HIV 

Pol ILKEPVHGV (A2*IV9), HLA-B*07:02 HIV-1 Env IPRRIRQGL (B7*IL9), HLA-

B*07:02 HIV Nef TPGPGVRYPL (B7*TL10), and HLA-A*02:01 CMV pp65 

NLVPMVATV (A2*NV9) (C) Compiled data of TIGIT expression frequency (%) on 

pentamer specific CD8 T cells which was recalculated to 100% (left panel, n = 9) 

compiled data of TIGIT geometric mean fluorescence intensity (GMFI) on 

pentamer specific CD8 T cells (right panel, n = 9). 
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Figure 3.3: HIV-Gag specific CD8 T cells co-express TIGIT and PD-1 and 

exhibit a transitional memory phenotype. Cryopreserved PBMCs were thawed 

and surface phenotyped for TIGIT and PD-1 expression on CD8 T cells. (A) 

Representative flow cytometry plots showing TIGIT and PD-1 expression on CD8 

T cells from one HIV-uninfected individual (left panel) and one HIV-infected 

individual (right panel). (B) Graph shows compiled frequency (%) of co-

expressing TIGIT+PD-1+ CD8 T cells from HIV-uninfected (HD, n = 20), chronic 

HIV-infected (AS, n = 20; EC, n = 20; NC, n = 20). P values were calculated 

using one-way ANOVA, followed by Tukey’s multiple comparisons test. (C) 

Graph shows correlation of TIGIT+PD-1+ CD8 T cells frequency (%) from chronic 

HIV-infected individuals against CD4 count (cells/mm3) or (D) viral load 

(copies/ml). Spearman’s rho tests were performed for correlations. TIGIT and 

PD-1 expression on HIV-Gag-specific CD8 T cells were evaluated. (E) 

Representative flow cytometry plot of HIV-specific CD8+ T cells using HLA-

A*02:01 HIV Gag SLYNTVATL. (F) Representative flow cytometry plots of TIGIT 

and PD-1 expression on HIV-Gag-specific CD8 T cells (Penta+, left panel; Penta-

, right panel). (G) Graphs show compiled frequency (%) of TIGIT and PD-1 on 

Penta+ (left panel) and Penta- (right panel) (sample group contains; AS n = 11, 

EC n = 2, NC n = 2). P values were calculated using repeated-measures one-

way ANOVA, followed by Tukey’s multiple comparisons test (*p < 0.05; **p < 

0.01; ***p < 0.001). Representative flow cytometry of (H) CD45RA and CCR7 or 

(I) histogram of CD27 (shaded isotype control) on Penta+ CD8 T cells expressing 

TIGIT+PD1+, TIGIT+PD-1-, TIGIT-PD-1+, or TIGIT-PD-1-. (J) Graphs show 

compiled frequency (%) of CD45RA (top panel), CCR7 (mid panel), and CD27 

(bottom panel) (n = 5). 
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Figure 3.4: TIGIT expressing CD8 T cells have impaired cytokine 

responses. Representative flow cytometry plots gated on CD8 T cells showing 

(A) TIGIT or (C) PD-1 expression against Ki-67 from a chronically HIV-infected 

individual. Compiled data of Ki-67+ CD8 T cell frequency (%) separated into (B) 

TIGIT+ and TIGIT- or (D) PD-1+ and PD-1- (n = 20). P values were calculated by 

Wilcoxon matched-pairs signed ranked test. Ex vivo PBMCs from chronically 

HIV-infected individuals were stimulated with HIV Gag peptide pool and 

assessed for cytokine production. (E) Representative flow cytometry plots gated 

on CD8 T cells showing TIGIT expression and either IFN-γ, IL-2, or TNF-α 

content after no stimulation, stimulation with an HIV Gag peptide pool, or a 

positive control stimulation with anti-CD3 + anti-CD28 Dynabeads. (F) Compiled 

data of IFN-γ, IL-2, or TNF-α CD8 T cell frequency (%) from TIGIT+ or TIGIT- 

CD8 T cell compartments after HIV Gag peptide pool stimulation (sample group 

includes; AS n = 4, EC n = 3, NC n = 3). P values were calculated by Wilcoxon 

matched-pairs signed ranked test. (G) Compiled data of TIGIT and PD-1 

expression on HIV Gag responding cells (sample group includes; AS n = 4, EC n 

= 3, NC n = 3). P values were calculated with repeated-measures one-way 

ANOVA, followed by Tukey’s multiple comparisons test (*p < 0.05; **p < 0.01; 

***p < 0.001). (H) Representative flow cytometry plots of intracellular perforin and 

granzyme B from CD8 T cells expressing or not expressing TIGIT. (I) Compiled 

frequency (%) of intracellular perforin+granzyme B+ content from TIGIT+ or 

TIGIT- CD8 T cell compartments (AS; n = 12). P values were calculated by 

Wilcoxon matched-pairs signed ranked test. (J) Representative flow cytometry 

plots gated on CD8 T cells showing TIGIT and CD107a expression from TIGIT 

isotype control, no stimulation, HIV Gag peptide pool, positive control stimulation 

with anti-CD3 + anti-CD28 Dynabeads. Compiled data of background corrected 

CD107a after (K) HIV Gag peptide pool (L) anti-CD3 + anti-CD28 Dynabead 

stimulation in TIGIT+ or TIGIT- CD8 T cell compartments (AS; n = 10). P values 

were calculated by Wilcoxon matched-pairs signed ranked test. 



	 68	

 

0 10
3

10
4

10
5

0

20

40

60

80

100

0 10
3

10
4

10
5

0 10
3

10
4

10
5

0 10
3

10
4

10
5

IL-2

No

Stim

IL-2 IL-12 IL-15 IL-18

IL-12 IL-15 IL-18

TIGIT

%
 o

f 
M

a
x

D

E

0

20

40

60

80

100

(%
) 

T
IG

IT
+
 C

D
8

+
 T

 c
e
ll
s

*p = 0.010

p = 0.150

*p = 0.010

p = 0.151 F

No

Stim

IL-2 IL-12 IL-15 IL-18
0

20

40

60

80

100

(%
) 

T
IG

IT
+
 C

D
8

+
 T

 c
e
ll
s

p = 0.187

p = 0.8125

p = 0.125

p = 0.625

0 10
2

10
3

10
4

10
5

0

50K

100K

150K

200K

250K

90.9

0

50K

100K

150K

200K

250K

75.4

No 

Stim

HIV-1

Gag

Stim

No 

Stim

HIV-1

Gag

Stim

A
*0

2
:0

1

S
L
Y

N
T

V
A

T
L

P
e
n

ta
m

e
r

S
S

C
-A

CD8 TIGIT HIV-1 Gag

Stim

No

Stim

HIV-Infected

HIV-Uninfected

0 10
2

10
3

10
4

10
5

39.9

39.5

Penta-Penta+
A B C

0

20

40

60

80

100

(%
) 

T
IG

IT
+
 H

IV
 G

a
g

 S
p

c
if

ic
 

C
D

8
+
T

 C
e
ll
s

p = 0.164

0 10
2

10
3

10
4

10
5

0

10
2

10
3

10
4

10
5

0.392

99.5

0

10
2

10
3

10
4

10
5

0.488
Penta+

Penta+

Penta-

Penta-

99.3



	 69	

Figure 3.5: Common gamma chain cytokines regulate TIGIT expression on 

CD8 T cells.  

Ex vivo PBMCs from chronically HIV infected individuals were stimulated with 

HIV Gag peptide pool for 12 hours. (A) Representative flow cytometry plot gated 

on CD8 T cells showing HIV Gag pentamer with no stimulation (top panel) or HIV 

Gag stimulation (bottom panel). (B) Representative flow cytometry plot of TIGIT 

expression on Penta+ and Penta- cells with no stimulation or HIV Gag 

stimulation. (C) Graph shows compiled frequency (%) of TIGIT on Penta+ cells 

with no stimulation and HIV Gag stimulation (n = 9). P values calculated with 

Wilcoxon matched-pairs signed-rank test. (D) Representative flow cytometry 

histograms gated on CD8 T cells overlaid with TIGIT expression frequency 

before and after cytokine stimulation. Dashed line indicates TIGIT isotype control, 

shaded histogram indicates TIGIT expression with no stimulation, and the solid 

line indicates TIGIT expression with cytokine stimulation after six days. Compiled 

data of TIGIT frequency (%) on CD8 T cells (E) HIV-infected participant (open 

circle; n = 8) (F) HIV-uninfected participant (X; n = 5). P values were calculated 

with repeated-measures one-way ANOVA, followed by Tukey’s multiple 

comparisons test. 
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Figure 3.6: Effect of in vitro blockade with anti-TIGIT and anti-PD-L1 mAbs 

on HIV-specific CD8 T cell responses. Ex vivo PBMCs from chronically HIV-

infected individuals were stimulated with HIV Gag peptide pool in the presence of 

mAb blocking antibodies. (A) Representative flow cytometry plots gated on CD8 

T cells, showing IFN-γ responses from an HIV-infected individual. No HIV Gag 

stimulation with an isotype control, HIV Gag stimulation with an isotype control, 

HIV Gag stimulation with anti-TIGIT, HIV Gag stimulation with anti-PD-L1, HIV 

Gag stimulation with dual blockade (anti-TIGIT + anti-PD-L1) and a positive 

control (anti-CD3 + anti-CD28 Dynabeads). (B) Compiled data showing variation 

in the frequency (%) of IFN-γ in responses to HIV Gag peptide pool with isotype 

control or mAb blockade; TIGIT blockade (left panel), PD-L1 blockade (middle 

panel), and dual blockade (right panel) (n = 25). P values were calculated by 

Wilcoxon matched-pairs signed ranked test. (C) Representative flow cytometry 

plots gated on CD8 T cells from HIV-infected individuals, showing intermediate 

and high CFSE dilution in response to HIV Gag peptide pool stimulation in the 

presence of either an isotype control, anti-TIGIT mAb, anti-PD-L1 mAb, a 

combination of both anti-TIGIT and anti-PD-L1 mAbs or anti-CD3 + anti-CD28 

Dynabeads as a positive control. (D) Graphs show compiled data showing 

variation in the frequency (%) of CFSEdim in responses to HIV Gag peptide pool 

with either an isotype control or mAb blockade; TIGIT blockade (left panel), PD-

L1 blockade (middle panel), and dual blockade (right panel) (n = 24). P values 

were calculated by Wilcoxon matched-pairs signed ranked test. 
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Figure 3.7: Phenotypic and functional assessment of rhTIGIT CD8 T cells. 

Cryopreserved Rhesus macaque PBMCs were thawed, phenotyped and 

assessed for function. (A) Graphs show frequency (%) of rhTIGIT+CD8 T cells 

from PBMCs (circle), Lymph nodes (square; LNs), and Spleen (triangle) in SIV-

uninfected (filled) and SIV-infected (open) animals (SIV-uninfected PBMCs, n = 

8; SIV-infected PBMCs, n = 19; SIV-uninfected LNs, n = 8; SIV-infected LNs, n = 

22; SIV-uninfected spleen, n = 6; SIV infected spleen, n = 9). P values were 

calculated with Mann-Whitney U tests. (B) Graphs show correlation of frequency  

(%) of rhTIGIT+ CD8 T cells in PBMCs (circle) and lymph nodes (square) from 

SIV-infected animal against plasma SIV viral load log10 vRNA copy Eq/ml 

(PBMCs, n = 12; LNs, n = 20). vRNA copy Eq, viral RNA copy equivalents. 

Spearman’s rho tests were performed for correlations. (C) Representative flow 

cytometry plots of tetramer stains for Mamu-A*01 restricted SIV-Gag CM9 and 

SIV-Tat SL8 specific CD8 T cells from PBMC, LNs, and spleen, in a 

representative Mamu-A*01 animal with full cART suppression. Compiled data of 

rhTIGIT expression frequency (%) on tetramer specific CD8 T cells (n = 4) from 

PBMCs (circle), LNs (square), and spleen (triangle) from Mamu-A*01+ macaques 

with full cART suppression. (D) Representative flow cytometry plots of PBMCs (n 

= 12) or lymph nodes (n = 18) stimulated without or with PMA + Ionomycin. 

Graphs show frequency (%) of IFN-γ from CD8 T cells expressing TIGIT or not 

expressing TIGIT. P values were calculated by Wilcoxon matched-pairs signed 

ranked test. (E) Representative flow cytometry plots of PBMCs from a Mamu-

A*01+ macaque stimulated without or with SIV-Gag181-189 CM9 peptide. Graph 

shows frequency (%) of IFN-γ from SIV-Gag181-189 CM9-specific CD8+ T cells 

expressing TIGIT or not expressing TIGIT from Mamu-A*01+ macaques (n = 6). 

P values were calculated by Wilcoxon matched-pairs signed ranked test. (F) 

Representative flow cytometry plots of CD8 T cells from two separate SIV-

infected macaques showing CD8 T cell CFSE dilution in response to AT2-

inactivated SIV with either no antibody, anti-TIGIT, anti-PD-L1 or dual blockade 
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(anti-TIGIT + anti-PD-L1). (G) Graphs show compiled data of CD8 T cell CFSE 

dilution from PBMC (left panel), Lymph node (middle panel), or Spleen (right 

panel) as percent of max (n = 4). P values were calculated by Wilcoxon matched-

pairs signed ranked test. 
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SUPPLEMENTAL MATERIAL AND METHODS (NONHUMAN PRIMATES) 

 

Animals 

 Indian Rhesus macaques (Macaca mulatta), housed at the Oregon 

National Primate Research Center and used in this study, were cared for 

according to the laws, regulations, and guidelines set forth by the U.S. 

Department of Agriculture (e.g., the Animal Welfare Act and its regulations, and 

the Animal Care Policy Manual), Institute for Laboratory Animal Research (e.g., 

Guide for the Care and Use of Laboratory Animals, 8th edition), Public Health 

Service, National Research Council, Centers for Disease Control and Infection, 

and the Association for Assessment and Accreditation of Laboratory Animal Care 

International. The Oregon Health and Science University Institutional Animal 

Care and Use Committee approved the research involving animals reported in 

this study. Animals were infected with SIVsmE660, SIVmac239, or SIVmac251 

for other, unrelated projects. 

 

Antibodies and flow cytometric analysis 

 The following directly conjugated Abs were obtained from BD Biosciences: 

Alexa Fluor 700–conjugated anti-CD3 (SP34-2), PE-CF594–conjugated anti-CD4 

(L200), allophycocyanin- or allophycocyanin-H7–conjugated anti-CD8 (SK1), PE-

Cy5–conjugated anti-CD95 (DX2), allophycocyanin-conjugated anti–IFN-γ (B27), 

and PE-conjugated anti–Ki-67 (B56). PE-conjugated anti–PD-1 (EH12.2H7), and 

PE-Cy7–conjugated CD28 (CD28.2) were obtained from Biolegend. PE-

conjugated anti-TIGIT (MBSA43) was obtained from eBioscience. 

Allophycocyanin-conjugated Mamu-A*01 SIV Gag181–189 CM9 (CTPYDINQM) 

tetramer and allophycocyanin-conjugated Mamu-A*01 SIV Tat28–35 SL8 

(STPESANL) tetramer were produced as described previously [260]. An aqua 

amine reactive dye (Invitrogen) was used to exclude dead cells. In some 

experiments, cells were fixed in 2% paraformaldehyde (PFA), permeabilized with 
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BD FACS permeabilizing solution 2 (BD Biosciences), and stained for Ki-67 and 

IFN-γ (BD Biosciences).  

 

Cloning and sequencing of rhesus macaque TIGIT 

 Total RNA was purified from fresh rhesus PBMC using the AllPrep 

DNA/RNA kit (QIAGEN, Venlo, Limburg, The Netherlands). TIGIT was reverse 

transcribed with Superscript III One-Step RT-PCR System with Platinum Taq 

High Fidelity (Invitrogen) using primers 5’-ATGCGGTGGTGTCTCTTCC-3’ and 

5’-CTACCCAGTCTCTGTGAAGAAGC-3’. The amplicon was purified from a 1% 

agarose gel and sequenced using the same primers, in addition to internal 

sequencing primers, 5’-ACTCAGCATTACGAATGGCCAG-3’ and 5’-

ACTGGACAGGAAGAACAGATTCC-3’ to cover the 5’ and 3’ ends, 

respectively. CodonCode Aligner (CodonCode Corporation, Centerville, 

Massachusetts) was used to translate the DNA sequences, which were 

deposited into GenBank (KR534505). 

 

T cell stimulation and intracellular cytokine staining 

 T cell stimulation and intracellular cytokine staining were performed 

similarly to a previous detailed description [260, 261]. Briefly, 5 × 105 

cryopreserved PBMCs or LN cells were incubated for one hour at 37 °C in 200 µl 

RPMI 1640 containing 10% bovine growth serum and antibiotics with anti-CD28, 

anti-CD49d, and 10 µM the synthetic peptide SIV Gag181–189CM9 

(CTPYDINQM). In additional experiments, stimulated with 50 ng/mL of PMA and 

1 µg/ml of ionomycin (Life Technologies). Then, 10 µg/ml brefeldin A (Sigma-

Aldrich) was added, and the cells were incubated for an additional 6-8 hours at 

37 °C. Cells were washed in buffer (PBS with 10% serum), stained for surface 

expression of CD3, CD4, and CD8 markers, and fixed in 2% PFA (Electron 

Microscopy Sciences) at 4 °C. Cells were then permeabilized in wash buffer 

containing 1% saponin and stained for the expression of cytokines IFN-γ (BD 
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Biosciences). Stained cells were acquired on a custom four-laser BD Fortessa 

flow cytometer (BD Biosciences) with FACSDiva software and analyzed with 

FlowJo software (TreeStar). 
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SUPPLEMENTAL FIGURES 
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Supplemental Figure 3.1: Gating strategy of TIGIT surface expression in 

HIV infection and associations with HIV clinical parameters. (A) 

Representative flow cytometry plots showing gating scheme to isolate CD8 and 

CD4 T cells. Gated on singlets, excluded dead cells, gated on lymphocytes, 

gated on CD3 T cells, and gated on expression of CD8 or CD4. (B) 

Representative histograms of TIGIT Isotype, TIGIT FMO and TIGIT expression 

on CD8 or CD4 T cells (HIV-infected thin solid line, HIV-uninfected dashed line, 

TIGIT isotype control shaded, and TIGIT FMO thick solid line). Graphs show the 

association of the frequency (%) of (C) TIGIT+ CD8 or (D) TIGIT+ CD4 T cells 

against clinical CD4 count for cART suppressed (left panel, open triangle, n = 20) 

and elite controllers (right panel, open squares, n = 20). Graphs show the 

association of the frequency (%) of (E) TIGIT+ CD8 or (F) TIGIT+ CD4 T cells 

against T cell activation (% CD38+HLA-DR+) for cART suppressed (left panel, 

open triangle, n = 20) and non-controllers (right panel, open circles, n = 20). 

Graphs show the association of the frequency (%) of (G) TIGIT+ CD8 or (I) 

TIGIT+ CD4 T cells against viral load log10 (copies/ml) for non-controllers (open 

circles, n = 20). Graphs show the association of the frequency (%) of (H) TIGIT+ 

CD8 or (J) TIGIT+ CD4 T cells against copies of cell associated HIV RNA per 

million CD4 T cells for L-AS (inverted open triangles, n = 19). Spearman’s rho 

tests were performed for correlations. 
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Supplemental Figure 3.2: Phenotypic assessment of TIGIT expression on 

differentiated CD8 T cell subsets. (A) Graph shows compiled frequency (%) of 

TIGIT expression on CD8 T cells subsets grouped by disease category. HIV-

uninfected (X; n = 20), acute infected (AI; open diamond; n = 24), cART 

suppressed (AS; open triangle; n = 20), elite controller (EC; open square; n = 

20), and non-controllers (NC; open circle; n = 20). Repeated-measures one-way 

ANOVA, followed by Tukey’s multiple comparisons test were used for 

comparison (*p < 0.05; **p < 0.01; ***p < 0.001). Cryopreserved PBMCs from 

chronically HIV-infected individuals were phenotyped for TIGIT expression on 

CD8 T cell subsets. (B) Representative flow cytometry plots showing gating 

scheme to isolate CD8 T cell subsets. Live lymphocytes gated for CD8 T cells, 

subset into CD45RA+ and CD45RA-, further stratified by expression of CCR7 

and CD27. (C) Representative flow cytometry plots showing CD28 expression on 

CD8 T cell subsets. (D) Representative flow cytometry plots showing TIGIT 

expression on CD8 T cell subsets. (E) Graph shows compiled frequency (%) of 

TIGIT expression on CD8 T cell subsets (n = 20). 



	 82	

 

7.77 89

1.981.22

88.4 10.6

0.0650.99

3.79 83.9

10.81.47

0 10
2

10
3

10
4

10
5

15.6 4.96

4.5674.9

0 10
2

10
3

10
4

10
5

0

10
3

10
4

10
5 6.12 2.12

5.5286.2

0

10
3

10
4

10
5 68.2 9.09

022.7

0 80

155

0 12.5

87.50

0 10
2

10
3

10
4

10
5

0

10
3

10
4

10
5 0 0

1.3398.7

PD-1

No Stim

CD3 + CD28

No Stim

TIGIT+

PD-1+

TIGIT+

PD-1-

TIGIT-

PD-1+

TIGIT-

PD-1-

T
IG

IT

T
IG

IT

PD-1

PRE SORT

POST SORT

CD3 + CD28A B

D

C

0

5000

10000

15000

IF
N

-
 (
p

g
/m

l)

0

1000

2000

3000

4000

5000

T
N

F
-

 (
p

g
/m

l)

0

10
3

10
4

10
5

0

10
3

10
4

10
5

0

2000

4000

6000

8000

IL
-2

 (
p

g
/m

l)

0

500

1000

1500

IL
-1

0
 (
p

g
/m

l)

No 

Stim

0.0

0.2

0.4

0.6

0.8

1.0

IL
-1

 (
p

g
/m

l)

0

2000

4000

6000

8000

IL
-4

 (
p

g
/m

l)

0

2000

4000

6000

IL
-5

 (
p

g
/m

l)

0

1

2

3

IL
-6

 (
p

g
/m

l)

0

5

10

15

20

IL
-7

 (
p

g
/m

l)

0

20

40

60

80

IL
-8

 (
p

g
/m

l)

0.0

0.5

1.0

1.5

IL
-1

2
 (
p

2
0

) 
(p

g
/m

l)

(%
) 
P

h
e
n

o
ty

p
e

0

1000

2000

3000

G
M

-C
S

F
 (
p

g
/m

l)

0

500

1000

1500

IL
-1

3
 (
p

g
/m

l)

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

TIGIT +
+

+ -
+-PD-1

-
-

TIGIT +
+

+ -
+-PD-1

-
-

No 

Stim

TIGIT +
+

+ -
+-PD-1

-
-

No 

Stim

TIGIT +
+

+ -
+-PD-1

-
-

No 

Stim

TIGIT +
+

+ -
+-PD-1

-
-

TIGIT+

PD-1+

TIGIT+

PD-1-

TIGIT-

PD-1+

TIGIT-

PD-1-



	 83	

Supplemental Figure 3.3: Cytokine profile of TIGIT and PD-1 expressing 

CD8 T cells. Ex vivo CD8 T cells from chronically HIV-infected individuals were 

FACS sorted into populations according to their expression of TIGIT and PD-1. 

(A) Representative flow cytometry plot of TIGIT and PD-1 expression PRE-

SORT. Gating was facilitated by isotype controls for TIGIT and PD-1. (B) 

Representative flow cytometry plots of CD8 T cells sorted into TIGIT+PD-1+, 

TIGIT+PD-1-, TIGIT-PD-1+, and TIGIT-PD-1-. No stimulation (left panel) and 

stimulated with anti-CD3 + anti-CD28 Dyanbeads for 48 hours (right panel). (C) 

Graphs show compiled data of phenotypes of sorted populations with no 

stimulation (open box) and anti-CD3 + anti-CD28 Dyanbeads (filled box) (n = 2). 

Supernatants were harvested and cytokine production was assessed 48 hours 

post anti-CD3 + anti-CD28 stimulation by high sensitivity multiplex bead array. 

(D) Graphs show concentrations of cytokines produced from sorted populations. 

 

 

 

  



	 84	

 

Supplemental Figure 3.4: Cytokine regulation of TIGIT expression. (A) 

Compiled data of HIV-infected individuals (open circle; n = 8) TIGIT expression 

frequency (%) on CD4 T cells with or without cytokine stimulation for six days. P 

values were calculated with repeated-measures one-way ANOVA, followed by 

Tukey’s multiple comparisons test (*p < 0.05). (B) Compiled data of HIV-infected 

individuals (open circle; n = 6) TIGIT expression frequency (%) on CD8 T cells 

(right panel) and CD4 T cells (left panel) after six days of IL-21 stimulation (n = 

6). P values were calculated by Wilcoxon matched-pairs signed ranked test. 
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Supplemental Figure 3.5: Effect of in vitro blockade with anti-TIGIT and 

anti-PD-L1 mAbs on HIV-specific CD8 T cell IL-2 responses. Ex vivo PBMCs 

from chronically HIV-infected individuals were stimulated with HIV Gag peptide 

pool in the presence of mAb blocking antibodies. Representative flow cytometry 

plots gated on (A) CD8 or (C) CD4 T cells, showing IL-2 responses from an HIV-

infected individual. No HIV Gag stimulation with an isotype control, HIV Gag 

stimulation with an isotype control, HIV Gag stimulation with anti-TIGIT, HIV Gag 

stimulation with anti-PD-L1, HIV Gag stimulation with dual blockade (anti-TIGIT + 

anti-PD-L1) and a positive control (anti-CD3 + anti-CD28 Dynabeads). Graphs 

show compiled data showing variation in the frequency (%) of (B) CD8 or (D) 

CD4 T cell IL-2 in responses to HIV Gag peptide pool with isotype control or mAb 

blockade; TIGIT blockade (left panel), PD-L1 blockade (middle panel), and dual 

blockade (right panel) (n = 16). 
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Supplemental Figure 3.6: rhTIGIT amino acid sequence alignment, surface 

expression, common gamma chain cytokine regulation and SIV-specific 

CD8 T cell expression. (A) Alignment shows amino acid sequences of human 

TIGIT (Hu TIGIT) and Rhesus TIGIT (Rh TIGIT). Highlighted sequences indicate 

homology between human and rhesus TIGIT. Dashes indicate gaps in alignment. 

(B) Representative flow cytometry plots depict rhTIGIT expression frequency (%) 

on CD8 T cells from PBMCs, Lymph nodes (LNs) and Spleen in representative 

non-infected and SIV-infected animals. (C) Representative flow cytometry plots 

depict rhTIGIT expression frequency (%) on naïve (N) (CD28+CD95-), effector 

memory (EM) (CD28-CD95+), and central memory (CM) (CD28+CD95+) cells 

from PBMCs, LNs and spleens in representative SIV-infected animals. Graphs 

show frequency (%) of rhTIGIT+ N, EM and CM CD8 T cells from SIV-infected 

RMs (open circle; n = 16), LNs (open square; n = 19), and spleens (open 

triangle; n = 10). P values were calculated with repeated-measures one-way 

ANOVA, followed by Tukey’s multiple comparisons test. (D) Graph shows 

compiled frequency (%) of rhTIGIT+ CD8 T cells after stimulation with IL-2, IL-12 

or IL-15 for six days. NS, no stimulation. P values were calculated with repeated-

measures one-way ANOVA, followed by Tukey’s multiple comparisons test. (E) 

Representative flow cytometry plot showing secondary antibody only against 

CM9 tetramer staining to facilitate rhTIGIT gating. (F) Representative flow 

cytometry plot showing PD-1 FMO and secondary antibody only to facilitate 

rhTIGIT and PD-1 gating. (G) Representative flow cytometry plots of rhTIGIT and 
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PD-1 expression on Mamu-A*01 SIV-Gag CM9 tetramer specific CD8 T cells. 

Graphs show compiled data of rhTIGIT and PD-1 expression frequency (%) on 

Mamu-A*01 SIV-Gag CM9 tetramer specific CD8 T cells (n = 4) from PBMC 

(open circle), LNs (open square), and spleen (open triangle). (H) Representative 

flow cytometry plots of rhTIGIT and PD-1 expression on Mamu-A*01 SIV-Tat SL8 

tetramer specific CD8 T cells. Graphs show rhTIGIT and PD-1 expression 

frequency (%) on Mamu-A*01 SIV-Tat SL8 tetramer specific CD8 T cells (n = 4) 

from PBMC (open circle), LNs (open square), and spleen (open triangle).  

  



	 90	

 

Supplemental Figure 3.7: Proliferative status of rhTIGIT expressing CD8 T 

cells in SIV infection. (A) Representative flow cytometry plots depict Ki-67 and 

rhTIGIT expression in PBMCs and Lymph nodes (LNs) from SIV-infected 

animals. (B) Graphs show frequency (%) of rhTIGIT+ Ki-67+ and rhTIGIT- Ki-67+ 

CD8 T cells in PBMCs (open circle; n = 11) and LNs (open square; n = 14) from 

SIV-infected animals. Wilcoxon matched-pairs signed- rank test was performed 

for statistical analysis (C) Representative flow cytometry plots depict Ki-67 and 

PD-1 expression in PBMCs and LNs from SIV-infected animals. (D) Graphs show 

frequency (%) of PD-1+ Ki-67+ and PD-1- Ki-67+ CD8 T cells in PBMCs (open 

circle; n = 6) and LNs (open square; n = 6) from SIV-infected animals. Wilcoxon 

matched-pairs signed- rank test was performed for statistical analysis.  
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GRAPHICAL ABSTRACTS  
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Graphical Abstract Figure 3.1: TIGIT and PD-L1 blockade. Figure represents 

blocking the TIGIT and PD-L1 pathways with mAbs to increase HIV/SIV-specific 

CD8 T cell effector functions. 
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Graphical Abstract Figure 3.2: Enhanced “Shock and Kill” HIV cure 

strategy. Figure represents the HIV cure strategy to flush out latent HIV and 

eliminate infected cells while protecting new cells from being infected with 

cART. CD8 T cell reinvigoration with anti-TIGIT and anti-PD-L1 may be 

required to enhance CD8 T cell effector functions to eliminate infected cells 

after latency reversal. 
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CHAPTER 4 
 

GUT TISSUE-SPECIFIC DIFFERENCES IN TIGIT AND TIGIT-LIGANDS  
DURING CHRONIC cART HIV INFECTION: IMPLICATIONS FOR 

IMMUNOTHERAPY EFFICACY 
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SPECIFIC AIMS 
 

Aim I: Determine the role of TIGIT and TIGIT ligands in tissues during cART 
HIV infection 
 A: To compare the expression of TIGIT on CD8 and CD4 T cells 

 from the peripheral blood and gut in cART HIV-infected and HIV-

 uninfected subjects 

 Hypothesis: TIGIT expression will be increased on gut tissue T cells 

 compared to the peripheral blood.   

 Rationale: negative checkpoint receptors exhibit unique functions in 

 tissues and play specialized roles in regulating the immune response. 

 B: To compare the expression of TIGIT ligands from peripheral 

 blood and gut in cART HIV-infected and HIV-uninfected subjects 

 Hypothesis I: Gut tissue antigen presenting cells will have an increase of 

 the TIGIT ligand (Polio Virus Receptor (PVR)) compared to peripheral 

 blood during HIV infection.  

 Rationale: PVR is part of the nectin family that maintains intracellular 

 adherens junctions between epithelial cells and is found in gut tissue. 

 Hypothesis II: There will be an increase of Fusobacterium in the gut 

 microbiome of HIV infected individuals. 

 Rationale: Fusobacterium in the gut contains an outer membrane protein, 

 Fap2, which binds to TIGIT and protects colon tumors from immune 

 clearance and may be involved in anti-HIV T cell effector functions. 

 C: Determine the magnitude of TIGIT blockade reinvigoration and 

 relations to levels of TIGIT and TIGIT ligands in peripheral blood and 

 gut tissue 

 Hypothesis I: The magnitude of rescued response will be associated with 

 levels of TIGIT ligands.  

 Rationale: Augmented dendritic cell functions through the microbiota  

 alters CD8 T cell priming and peripheral immune function.  
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ABSTRACT 

 

 Despite the success of immunotherapy blockade of TIGIT and PD-1 

pathways in restoring anti-HIV responses ex vivo, most individuals do not exhibit 

a robust immune reinvigoration. Blood and tissue based profiling to understand 

the mechanism of TIGIT and PD-1 blockade have not widely been explored. 

Here we use immune profiling of PBMCs, RMMCs and gut microbiota 

composition from cART suppressed HIV-infected individuals to evaluate the anti-

HIV CD8 T cell blockade efficacy. We observed significant differences in TIGIT, 

PD-1, PVR, PD-L1 expression and Fusobacteria abundance from RMMCs 

compared to PBMCs in AS. The frequency of RMMC PD-L1+ pDCs correlated 

with the magnitude of IFN-γ anti-TIGIT CD8 T cell reinvigoration. The RMMC 

TIGIT+ CD8 T cells and PVR+ mDCs inversely correlated with the magnitude of 

CD107a anti-PD-L1 CD8 T cell reinvigoration. The RMMC PVR+PD-L1+ pDCs 

inversely correlated with the magnitude of CD107a combinational anti-TIGIT/anti-

PD-L1 CD8 T cell reinvigoration. There was a significant increase in the 

abundance of Fusobacteria in HIV-infected individuals. The Fusobacteria 

abundance inversely correlated with the magnitude of IFN-γ reinvigoration from 

anti-TIGIT blockade. Interestingly, anti-TIGIT blockade positively correlated with 

the beneficial gut commensal bacteria, Firmicutes and Lentisphaerae, 

abundance. These data support the idea that the relationship between RMMC 

phenotypes and microbiota abundance correlate with the magnitude of CD8 

immune reinvigoration after immunotherapy ex vivo, we identify clinically 

accessible immunotherapy treatment predictors of anti-HIV CD8 T cell responses 

to anti-TIGIT and anti-PD-L1 blockade. 
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OVERVIEW 

 

 Chronic HIV infection is associated with increased expression of negative 

checkpoint receptors (NCRs) on HIV-specific T cells in the peripheral blood that 

contribute to immune dysfunction and viral persistence [176-178, 180, 207, 208, 

262]. Cytotoxic CD8 T cells contribute significantly to the control of viral 

replication [163, 165, 169, 263-265], however, persistent viral antigens may 

stimulate CD8 T cells that subsequently leads to a progressive loss of function 

termed “T cell exhaustion” [2]. During this process, the expressions of several 

NCRs on the surface of T cells are increased, raising the threshold for T cell 

activation, and eventually results in blunted immune responses. NCR 

suppression is mediated by receptor-ligand interactions, therefore they are 

susceptible to disruption by monoclonal antibodies or recombinant proteins. We 

have shown that a surface glycoprotein, TIGIT, is overexpressed on peripheral 

CD8 T cells during chronic HIV infection and remains elevated despite effective 

viral suppression. Additionally, TIGIT marks impaired viral-specific CD8 T cells 

and in vitro blockade of TIGIT and PD-1 pathways synergistically enhancing 

virus-specific CD8 T cell effector functions [262]. In tissue, gamma chain 

cytokines, a cytokine family with the ability to regulate the expression of NCRs, 

are present at high concentrations in tissue microenvironments and may play a 

role in regulating the tissue immune responses [234, 240, 262]. For instance, 

gamma chain cytokines are enriched in the intestine and play an important role in 

maintaining T cell hemostasis [266]. Taken together, TIGIT and other potential 

NCRs that are upregulated in HIV infection may serve as potential targets for the 

reversal of T cell exhaustion both within the periphery and in the tissue.  

 Targeting NCRs is currently being evaluated as an alternative method in 

cancer therapies [267-270]. Cytotoxic T-Lymphocyte Associated Protein 4 

(CTLA-4) and Programmed Death 1 (PD-1) were the first class of NCRs targeted 

in clinical studies. Blocking PD-1 led to a dramatic increase in overall survival 
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and progression-free survival in individuals with advanced melanoma (31-44%) 

[271, 272], non-small-cell lung cancer (19-20%) [273, 274], and renal cell 

carcinoma (22-25%) [275]. Unfortunately, therapies aimed at modulating these 

pathways were only successful in a subset of individuals and associated with 

severe immune-related adverse events (IrAEs) [276, 277]. Recently, the 

immunotherapeutic focus has switched to the second tier of NCRs (TIGIT, TIM-3 

and Lag-3) that display less toxicity. In our study, we have observed a dynamic 

range of individuals who have enhanced response to HIV antigens in the 

presence of anti-TIGIT or anti-PD-L1 blockade with no association in the 

frequency of peripheral TIGIT or PD-1 T cell expressions ex vivo. Identifying 

pretreatment predictors of anti-HIV responses to anti-TIGIT and anti-PD-L1 are 

essential to future clinical application of immunotherapy in HIV cure strategies.  

 Studies characterizing immune function in the periphery have provided 

insight into HIV pathogenesis, however circulating lymphocytes only represent 

about 25% of the body’s total lymphocyte [278]. The retention of infected cells in 

tissues remains a major barrier to the eradication of HIV. Low-level viral 

replication despite cART and viral rebound as a result of treatment interruption 

suggests that tissue reservoirs harbor stable, replication-competent virus [279, 

280]. Mucosal tissues in the gastrointestinal tract are thought to play an important 

role in the acquisition and persistence of HIV. The gut contains about 85% of the 

body’s lymphoid tissue in organized lymphoid follicles (Peyer’s patches) and up 

to 90% of the body’s lymphocytes [281, 282]. During acute infection, there is a 

large abundance of highly susceptible activated CCR5-expressing CD4 T cells 

that are targeted by HIV in gut associated lymphoid tissues (GALT) [96, 281]. 

Furthermore, rectal biopsies from infected individuals on combination 

antiretroviral therapy (cART) show stable HIV RNA and DNA levels up to two-fold 

higher than in the blood [283]. Characterizing gut lymphocytes during chronic HIV 

infection is critical to understanding the pathogenesis of HIV and developing 

curative strategies. 
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 In addition to lymphocytes, antigen-presenting cells such as dendritic cells 

(DCs) also play a fundamental role in inducing immunity and maintaining immune 

tolerance [284]. DCs can be divided into different subsets: myeloid-derived 

dendritic cells (mDCs), which express CD11c, and plasmacytoid dendritic cells 

(pDCs), which express CD123 [285]. Receptor-ligand interactions during direct 

cell-to-cell contact and cytokines secreted from DCs ultimately determine the fate 

of T cells. TIGIT and PD-1 on T cells interact with their respective ligands on 

DCs, Poliovirus receptor (PVR) [224] and programmed death-1 ligand (PD-L1) 

[286] respectively, to prevent T cell activation and promote tolerance. DCs can 

be found in the lamina propria, small and large intestine are known to control 

specialized aspects of tissue immunity [287]. Characterizing the role of TIGIT-

ligand expressing DCs in the intestine will help increase our understanding of 

intestinal immunity during chronic HIV infection. 

 The human intestinal microbiota plays an intricate role in the development 

and function of the systemic immune system [145, 146]. Recent studies have 

showed the role of intestinal microbiota and its ability to promote cancer 

therapies through the targeting of NCR pathways. Bacteroidetes was reported to 

enhance the efficacy of CTLA-4 blockade and elimination of metastatic 

melanoma in mice and humans [288]. In a similar study, anti-tumor immune 

effects by CD8 T cell was restored upon the blockade of PD-L1 and the resulting 

tumor clearance relied on gut Bifidobacterium colonization [289]. Another 

bacterium, Fusobacteria, was shown to associate with T cell responses in 

malignancy. Fusobacteria is a core member of the human anaerobic oral 

microbiota and is non-native to the human gut. However, overabundance of 

Fusobacteria in the gut has been associated with the promotion of colonic tumor 

formation and shown to inhibit immune function through Fap2, a membrane 

protein, through its interaction with TIGIT [290, 291]. Identifying microbiome 

composition during chronic HIV infection may inform anti-viral immunity and 

responsiveness to anti-TIGIT and anti-PD-L1 immunotherapy. 
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 In the present study, we aim to explore the correlation between 

rectosigmoid mucosal mononuclear cells (RMMCs) phenotypes with their 

peripheral blood mononuclear cell (PBMC) counterparts. Additionally, we 

characterized the microbiome communities of cART suppressed HIV-infected 

individuals and compared them to matched HIV-uninfected individuals and 

explored if the change in HIV-associated gut microbial abundance was 

associated with the changes in CD8 T cell phenotype and function. By profiling 

matched peripheral immune responses of CD8 T cells to immunotherapeutic 

blockade, we found motivating correlates of efficacy. The magnitude of 

reinvigoration correlated with ligand phenotypes from RMMC APCs and 

abundance of Fusobacteria. These data suggest a potential approach to HIV 

eradication through CD8 T cell functional modulation with gut microbial 

manipulation. 

MATERIALS AND METHODS 
 

Human subjects 

 Patients and specimens: For this study, fresh rectosigmoid biopsies from 

the Gut Biopsy Assessment Study (PI: Ndhlovu) were conducted at HICFA. 

Twelve gut biopsies and peripheral blood were obtained from each participant as 

outlined below. The Queen’s Medical Center Research and Institutional Review 

Committee have approved this study. 

 Inclusion Criteria: HIV-infected participants: HIV infection as documented 

by ELISA and/or confirmed by other standard assay at any time prior to study 

entry, received continuous antiretroviral (ARV) medication for >6 months with HIV 

RNA viral loads <48 copies/ml, and CD4 count within past 6 months >200 

cells/ml. HIV-uninfected participants: Negative HIV ELISA test. All subjects for 

the study must be >50 years of age and plan to undergo a screening 

colonoscopy as standard of care, are able and willing to provide informed 

consent, and have the following laboratory parameters documented prior to study 
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entry: hemoglobin >12.0; absolute neutrophil count >500/µL; platelet count 

>40,000/µL; PT/PTT within normal limits. 

 Exclusion Criteria: All subjects with history of cardiac condition, current or 

history of past malignancies excluding basal cell carcinoma and Kaposi’s 

sarcoma restricted to the skin, history of bleeding tendency and use of 

anticoagulants, use of any immunomodulators, investigational therapies and any 

vaccination within 30 days of study entry, requirement of acute therapy for other 

AIDS-defining or other serious illnesses within fourteen days prior to study entry, 

history of other chronic illnesses except subjects on stable physiologic 

replacement therapy for low testosterone or thyroid levels, current active 

substance or alcohol abuse, pregnancy, breast-feeding, intention to become 

pregnant during the course of the study, any condition that places subject at 

increased risk of complications from colonoscopy or biopsies, and acute or 

chronic diarrhea or history of enteropathies. 

 

Peripheral Blood Mononuclear Cells Isolation 

 Venous whole blood was collected in plastic whole blood tubes with spray-

coated K2EDTA (BD Biosciences, San Jose California) separated within 30 

minutes of the blood draw. PBMCs were isolated using Ficoll-Hypaque (Sigma-

Aldrich, Dorset, United Kingdom) density gradient centrifugation. Separated 

PBMCs were cryopreserved or directly used for phenotypic and polyfunctional 

analysis. 

 

Isolation of rectosigmoid mucosal mononuclear cells from fresh gut biopsy 

 To generate a single cell suspension of rectosigmoid mucosal 

mononuclear cells (RMMCs), nine to twelve endoscope-obtained tissue 

fragments were washed thoroughly with cRPMI (RPMI 1640 medium; (Hyclone, 

Logan, Utah) supplemented with 10% fetal bovine serum (FBS) (Hyclone), 1% 

penicillin-streptomycin (Hyclone), 10 mM HEPES (Hyclone), 2 mM L-glutamine 
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(Hyclone) and digested with collagenase II (Sigma-Aldrich, Dorset, United 

Kingdom) solution, and filtered through a 70 µm nylon mesh. Leftover undigested 

tissue was re-digested with collagenase II solution. RMMCs were washed PBS + 

2% FBS (Hyclone) and re-suspended for flow cytometry analysis. 

 

Antibodies and flow cytometric analysis 

 Freshly obtained or frozen PBMCs and isolated RMMCs were washed 

with PBS + 2% FBS (Hyclone). Cells were stained for viability with a Live/Dead 

aqua amine reactive dye (AARD; Invitrogen, Carlsbad, California), then 

incubated with panels of fluorochrome conjugated anti-human monoclonal 

antibodies (mAbs). The following directly conjugated mAbs used in this study 

were obtained from BD biosciences (San Jose, California): Alexa700-conjugated 

CD4 (clone: RPA-4T), mAb obtained from Beckman Coulter (Fullerton, 

California) ECD-conjugated anti-CD3 (UCHT1). mAbs obtained from eBioscience 

(San Diego, California) PE-Cy7-conjugated anti-CD28 (CD28.2), PerCP-eFluor 

710-conjugated anti-TIGIT (MBSA43), PE-conjugated anti-TIGIT (MBSA43), 

Mouse IgG1 Kappa isotype control PerCP-eFluor 710 (P3.6.2.8.1), mouse IgG1 

K isotype control PE (P3.6.2.8.1). Qdot 605-conjugated anti-CD8 (3B5) was 

obtained from Invitrogen (Carlsbad, California). Flow analyses were performed 

on a custom 4-laser BD LSRFortessa. Between 100,000 to 500,000 lymphocyte 

events were collected for each sample. Isotype controls or fluorescence minus 

one (FMO) samples were prepared to facilitate gating. Anti-mouse or anti-rat 

IgG-coated beads (BD Biosciences) were individually stained with each 

fluorochrome-conjugated antibody and used for software-based compensation. 

Data were analyzed using Flowjo Software version 9.5 (Treestar, Ashland, 

Oregon). 
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Anti-TIGIT and anti PD-L1 monoclonal antibodies 

 The TIGIT antibody clones 11G11 were generated in HuMab mice [257, 

258] immunized with a TIGIT-Fc fusion protein and selected based on their high 

affinity for TIGIT and ability to block TIGIT/PVR interaction. Clone 11G11 is a 

fully human IgG1 antibody that was engineered to contain a well-characterized 

set of mutation in the Fc that eliminate FcR interaction [259]. The anti-human PD-

L1 antibody, clone 12A4, is a fully human IgG4 (S228P) that was generated in 

HuMab mice immunized with PD-L1-Fc. This antibody was selected based on its 

ability to block the binding of PD-L1 to both PD-1 and CD80.  

 

Ex vivo antigen stimulation with antibody blockade assay 

 Cryopreserved PBMCs were rapidly thawed and seeded at one million 

cells per stimulation condition with isotype control antibody (IgG1), single or 

combination of purified anti-TIGIT and/or anti-PD-L1 and stimulated with/without 

pooled HIV Gag peptides. The HIV clade B Gag peptide pool consists of 123 

overlapping ~15mer peptides designed to elicit broad T cell responses (NIH). 

After a three-day incubation at 37°C with 5% CO2, cells were washed and 

supplemented with media plus IL-2 for 2 days. On day five, cells were re-

stimulated overnight with pooled HIV Gag peptides and the same blockade 

conditions along with APC-conjugated CD107a (BD Biosciences, Clone H4A3), 5 

µg/ml brefeldin A and 5 µg/ml monensin (Sigma-Aldrich) culture media. After 

stimulation, the cells were washed and stained for viability with AARD, cultured 

with surface phenotype panel against Qdot605-conjugated CD8 (Invitrogen), 

PerCP-eFluor 710-conjugated TIGIT (eBioscience) or an isotype control 

antibody, followed by intracellular staining of ECD-conjugated CD3 (Beckman 

Coulter), FITC-conjugated IFN-γ (BD Bioscience, Clone 25723.11), and 

Alexa700-conjugated TNF-α (eBioscience, Clone MAb11), acquired on the flow 

cytometer then analyzed as above. 
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Bacterial 16S rRNA sequencing 

 One to two tissue fragments (50-100mg) were collected from rectosigmoid 

biopsies in cRPMI 10% without 1% penicillin-streptomycin and re-suspended and 

lysed in beta mercaptoethanol-added lysis buffer. Total DNA and RNA was 

isolated using AllPrep DNA/RNA/miRNA Universal kit (Qiagen), followed by 

DNA/RNA yield analysis using NanoDrop 2000 UV-Vis Spectrophotometer. We 

amplified 7 of 9 hypervariable regions in the bacterial 16S rRNA gene with PCR 

primers designed to target more than 805 sequences in the Greengenes 

database [292, 293] using Ion 16S Metagenomics Kit (Ion Torrent, Life 

Technologies). Amplified DNA were subsequently purified, ligated with 

sequencing adapters, and quantified. 16S libraries were templated using the Ion 

PGM™ Template Kit (Ion Torrent, Life Technologies) and sequenced on the Ion 

Torrent PGM instrument (Ion Torrent, Life Technologies). The sequence reads 

were analyzed using the Metagenomics workflow in the Ion Reporter™ software 

and plotted against the Greengenes database. 

 

Statistical analysis 

 The repeated-measures, one-way ANOVA followed by Tukey’s multiple 

comparison, Mann-Whitney U Tests, Wilcoxon matched-pairs signed ranked and 

the Spearman’s rho test were performed using Graphpad release 5.0d 

(Graphpad Software, San Diego, California) or SPSS 22.0 (IBM, Armonk, New 

York) with the statistical significance of the findings set at a p value of less than 

0.05. Measures of central tendency are expressed as medians and interquartile 

ranges (IQRs; given in the form 25th percentile, 75th percentile).  
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RESULTS 
 

Differential expression pattern of TIGIT and PD-1 from matched rectal 

mucosal mononuclear cells and peripheral blood mononuclear cells. 

 Chronic HIV infection leads to NCRs-mediated T cell exhaustion that 

actively inhibits antigen-specific T cell responses both in the periphery and 

tissues [178, 262]. In this study, we profiled the expression of TIGIT and PD-1 on 

T cells from rectal mucosal mononuclear cells (RMMCs) and peripheral blood 

mononuclear cells (PBMCs) from cART suppressed HIV-infected (AS) and 

compared these results with age-matched HIV-uninfected (HD) individuals (Table 

4.1, Figure 4.1A-G). We observed significantly higher TIGIT+PD-1+ CD8 T cells 

from RMMCs compared to PBMCs (Median: 33% vs. 14.2% respectively, p = 

0.046) from the AS individuals (Figure 4.1B right panel). When comparing 

RMMCs and PBMCs from AS individuals, we observed significantly higher 

TIGIT+ CD4 T cells (39.7% vs18% respectively, p = 0.015), PD-1+ CD4 T cells 

(71.8% vs. 36.9% respectively, p = 0.015) and TIGIT+PD-1+ CD4 T cells (35.3% 

vs. 6.8% respectively, p = 0.015) (Figure 4.1C). We did not observe any 

significant differences in T cell expression of TIGIT or PD-1 from RMMCs 

compared to PBMCs from HD individuals (Figure 4.1E-F). Between AS and HD 

RMMCs, we observed significantly lower PD-1+ CD8 T cells (AS 46% vs. HD 

61.6%, p = 0.048) and significantly higher TIGIT+ CD4 T cells (AS 39.7% vs. HD 

28.8%, p = 0.048) (Figure 4.1G). These data suggest that despite viral 

suppression, TIGIT expression remains higher on RMMC-resident T cells 

compared to those found in the periphery and may have a dominant role in 

regulating T cell immune response while maintaining CD4 T cell viral persistence 

in the gut.  

 

PVR and PD-L1 expression profile varies on antigen presenting cells by 

anatomical location. 
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 Effective adaptive immune responses depend on the efficient presentation 

of antigen by professional antigen-presenting cells (APCs). Dendritic cells (DCs) 

are sentinel APCs that capture antigen, migrate through tissues and produce 

cytokines that impact T cell maturation and activation [294]. We next assessed 

the expression of poliovirus receptor (PVR) and programmed death 1 ligand (PD-

L1), ligands to TIGIT and PD-1, respectively, on dendritic cell subsets from 

RMMCs and PBMCs from AS individuals and compared these results with HD 

individuals (Table 4.1, Figure 4.2A-G). When comparing RMMCs to PBMCs from 

AS individuals, we observed significantly lower PVR+ mDCs (78.6% vs. 93.4% 

respectively, p = 0.015), significantly higher PD-L1+ mDCs (80.3% vs. 28.9% 

respectively, p = 0.015) and significantly higher PVR+PD-L1+ mDCs (87.5% vs. 

28.7% respectively, p = 0.015) (Figure 4.2B). When comparing RMMCs to 

PBMCs from AS individuals, we observed significantly higher PVR+ pDCs 

(93.5% vs. 54.6% respectively, p = 0.015), PDL1+ pDCs (66.4% vs. 24.2% 

respectively, p = 0.015), and PVR+PD-L1+ pDCs (50.3% vs. 20.8% respectively, 

p = 0.031) (Figure 4.2C). We did not observe any significant differences in 

dendritic cell expression of PVR or PD-L1 in RMMCs compared to PBMCs from 

HD individuals (Figure 4.E-F). When comparing AS to HD RMMCs, we observed 

significantly higher PD-L1+ mDCs (80.3% vs. 62.75% respectively, p = 0.0101) 

and significant increase of PVR+PD-L1+ mDCs (87.5%vs 64.1% respectively, p 

= 0.025) (Figure 4.2G). Taken together, these data suggest that antigen-

presenting cells in the gut may be interacting with T cells to suppress immune 

function through ligand-receptor NCR interactions. 

 

Group differences in the microbiome distribution among cART-suppressed 

HIV-infected and HIV-uninfected individuals. 

 The intricate balance between the host immune system, eliminating 

pathogens while maintain self-tolerance is essential to overall immune health. 

Intestinal microbiota has been considered an important modulator of immune 
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responses, specifically T cell immune activation in malignancies [294]. We 

assessed the microbiome profiles from rectosigmoid biopsies collected from AS 

and compared these results with HD individuals. Microbiome comprehensive 

identification of 16s ribosomal RNA sequencing was determined by pipeline 

using the Greengenes database [292, 293]. We observed significantly higher 

levels of Fusobacteria in AS compared to HD individuals (0.15% vs. 0.0024% 

respectively, p = 0.03) (Table 4.2; Figure 4.3-B). Although not statistically 

significant, during the comparative phyla analysis between AS and HD 

individuals, we observed a lower abundance of Firmicutes (33.36% vs. 44.95% 

respectively) and Bacteroidetes (28.75% vs. 20.21%) and a higher abundance of 

Actinobacteria (0.23% vs. 0.015%) (Table 4.2; Figure 4.3A). The enrichment of 

the pathogenic Fusobacteria and alterations to the intestinal microbial community 

during chronic cART-suppressed HIV infection may drive the systemic immune 

dysfunction in AS individuals. 

 

Magnitude of TIGIT and PD-L1 monoclonal antibody blockade 

reinvigoration and periphery/tissue parameters. 

 In chronic HIV infection there is an increase in the active inhibition of the 

CD8 T cell effector functions that induces a progressive loss of CD8 T cell 

effector activity. PD-1 blockade leads to a dramatic increase in overall survival 

and progression-free survival in individuals with various malignancies [271-275]. 

However, subsets of individuals remain unresponsive to this method of 

immunotherapy. In the current study, we assessed the anti-HIV immune 

reinvigoration of peripheral CD8 T cells in the presence of anti-TIGIT and anti-

PD-L1 blocking antibodies to matched rectosigmoid biopsy immune cell 

phenotypes and microbiome composition. We observed an increased in the fold 

change of interferon gamma (IFN-γ) RMMC responses to single anti-TIGIT and 

anti-PD-L1 blockade. We observed an increased fold change of interferon 

gamma (IFN-γ) CD8 T cell HIV Gag responses to single anti-TIGIT and anti-PD-
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L1 blockade, and a higher fold change increase was observed in the combined 

anti-TIGIT plus anti-PD-L1 monoclonal antibodies (mAb) blockade (Figure 4.4A, 

4.4B left panel, Combo). Similar trend was also observed in CD107a, lysosomal- 

associated membrane protein-1 marker of cellular degeneration, CD8 T cell Gag 

responses (Figure 4.4A, 4.4B right panel).  

 Next, we explored the correlation between RMMC T cells and antigen 

presenting DCs phenotypes and fold change in the cell restoration marker after 

antibody blockade. We observed a significant correlation between higher RMMC 

PD-L1+ pDCs and increased fold change of IFN-γ+ CD8 T cell Gag responses in 

the presence of anti-TIGIT blockade (p = 0.012, rho = 0.89) (Figure 4.4C). We 

also observed a significant inverse correlation between higher RMMC TIGIT+ 

CD8 T cells and PVR+ mDCs and decreased fold change of CD107a+ CD8 T 

cells HIV Gag responses in the presence of anti-PD-L1 blockade (p = 0.023, rho 

= -0.85; p = 0.034, rho = -0.79 respectively) (Figure 4.4D). A significant inverse 

correlation was also observed between higher RMMC PVR+PD-L1+ pDCs with 

decreased fold change of CD107a+ CD8 T cell Gag responses in the presence of 

the combination of anti-TIGIT plus anti-PD-L1 blockade (p = 0.048, rho = -0.78) 

(Figure 4.4E).  

 Finally, we evaluated the magnitude of anti-HIV T cell reinvigoration by 

mAb blockade relative to gut microbial abundance. Our study showed that 

decreased IFN-γ+ CD8 T cell HIV Gag responses by TIGIT blockade was 

negatively correlated with higher Fusobacteria abundance (p = 0.034, rho = -

0.821) and with lower abundance of two non-pathogenic commensals, 

Lentisphaerae and Firmicutes (p=0.014, rho= 0.85 and p=0.04, rho= 0.78, 

respectively) (Figure 4.4F). Taken together, these data imply that the peripheral 

TIGIT and PD-L1 blockade efficacy may be affected by gut tissue immune cells 

and gut dysbiosis in cART-suppressed HIV-infected individuals.  
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DISCUSSION 
 

 Here we report several findings relevant to the understanding of the 

peripheral anti-HIV CD8 T cell responses to anti-TIGIT and anti-PD-L1 blockade 

in cART-suppressed individuals chronically infected with HIV. We (1) unveiled 

the expression of TIGIT in the context of PD-1 in the rectosigmoid mucosa and 

demonstrate compartmental differences within HIV-infected and HIV-uninfected 

individuals, (2) evaluated the expression of TIGIT and PD-1 ligands, PVR and 

PD-L1 respectively, from rectosigmoid mucosal DC subsets and demonstrate 

differences in HIV-uninfected individuals, (3) explored the microbiome 

composition and show differences in the bacterial abundance with the 

colonization of pathogenic Fusobacteria in HIV-infected individuals, and (4) 

demonstrate the magnitude of peripheral anti-HIV CD8 T cell immune 

reinvigoration by anti-TIGIT and anti-PD-L1 blockade correlates with bacterial 

abundance and immunological tissue parameters. 

 Preventing the establishment of viral reservoirs in the gut has been shown 

to result in sustained simian immunodeficiency virus (SIV) control and immune 

reconstitution after cART is withdrawn [295]. Blocking α4β7, an integrin involved 

in lymphocyte homing and retention, prevents the establishment of virus in the 

gut during acute infection and leads to decreased viral loads in a rhesus 

macaque model of HIV/AIDS [296]. The exact mechanism of control is unknown 

and whether it translates to humans that are chronically infected has yet to be 

determined. However, these data suggest that targeting the gut to improve 

immune function may prove to be an effective means of eliminating virus and 

bringing us closer to a functional or sterilizing cure. The higher frequency of 

RMMC TIGIT+PD-1+ CD8 T cells may be contributing to T cell dysfunction and 

viral persistence in the gut of HIV-infected individuals. Unfortunately, due to 

limited number of RMMCs derived from the rectosigmoid biopsies, we were 

unable to perform additional functional studies to evaluate the effects of TIGIT 
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and PD-L1 blockade on HIV-specific CD8 T cells in the gut. Future studies will be 

aimed at evaluating the functional capacity of exhausted T cells in the gut. 

 Interestingly, we observed a higher frequency of RMMC PD-1+ CD8 T 

cells from HIV-uninfected compared to HIV-infected individuals. PD-1 has been 

suggested to play a key role in intestinal tolerance. One study evaluated the 

effects of intestinal epithelium-specific antigen in PD-1-/- transgenic mice and 

observed a fatal CD8 T cell-mediated inflammatory response as well as the 

destruction of epithelial barriers only in the intestine [297]. Furthermore, Rhesus 

macaques display a decrease in RMMC PD-1+ CD8 T cells after SIV infection 

[298]. Our data suggests that HIV-infected individuals have increase in 

proinflammatory RMMC PD-1- CD8 T cells that may contribute to the persistence 

of HIV-induced gut damage. 

 TIGIT has been described to mark a subset of highly suppressive 

regulatory CD4 T cell (Tregs) [228, 299, 300]. Additionally, TIGIT+ Tregs have 

been reported to selectively inhibit proinflammatory T helper type 1 (Th1) and T 

helper type 17 (Th17), which is an important CD4 T cell subsets in maintaining 

gut immunity and integrity [228]. Moreover, Tregs also express PD-1 on the 

surface of activated Tregs in lymph nodes in the blood [301, 302]. Furthermore, 

memory CD4 T cells expressing multiple NCRs are enriched in inducible HIV 

DNA [303]. We observed an enrichment of TIGIT+, PD-1+ and TIGIT+PD-1+ 

CD4 T cells in RMMCs compared to PBMCs with a significantly higher RMMC 

TIGIT+ CD4 T cells in HIV-infected compared to HIV-uninfected individuals. Our 

data indicates that the TIGIT+ CD4 T cells may be further contributing to the HIV-

induced gut damage in addition to viral persistence. Our future panels will be 

modified to include the transcription factor forkhead box P3 (FOXP3), Helios and 

surface receptor CD25, CD27, and CD45RA to better characterize Treg and 

memory CD4 T cell subsets. 

 Dendritic cells bridge the innate and adaptive immune systems and have 

the potent ability to induce immune tolerance through receptor-ligand interactions 
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and secreted cytokines to prevent immune activation and autoimmunity while 

maintaining immune hemostasis [285]. PD-1:PD-L1 interactions can directly 

inhibit T cell proliferation and survival [304]. While PD-L1+ antigen presenting 

cells have been implicated in several histolytic and dendritic cell disorders [305], 

during HIV infection there is an increase of peripheral PD-L1+ DCs and correlate 

directly with viral load [306, 307]. Furthermore, TIGIT:PVR interact bidirectionally 

to induce T cell dysfunction while promoting mature immunoregulatory DCs 

[221]. Our observations of the expansion of RMMC PD-L1+ and PVR+PD-L1+ 

mDCs during HIV infection indicate that DCs could be selectively supporting the 

persistence of dysfunctional TIGIT+ and PD-1+ T cells in the gut and periphery. 

 From analysis of the gut microbiome, we detected Fusobacteria presence 

in all HIV-infected individuals and HIV-uninfected controls, however the relative 

abundance was significantly higher in HIV-infected subjects compared to their 

matched controls. Fusobacterium, the main member of Fusobacteria phyla, is an 

anaerobic gram-negative species frequently isolated from the oral cavity of both 

healthy and diseased individuals, and is associated with periodontal disease 

[308, 309]. 

 While the Fusobacteria are non-native to the human gut, their presence 

are detected and associated with colorectal cancer and promotes colonic tumor 

formation [291], suggesting that despite the distance from their natural oral niche, 

Fusobacteria possess the ability to translocate and colonize other organs, 

including the gut. The route in which Fusobacteria might translocate from the oral 

cavity to gut includes transient bacteremia that occurs following tooth brushing 

[310]. Normally, bacterial clearance is conducted by the liver, however in 

individuals with impaired liver function due to side effects of cART treatment, the 

liver’s ability to clear peripheral bacteremia can be impaired [310].  

 In HIV infection, greater prevalence of Fusobacteria was identified from 

subgingival plaque from HIV-infected patients compared to HIV-uninfected 

individuals with chronic periodontitis [309]. HIV-infected individuals also possess 
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a higher risk of periodontal attachment loss that can lead to chronic periodontal 

disease, which is reported to be higher in these individuals compared to the 

general population [311, 312]. The combination of higher oral Fusobacteria 

colonization with increased risk of periodontal disease put HIV-infected subjects 

at higher risk for Fusobacteria bacteremia and Fusobacteria colonization in 

different organs that may be followed by systemic and local immune reaction to 

the bacterial colonization. 

 The higher gut Fusobacteria abundance in HIV-infected individuals in our 

study suggests a special HIV-related condition that can drive the bacterial 

translocation from its original habitat to the gut mucosa. In HIV infection, the high 

concentration of CCR5-expressing T-cells causes gut tissue to be the earliest 

mucosal target and a site for CD4 T-cell depletion causing epithelial injury that 

leads to microbial translocation and gut dysbiosis [152, 313]. Early introduction to 

cART only partially restores gut integrity, causing persistent disturbance in 

intestinal homeostasis and driving the microbial translocation immune activation 

in chronic HIV patients. [314, 315]. Our current study supports the hypothesis 

that gut microbial abundance in HIV-infected individuals differs from HIV-

uninfected controls with a significantly higher abundance of Fusobacteria. The 

presence of Fusobacteria may trigger local and systemic immune activation in 

these patients suggesting a creation of mechanistic pathological cycle between 

gut dysbiosis, disrupted gut hemostasis and immune activation/dysfunction that 

persists despite viral suppression. 

 T cells depend on environmental nutrient composition and dynamic 

metabolic reprogramming to perform essential effector and memory functions  

[316]. In mice, chronic lymphocytic choriomeningitis virus (LCMV) infection 

results in a PD-1 mediated repression of glycolytic and mitochondrial metabolism 

in CD8 T cells [317]. Fusobacteria Fap2 engagement of TIGIT in the gut may 

induce metabolic reprograming that is not restored by peripheral anti-TIGIT 

blockade. Normal non-diabetic glucose concentrations in the periphery are 100 
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fold lower than in the gut, implying altered immunometabolism requirements in 

different anatomical sites throughout the body [318, 319]. As a result, the anti-

TIGIT blockade may require nutrient composition similar to the tissues where the 

T cell is primed and TIGIT is engaged. In the future, it would be interesting to 

evaluate the metabolic demands in the presence of Fusobacteria Fap2 in 

mitochondrial stress assays. 

 Lymphocytes are constantly circulating throughout our bodies and traffic 

from the periphery through secondary lymphoid organs and tissues in search of 

cognate peptide-MHC complexes [320]. Priming of T cells depends on 

interactions between DCs in the lymph node and tissue microenvironments which 

ultimately influence peripheral immune tolerance [321]. Ligation of TIGIT has 

been shown to inhibit the priming of CD4 and CD8 T cells [223]. Studies using 

specific-pathogen-free mice have been conducted to understand the role of the 

microbiome in influencing the priming and activation of the systemic host immune 

system  [322]. Our data suggests that gut microbiota and tissue immune 

parameters can predict peripheral immune response to immunotherapy..    

 The identification and treatment of Fusobacteria from rectal biopsies may 

be required as an anti-TIGIT pre-treatment predictors. Moreover, dietary 

supplements with probiotics [323] or fecal microbiota transplants [324] maybe be 

useful as adjunctive therapy to “reboot” the gut microbial ecosystem before anti-

TIGIT therapy. Furthermore, it would be clinically relevant to extend our findings 

to oncologic therapies targeting TIGIT and PD-1 pathways.  

 In summary, these data provide a comprehensive analysis of TIGIT and 

TIGIT ligands in the gut of HIV-infected and HIV-uninfected individuals and 

identifies potential novel predictive biomarkers for identifying anti-HIV CD8 T cell 

reinvigoration by TIGIT and PD-L1 blockade. Results from this study will help 

characterize gut T cells during chronic aviremic HIV infection and allow for a 

better understanding of the specialized role of TIGIT plays in regulating distinct 

aspects of peripheral immunity. A better understanding of these facets of HIV 
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immunity will aid in the development of more effective immune-based therapies 

for the eradication of HIV.  
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TABLES 

  

Table	4.1:	Participant	Characteristics

HIV+	cART	

Suppressed	

(AS;	n	=	7)

HIV-Uninfected	

Donors	

(HD;	n	=	5) p	value

Parameters Median	(IQR) Median	(IQR)

Age	(Years) 57	(52,	62) 53	(51,	58) 0.4533

CD4	T	cell	Count	(cells/mm3) 560	(387,	922) N/A

HIV	Viral	Load	(copies/ml) <20 N/A

cART	Therapy Yes N/A

Gender	Distribution

Male	%	(no.) 85	(6) 80	(4) 0.998

N/A=	Not	Applicable

cART:	Combinational	Antiretroviral	Therapy
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Figure 4.1: TIGIT and PD-1 are upregulated on mucosal mononuclear T 

cells derived from rectosigmoid biopsies. RMMCs and PBMCs from cART 

suppressed HIV-infected and HIV-uninfected individuals were stained for viability 

and antibodies against CD3, CD4, CD8, TIGIT and PD-1. Representative flow 

cytometry plots of matched RMMCs and PBMCs gated on live CD3+ 

lymphocytes, from representative (A) HIV-infected and (D) HIV-uninfected 

individuals. Compiled data comparing the differences of TIGIT and PD-1 

expression on CD8 T cells from RMMCs and matched PBMCs of (B) HIV-

infected (n = 7) and (E) HIV-uninfected (n = 5). Compiled data comparing the 

differences of TIGIT and PD-1 expression on CD4 T cells from RMMCs and 

matched PBMCs of (C) HIV-infected (n = 7) and (F) HIV-uninfected (n = 5). (I) 

Compiled data of PD-1+ CD8 T cells and TIGIT+CD4 T cells from RMMCs from 

HIV-infected (n = 7) and HIV-uninfected individuals (n = 5). The p-values were 

calculated using Wilcoxon matched-pairs signed ranked test for matched pairs 

and Mann-Whitney U test for cohort comparison. 
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Figure 4.2: PVR and PD-L1 were differentially expressed on dendritic cell 

subsets from mucosal mononuclear T cells derived from rectosigmoid 

biopsies. RMMCs and PBMCs from cART suppressed HIV-infected and HIV-

uninfected individuals were stained for viability and antibodies against CD3, CD7, 

CD14, CD19, CD20, CD11b, CD11c, CD123, HLA-DR, PVR, PD-L1. 

Representative flow cytometry plots of matched RMMCs and PBMCs gated on 

live CD3-, CD19-, CD7-, CD20-, CD14-, HLA-DR+ population from representative 

(A) HIV-infected and (D) HIV-uninfected individuals. Compiled data comparing 

the differences of PVR and PD-L1 expression on mDCs from RMMCs and 

matched PBMCs of (B) HIV-infected (n = 7) and (E) HIV-uninfected (n = 5). 

Compiled data comparing the differences of PVR and PD-L1 expression on 

pDCs from RMMCs and matched PBMCs of (C) HIV-infected (n = 7) and (F) HIV-

uninfected (n = 5). (I) Compiled data of PD-L1+ mDCs and PVR+PD-L1+ mDCs 

from RMMCs from HIV-infected (n = 7) and HIV-uninfected (n = 5) individuals. P 

values were calculated using Wilcoxon matched-pairs signed ranked test for 

matched pairs and Mann-Whitney U test for cohort comparison 
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Figure 4.3: Microbiome compositions among HIV-infected and HIV-

uninfected individuals. RNA was isolated from rectosigmoid biopsies and 

sequenced for microbial 16S rRNA from cART suppressed HIV-infected (HIV+) 

and HIV-uninfected (HIV-) individuals. Sequences were mapped to the 

Greengenes Database. (A) Compiled data of percent mapped reads of 

microbiome abundance at the phyla level, grouped as HIV+ (n = 7) and HIV- (n = 

5). (C) Compiled data of Fusobacteria relative abundance as percent mapped 

reads, grouped as HIV+ (n = 7) and HIV- (n = 5). P values were calculated using 

Mann-Whitney U test. 
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Figure 4.4: Peripheral CD8 T cell immune restoration is associated with 

RMMC phenotypes or microbiome abundance. PBMCs were stimulated with a 

HIV Gag peptide pool in the presence, absence or combination of anti-TIGIT 

and/or anti-PD-L1 monoclonal blocking antibodies or IgG1 isotype and assessed 

for the production of interferon gamma (IFN-γ) and degranulation (CD107a). (A) 

Representative flow cytometry plots gated on Live CD3+ CD8 T cells, showing 

IFN-γ (solid gate) and CD107a (dashed gate) responses from two cART 

suppressed HIV-infected individuals. No HIV Gag stimulation with an isotype 

control, HIV Gag stimulation with an isotype control, HIV Gag stimulation with 

anti-TIGIT, HIV Gag stimulation with anti-PD-L1, HIV Gag stimulation with dual 

blockade (anti-TIGIT + anti-PD-L1) (B) Graphs show compiled data of the fold 

change of IFN-γ (B, right panel) and CD107a (B, left panel) in the presence of 

blocking mAbs normalized to HIV Gag stimulation with IgG1 isotype. Matched 

phenotypes from RMMCs were compared with the reinvigoration of PBMC CD8 T 

cells effector functions by mAb blockade. (C) Graph shows correlation of the 

frequency (%) of PD-L1+ pDCs from RMMCs against the fold change of anti-HIV 

Gag IFN-γ CD8 T cells with anti-TIGIT blockade. (D) Graph shows correlation of 

the frequency (%) of TIGIT+ CD8 T cells (D, left panel) PVR+ mDCs (D, right 

panel) from RMMCs against the fold change of anti-HIV Gag CD107a CD8 T 

cells with anti-PD-L1 blockade. (E) Graph shows correlation of the frequency (%) 

of PVR+PDL1+ pDCs from RMMCs against the fold change of anti-HIV Gag 

CD107a CD8 T cells with dual blockade. (F) Graph shows correlation of the 

relative abundance of Fusobacteria (F, left panel), Firmicutes (F, middle panel) 

and Lentisphaerae (F, right panel) from rectosigmoid biopsies against the fold 

change of anti-HIV Gag IFN-γ CD8 T cells with anti-TIGIT blockade. P values 

were calculated using values were calculated using one-way ANOVA, followed 

by Tukey’s multiple comparisons test, Spearman’s rho test was performed for 

correlations. 
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Graphical Abstract Figure 4.1: Potential pretreatment predictors of 

response to TIGIT blockade in enhanced “shock and kill” HIV cure 

strategies. Figure represents evaluating gut immune parameters and gut 

microbiome of individuals before enhanced “shock and kill” eradication 

strategies using TIGIT and PD-L1 blockade.  
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DISSERTATION SUMMARY 

 

 An estimated 36 million individuals have died from HIV/AIDS since the first 

cases were reported in 1981 with roughly 36 million individuals currently living 

with HIV at the end of 2015 worldwide. Despite the significant advancements in 

antiretroviral therapy, the understanding of viral pathogenesis and immunological 

host interactions gained from several decades of research, an effective HIV cure 

or vaccine does not exist. The main obstacle to an HIV cure is that the virus is 

able to stably integrate into the host genome and lay latent, enabling it to avoid 

recognition by the immune system [138]. Combination antiretroviral therapy 

(cART) is able to suppress viral replication while increasing survival and the 

quality of life of HIV infected individuals. However, once cART is withdrawn, a 

rapid and aggressive rebound of plasma viremia occurs [138]. Lifelong cART 

regimens are associated with toxicity [325] chronic inflammation and aging 

related comorbidities [326, 327]. New approaches to HIV eradication are needed 

with the goal of achieving a functional or sterilizing cure that does not necessitate 

dependence of cART. 

 Several lines of evidence indicate that cytotoxic CD8 T cells significantly 

contribute to control of viral replication [163, 165, 169, 263-265]. However, 

chronic HIV infection is associated with an increased expression of negative 

checkpoint receptors (NCRs) on HIV-specific CD8 T cells in peripheral blood that 

leads to progressive loss of function, termed “T cell exhaustion” [2] which further 

contribute to immune dysfunction and viral persistence [176-178, 180, 207, 208]. 

Identifying additional NCRs that persist and can be targeted during chronic HIV 

infection is imperative to the future of HIV cure strategies. 

 The extremely stable reservoir of latently infected memory CD4 T cells 

that harbor replication competent HIV provirus [328] remains a major barrier to 

HIV eradication. Current HIV cure strategies focus on the “shock and kill” 

approach. Small pharmacological compounds are clinically being evaluated to 
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reactivate (shock) latent HIV provirus without inducing host cell activation in order 

to expose them to the immune system for elimination (kill) [1]. However, there is 

little impact on the size of the latent reservoir in small clinical trials of latency 

reversing agents [202, 203, 206]. This suggests that additional immune 

mechanisms may be required to enhance the clearance of virally infected cells. 

 The main purpose of this dissertation was to evaluate the expression and 

function of the T -cell immunoreceptor with immunoglobulin and ITIM domains 

(TIGIT; also known as Vsig9, Vstm3 or WUCAM) in the context of HIV infection. 

The goal of this study was to identify clinically targetable pathways to reinvigorate 

robust anti-HIV responses during enhanced “shock and kill” eradication 

strategies. The long-term goal of this study was to understand immune 

dysfunction that contributes to HIV disease progression and pathogenesis. 

 The first objective focused on the T cell phenotype expression of TIGIT in 

the context of HIV infection. Peripheral blood mononuclear cells (PBMCs) were 

collected from individuals with varying stages of HIV disease progression and 

matched to HIV-uninfected individuals. We demonstrated that an expansion of 

TIGIT+ CD8 T cells during chronic HIV infection despite viral suppression 

strongly correlated with disease progression. We also show that gamma chain 

cytokines have the potent ability to increase the expression of TIGIT in the 

context of HIV infection. Furthermore, TIGIT was co-expressed with PD-1 on 

HIV-specific CD8 T cells across several HLA-restricted HIV epitopes. These data 

suggest that TIGIT and PD-1 may play a dominant role in negatively regulating 

broad anti-HIV CD8 T cell responses. We next assessed the functional capacity 

of TIGIT expressing HIV-specific CD8 T cells and found them to be impaired in 

the ability to generate anti-HIV effector immune responses. Moreover, CD4 T 

cells expressing TIGIT strongly correlated with the CD4 HIV DNA content, 

suggesting TIGIT may be involved in maintaining the viral reservoir by 

suppressing CD4 T cell activation. The work reported here indicates that the 
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TIGIT pathway is involved in HIV disease progression and is responsible for 

immune dysfunction and viral persistence.  

 The second objective was to evaluate the TIGIT pathway in the 

physiologically relevant Rhesus macaque (RM) nonhuman primate model of 

HIV/AIDS. Lymphocytes from peripheral blood and lymphoid tissues derived from 

SIV infected RMs were used to evaluate the expression and function of rhesus-

TIGIT (rhTIGIT). We cloned rhTIGIT and show an 88.11% amino acid homology 

with human TIGIT and reasoned that expression and function would mimic 

human TIGIT during HIV infection. We observed elevated levels of rhTIGIT+ CD8 

T cells in the periphery with a significant elevation in lymphoid tissues, which 

correlated with plasma viremia in SIV-infected RMs compared to SIV-uninfected 

controls. Moreover, rhTIGIT was regulated by gamma chain cytokines, similar to 

human TIGIT. We also observed that TIGIT co-expressed with rhesus PD-1 on 

SIV-specific CD8 T cells and rhTIGIT+ CD8 T cells failed to respond to SIV 

peptides. These data recapitulated the observations of human TIGIT during HIV 

infection and characterized a preclinical model to study the in vivo safety and 

efficacy of interfering with the TIGIT pathway in enhanced “shock and kill” HIV 

eradication strategies. 

 The third objective aimed to evaluate the effects of interfering with the 

TIGIT and PD-1 pathways to restore existing anti-HIV/SIV T cell effector 

functions. Clinically validated blocking monoclonal antibodies (mAbs) against 

TIGIT and PD-L1 were gifted to us in order to investigate blockade strategies in 

vitro. Blocking mAbs combined with our HIV peptide stimulation assay resulted in 

significant reinvigoration of pre-existing anti-HIV CD8 T cell effector functions 

when blocking a single or combination of TIGIT and PD-1 pathways. Anti-HIV 

CD8 T cell interferon gamma responses were significantly increased when TIGIT 

or PD-1 pathways were blocked, while a combination of anti-TIGIT and PD-L1 

significantly increased CD8 T cell proliferation. In parallel, these data were 

repeated in restoring SIV-specific CD8 effector functions by TIGIT and PD-L1 
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blockade in RMs. Our data indicates we can reverse T cell exhaustion and 

restore existing anti-HIV CD8 T cell effector functions to potentially allow them to 

more potently target HIV infected cells. 

 Our final objective was to evaluate the magnitude of peripheral CD8 T cell 

reinvigoration by TIGIT blockade to the expression of TIGIT with TIGIT ligands in 

peripheral blood and gut tissues. We observed a dynamic range in the 

restoration of CD8 T cell effector functions with TIGIT and PD-L1 blockade with 

no correlation between CD8 TIGIT or TIGIT ligand expression in the periphery. 

Similarly, in cancer immunotherapy, PD-L1 tumor expression as a pretreatment 

predictor of PD-1 blockade remains suboptimal [329, 330]. Studies characterizing 

immune function in the periphery have provided insight into HIV pathogenesis, 

however circulating lymphocytes only represent about 25% of the body’s total 

lymphocyte with a majority of them residing in gut tissues [278]. We generated 

single cell suspensions from rectosigmoid biopsies and evaluated the expression 

of TIGIT and TIGIT ligands in the context of PD-1. We observed tissue specific 

differences during HIV infection in the expression of TIGIT and PD-1 in addition 

to their respective ligands PVR and PD-L1. Interestingly, TIGIT had previously 

been shown to interact with Fusobacteria Fap2 to inhibit immune clearance of 

colon adenocarcinoma [290]. We further evaluated the microbiota composition 

and observed a significant increase in the abundance of Fusobacteria compared 

to HIV-uninfected controls. Bivariate analysis revealed that the magnitude of 

peripheral CD8 T cell reinvigoration by TIGIT blockade was correlated with 

RMMC PD-L1 pDC expression and the Fusobacteria abundance. Our data 

indicates that RMMC tissue immune parameters and microbiota composition may 

predict which individuals will respond to TIGIT blockade therapy as part of the 

enhanced “shock and kill” eradication strategies. 

 In conclusion, the information gained from these studies provides 

additional insight into the mechanisms driving HIV-associated immune 

dysfunction. Efforts to understand CD8 T cell exhaustion in the clearance of HIV 
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infection remain paramount in the search for an HIV cure. In addition, this data 

provides the rationale for further investigation into the role that TIGIT plays in HIV 

immune dysfunction. It is our hope that a better understanding of this pathway 

will lead to the development of novel curative therapies.  

 

FUTURE PERSPECTIVES 
 

 With data generated in this dissertation, we will be exploring the in vitro 

and in vivo killing of HIV infected cells with a NIH funded R21/33 

(1R21AI122393-01 PI: Lishomwa Ndhlovu). In the R21 phase we propose to 

determine the ability of TIGIT and PD-L1 blockade to reinvigorate the antiviral 

efficacy in vitro and deplete or inactivate HIV/SIV latently activated cells by 

enhancing anti-HIV/SIV CD8 T cell effector functions. In the R33 phase we will 

test the ability of TIGIT and PD-L1 blockade to clear the latent reservoir during 

fully suppressive cART in the SIV-infected Rhesus macaque model of HIV/AIDS. 

These studies are the first steps towards a novel approach that may lead to a 

sustained or functional HIV cure.  

 In addition to these studies we aim to elucidate the role of T cell 

immunometabolism and T cell reinvigoration. T cells undergo dramatic metabolic 

changes to meet the energy demands of and effective antiviral responses [331]. 

Interestingly, engagement of PD-1 results in an altered T cell metabolic 

reprograming and the inhibition of glycolysis, glutaminolysis, and amino acid 

metabolism [332]. Understanding the bioenergetics needs of CD8 T cells during 

immune checkpoint blockade (ICB) might improve therapies targeting TIGIT and 

further explain their capacity to be reinvigorated.  

 Furthermore, epigenetic mechanisms such as DNA methylation regulate 

transcriptional expression profiles in immune cells that ultimately direct cellular 

differentiation and function. Recent studies have revealed that gene expression 

of negative checkpoint receptors PD-1 and CTLA-4 are controlled by epigenetic 

regulation [333, 334]. Epigenetic studies have revealed that exhausted T cells 
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harbor a unique epigenetic and chromatin landscape profile relative to 

functioning T cells [335]. Unfortunately, there is lack of knowledge about how 

second tier immune checkpoint receptors such as TIGIT are epigenetically 

regulated and sustained during HIV infection. While TIGIT is upregulated on T 

cells during HIV infection, little is known about the genome-wide epigenetic 

states of TIGIT+ and TIGIT- CD8 and CD4 T cells. Furthermore, the impact of 

epigenetic manipulation on the CD8 T cell reinvigoration by TIGIT blockade is 

poorly defined. In future directions, we seek to define genome-wide epigenetic 

and transcriptional profiles in TIGIT+ and TIGIT- CD8 T cells subsets in cART 

suppressed HIV participants to provide a roadmap for candidate sites of the 

genome regulating dysfunctional TIGIT+ T cells. We will use genome-wide DNA 

methylation profiling of TIGIT+ and TIGIT- CD8 T cells from HIV-infected 

individuals to define the DNA methylation landscape. These reference 

methylomes will reveal a distinct DNA methylation state of CD8 T cells that may 

be a target for epigenetic manipulation.  

 This dissertation has demonstrated a prominent role for ICB during 

chronic HIV infection. However, there is a need to better understand the 

mechanisms by which ICB offers benefits that are less toxic but retain optimal 

anti-tumor and anti-viral efficacy for all patients. In the future, we plan to use 

integrated cellular, transcriptional, and epigenetic profiling of HIV-specific CD8 T 

cells to provide a mechanistic insight into ICB in the setting of HIV infection. 
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