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Abstract. Thrombospondin (TSP)-1 and TSP-2 are matricel-
lular proteins in the extracellular matrix (EcM), which serve 
a significant role in the pathological processes of various 
cardiovascular diseases (cVds). The multiple effects of TSP-1 
and TSP-2 are due to their ability to interact with various 
ligands, such as structural components of the EcM, cytokines, 
cellular receptors, growth factors, proteases and other stromal 
cell proteins. TSP-1 and TSP-2 regulate the structure and 
activity of the aforementioned ligands by interacting directly 
or indirectly with them, thereby regulating the activity of 
different types of cells in response to environmental stimuli. 
The pathological processes of numerous cVds are associated 
with the degradation and remodeling of EcM components, 
and with cell migration, dysfunction and apoptosis, which may 
be regulated by TSP-1 and TSP-2 through different mecha-
nisms. Therefore, investigating the role of TSP-1 and TSP-2 in 
different cVds and the potential signaling pathways they are 
associated with may provide a new perspective on potential 
therapies for the treatment of cVds. In the present review, the 
current understanding of the roles TSP-1 and TSP-2 serve in 
various cVds were summarized. In addition, the interacting 
ligands and the potential pathways associated with these 
thrombospondins in cVds are also discussed.
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1. Introduction

The extracellular matrix (EcM) serves a significant role 
in modulating tissue genesis and remodeling not only by 
connecting cells and providing support for them, but also by 
regulating connections between the cells, and between the cell 
and the matrix, inducing cell adhesion, motility and differen-
tiation. In the cardiovascular system, the EcM participates in 
maintaining the structural continuity of the heart and vessels, 
providing physical support for cell adhesion, controlling cell 
growth and death, and regulating diastolic stiffness, as well as 
tissue repair or remodeling to the cardiovascular damage (1). 
A number of these functions are performed by a group of 
non-structural EcM proteins called matricellular proteins, 
which includes thrombospondins (TSPs), tenascins, periostin, 
osteopontin, ccN proteins and osteonectin (2).

As a family of matricellular proteins, TSPs may be secreted 
by various types of cells. A total of 5 members of the TSP 
family (TSP1‑5) have been identified so far, and are divided into 
two subgroups, subgroup A and subgroup B, according to their 
structural differences. Subgroup A contains TSP-1 and TSP-2, 
which are trimeric and similar in structure, and subgroup B 
consists of TSP-3, TSP-4 and TSP-5, which are pentameric 
and smaller compared with those in subgroup A (3). TSP-1 
and TSP-2 are the most studied thrombospondins. In the 
present review, the structure and the role of TSP-1 and TSP-2 
in cardiovascular diseases (cVds; Table I), and the potential 
pathways associated with these TSPs will be discussed.

2. The structure of TSP‑1 and TSP‑2

TSP-1 have a complex multidomain structure (Fig. 1), which 
can interact with various ligands, including EcM struc-
tural components, matricellular proteins, growth factors, 
receptors, proteases and cytokines (4). There is a total of 
3 identical chains of TSP-1 or TSP-2 that may form a trimer 
with a disulfide‑bond, which may be critical to some of their 
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functions (5). The monomer of TSP-1 and TSP-2 consists of 
an N‑terminal domain, an interchain disulfide knot, a homolo-
gous procollagen region, 3 type I repeats, 3 type II repeats 
[epidermal growth factor (EGF)-like repeats], 7 type III 
repeats and a c-terminal domain (3). Each of these domains 
specifically regulates the cell function via the interaction with 
various molecules. The N-terminal of TSP-1 may interact 
with heparin (6,7), heparan sulfate proteoglycan (HSPG) (8), 
sulfatides (4,8), TNF‑inducible gene 6 protein (9), low‑density 
lipoprotein receptor related protein (LRP) (7,10), versican (11), 
calreticulin (10,12-14), integrin-α3β1 (15-17), -α4β1 (18) and 
-α6β1 (19). Type I repeats may interact with matrix metal-
lopeptidase (MMP)-2 (20,21), MMP9 (15,22,23), cluster 
of differentiation 36 (CD36) (24‑26), lysosome membrane 
protein 2 (LIMPII) (27), β1 integrins (28,29), latent trans-
forming growth factor- β (TGF-β) (30-32), and cd148 (33,34). 
Type II repeats can interact with EGF receptor (EGFR) (35) 
and β1 integrins (28), while type III repeats have been identi-
fied to interact with fibroblast growth factor 2 (FGF2) (36), 
calcium (36‑38), integrin αIIβ3 (39) and integrin αvβ3 (40,41). 
The c-terminal domain interacts with leukocyte surface 
antigen cd47 (cd47) (42,43) and calcium (44). Through these 
different interactions, TSP-1 modulates the activity of these 
ligands, ultimately inducing the cell response to the environ-
mental stimuli under the circumstances of physiological and 
pathological processes.

TSP-2 shares the same structure with TSP-1, however 
the amino acid sequences are slightly different. The primary 
differences in the amino acid sequence are located in 
the N-terminal domain. Evidence reveals there is only a 
32% amino acid sequence similarity in the N-terminal heparin 
binding domain between TSP-1 and TSP-2 (3). Therefore, the 
ligands binding TSP-1 and TSP-2 at the N-terminal domain 
are different in certain circumstances. For example, a previous 
study identified that recombinant human TSP1 may activate 
the latent TGF-β, but this phenomenon is not observed in 
recombinant mouse TSP-2 (45). Therefore, although TSP-1 
and TSP-2 share the same structure, their different amino acid 
sequences, especially in the N-terminal domain, is the cause of 
their differences in binding ligands.

The interaction between TSP-1 and TSP-2 and their ligands 
may also affect each other. For example, TSP-1 and TSP-2 are 
known to compete with each other for degradation through 
LRP, which contributes to maintaining the levels of TSP-1 and 
TSP‑2 in certain situations, such as wound healing (46).

3. TSP‑1 and TSP‑2 in CVDs

due to their multidomain structure and the ability to interact 
with multiple ligands, TSP-1 and TSP-2 are active in various 
types of physiological and pathological processes. At present, 
there have been multiple studies concerning the role of TSP-1 
and TSP-2 in various cVds (Table I and Fig. 2), suggesting 
that they may become potential therapeutic targets.

Myocardial infarction (MI). MI is myocardial ischemic 
necrosis caused by a rapid decrease or interruption of coronary 
blood supply, which leads to high mortality rates worldwide. 
In patients with acute ST-segment elevation MI, the expression 
of TSP‑1 is significantly increased (47), and the decrease of 

TSP-1 following percutaneous coronary intervention (PcI) is 
associated with major adverse cardiac events (48). In rats with 
infarcted hearts, TSP-1 was transiently induced and located in 
cells at the border area of the infarction, which can be increased 
by ischemia/reperfusion (49). In canine and murine models of 
reperfusion injury, TSP‑1 also exhibited a selective distribu-
tion in the EcM, the microvascular endothelium, and the 
mononuclear cells of the infarct border zone. TSP‑1‑deficient 
mice have a severe post-infarction remodeling compared with 
that in wild-type mice, although their infarct size was almost 
equal, indicating that selective endogenous expression of 
TSP-1 in the infarct border zone may limit the expansion of the 
granulation tissue and protect the non-infarcted myocardium 
from fibrotic remodeling (50).

Following MI, left ventricular (LV) remodeling signifi-
cantly contributes to LV dilation and dysfunction, which 
leads to functional damage and poor prognosis. The patho-
logical process of LV remodeling includes scar formation 
in the infarcted area, as well as hypertrophy and fibrosis in 
the non-infarcted surrounding area. This is primarily due to 
the degradation of ECM, the deposition of myofibroblasts, 
and the rapid increase in the amount of collagen following 
infarction. Previous studies have identified that extracellular 
collagen matrix (EccM) remodeling largely contributes to LV 
remodeling, and the decrease of EccM is associated with the 
increase of LV dilation and rupture, indicating that TSP-1 may 
participate in the pathology of MI (51). Exposure to hypoxia 
markedly induced the expression of TSP-2 in cardiomyocyte 
progenitor cells (hcMPcs), and knockdown of TSP-2 resulted 
in increased proliferation, migration and MMP activity of 
hcMPcs, indicating that TSP-2 may participate in control-
ling the migratory and invasive capacities of hcMPcs under 
hypoxic conditions (52). However, little is known regarding the 
specific role of TSP‑2 in MI.

conversely, certain functional variants of the TSP-1 and 
TSP-2 genes may be associated with MI (53-55). The N700S 
polymorphism of TSP-1 is a potential genetic risk factor for 
MI (56‑58), as it disrupts calcium‑binding sites (59). Those 
who are homozygous for the minor allele or are heterozygous 
(GG and TG genotypes, respectively) have a significantly 
increased risk of MI compared with those who are homo-
zygous (TT genotype) for the major allele (54). These data 
provide a novel perspective on the TSP-associated therapeutic 
approach of MI.

Cardiac hypertrophy and heart failure. cardiac hypertrophy 
is primarily induced by chronic pressure overload, such 
as essential hypertension. Pathological features of cardiac 
hypertrophy include increased growth of the cardiomyo-
cytes, proliferation of the cardiac fibroblasts and increased 
EcM deposition. There have been some reports on the role 
of TSP-1 and TSP-2 in cardiac hypertrophy. compared with 
wild type mice, TSP-1-deficient mice exhibited enhanced 
early hypertrophy and late dilation when exposed to pressure 
overload (60). Despite this, TSP‑1 (-/-) mice exhibited increased 
myocardial MMP-3 and -9 activation following pressure over-
load (60). In obese diabetic DB/DB mice, myocardial TSP-1 
levels are significantly upregulated in the perivascular and 
interstitial space. In comparison with normal DB/DB mice, 
DB/DB TSP-1 (-/-) mice exhibited an enhanced LV dilation, 
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which was associated with mild non-progressive systolic 
dysfunction, and TSP-1 could incorporate into the matrix and 
inhibit leptin‑induced MMP‑2 activation (61). These previous 
studies suggest that TSP-1 is upregulated in the diabetic heart 
and prevents chamber dilation by exerting matrix-preserving 
actions on the cardiac fibroblasts.

TSP-2 is also closely associated with cardiac hypertrophy. 
data suggests that older TSP-2 (-/-) mice are associated with an 
enhanced dilated cardiomyopathy characteristic as impaired 
systolic function as well as increased cardiac dilatation and 
myocardial fibrosis, indicating that TSP‑2 deficiency leads 
to an age‑associated dilated cardiomyopathy (62). Compared 
to wild-type mice, TSP-2-knockout mice display increased 
mortality accompanied by decreasing cardiac function, 
increased cardiomyocyte apoptosis and EcM damage in a 
doxorubicin‑induced cardiomyopathy mouse model (63). The 
absence of TSP-2 also results in decreased systolic function 
and enhanced cardiac dilatation in human coxsackie virus 
B3 (CVB3)‑induced myocarditis (64). Previous data also 
identified that TSP‑2 expression is activated uniquely in hyper-
trophic hearts that may develop heart failure, which may be an 
early‑stage molecular program of heart failure (65).

Abnormal myocardium remodeling leads to myocardial 
overload. If not treated promptly, long-term myocardial over-
load may progress into heart failure. From the perspective of 
pathology, heart failure is associated with abnormal inflam-
mation, coagulation activation and endothelial dysfunction. 
TSP-1 and TSP-2 also participate in some of these changes. 
Previous studies have revealed that TSP-1 expression is 
decreased in failing hearts, which may be associated with 
ventricular dilatation (66,67). Treatment of cardiomyocytes 
with a TSP1-derived peptide that activates cd47 leads to 
increased cardiomyocyte hypertrophy in a ca2+ and calmod-
ulin protein kinase II dependent manner, indicating that TSP-1 
may contribute to LV hypertrophy and heart failure (68). Using 
aged mouse models with failure-resistant and failure-prone 
characteristics, a previous study identified that micro(mi)
RNA-18 and miRNA-19 may modulate TSP-1 expression and 
cardiac EcM protein levels in age-associated heart failure; 
therefore, decreased miRNA-18/19 and increased TSP-1 
levels may contribute to the identification of failure‑prone 
hearts (69). TSP‑1 levels in patients with heart failure may 
also be decreased due to oral anticoagulation therapy, which is 
used to prevent thromboembolic events (70).

Elevated TSP-2 is primarily associated with poor prog-
nosis in patients with heart failure. Among patients with 
coronary heart disease with symptomatic congestive heart 
failure (cHF), circulating TSP-2 is increased, which is associ-
ated with increased 3-year cHF-associated death, all-cause 
mortality and recurrent hospitalization risk (71). In patients 
with preserved ejection fraction heart failure, high serum 
levels of TSP-2 are associated with poor prognosis (72,73). 
TSP-2 overexpression in wild-type mouse hearts led to 
decreased cardiac inflammation and improved cardiac func-
tion after cVB3 infection, suggesting that TSP-2 may mitigate 
against cardiac injury, inflammation, and dysfunction during 
acute viral myocarditis (64).

Valvular disease. Calcific aortic valve disease (CAVD) is a 
progressive disorder manifesting as sclerotic stiffening and 
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valvular thickening, eventually leading to aortic stenosis. The 
pathological process of cAVd is accompanied by inflam-
matory cell infiltration, lipid accumulation, fibrosclerosis, 
ECM disorder, angiogenesis and nodular calcification (74). In 
fibrotic and stenotic aortic valves, the mRNA levels of TSP‑2 
are increased 4.9-fold (P=0.037) and 4.8-fold (P=0.001), 
respectively (75). TSP‑1 can also be detected in the fibrotic and 
stenotic valves, but the expression of TSP‑1 is not significantly 
different, indicating that cAVd was associated with TSP-2 
upregulation in aortic cusps (75). However, evidence suggesting 
an association between TSP-1 and valvular diseases is limited, 
and the specific role of TSP‑2 in the pathological process of 
valvular disease requires further study.

Cerebral and carotid artery disorder. cerebral and carotid 
artery disease are important subgroups of peripheral vascular 
diseases, which have high mortality rates worldwide. TSP-1 
and TSP-2 may also serve a role in cerebral and carotid artery 
disease. In symptomatic patients with carotid artery diseases, 
TSP-1 expression on the surface of circulating platelets is 
significantly increased (76). Compared with wild‑type mice, 
TSP-1 (-/-) mice exhibit a decreased response to fluvastatin in 
inhibiting intimal hyperplasia following carotid artery ligation, 
indicating that the statin effect on intimal hyperplasia may be 
dependent on TSP‑1 (77). A previous study identified that the 
expression of TSP-1 is increased following a stroke, and TSP-1 
deficiency leads to impaired recovery (78). High expression 
levels of TSP‑1 and TSP‑2 were identified in the ischemic 
rat brain following cerebral ischemia/reperfusion, which 
may contribute to spontaneous resolution of postischemic 
angiogenesis (79). In a spontaneous intracerebral hemorrhage 

(IcH) rat model, thrombin treatment induced high expression 
of TSP-1 or TSP-2 in the blood vessels around the damaged 
brain region. These data provide support the hypothesis that 
thrombin positively regulates the expression of TSP-1 and 
TSP-2 following IcH, which may be involved in modulating 
angiogenesis in injured brains (79‑81).

In a rat carotid balloon angioplasty model, intraluminal 
delivery of TSP-2 small inhibiting (si)RNA inhibited the 
vascular response to the injury (82). TSP‑2 is increased and 
colocalized to the astrocytes following a stroke, and TSP‑2 defi-
ciency leads to an impaired recovery following stroke (78,83). 
TSP-2 expression was increased in the ischemic brain, which 
may contribute to the spontaneous resolution of post-ischemic 
angiogenesis (79). These data suggest that TSP-2 may promote 
angiogenesis and recovery following cerebral and carotid 
artery injury.

Atherosclerosis. Atherosclerosis is characterized by thick-
ening, hardening and decreased elasticity of the arterial 
wall. Lipid levels, endothelial cell injury, inflammation and 
the migration of vascular smooth muscle cells (VSMc) are 
considered as several fundamental pathological processes of 
atherosclerosis. Previous evidence suggested that TSP-1 can 
interact with some of the aforementioned factors and further 
regulate the pathological process of atherosclerosis through 
various mechanisms, while the association between TSP-2 
and atherosclerosis requires further investigation. Following 
partial carotid ligation, disturbed blood flow induced arterial 
stiffening through collagen deposition. compared with wild 
type carotid arteries, TSP‑1 knockout animals have signifi-
cantly decreased arterial stiffening, indicating that disturbed 

Figure 1. Structural diagrams of TSP-1 and TSP-2. Ligands demonstrated to interact with each domain are summarized in the boxes. At present, the under-
standing of the interaction of ligands of each domain in TSP-1 is more advanced compared with that of TSP-2, and numerous molecules that interact with 
TSP‑2 remain to be identified. From the current results, a number of interacting molecules are shared between TSP‑1 and TSP‑2. However, certain particular 
ligands, including TGF-β, may only function when it interacts with TSP‑1 instead of TSP‑2. TSP, thrombospondin; TSG‑6, tumor specific glycoprotein; LRP, 
low‑density lipoprotein receptor related protein; PDGF, platelet derived growth factor; MMP, matrix metalloproteinase; CD36, cluster of differentiation 36; 
TGF-β, transforming growth factor-β; cd148, receptor-type tyrosine-protein phosphatase eta; LIMPII, lysosome membrane protein 2; EGFR, epidermal 
growth factor receptor; FGF2, fibroblast growth factor 2; CD47, leukocyte surface antigen CD47; LRP, low‑density lipoprotein receptor related protein.
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flow may promote arterial stiffening through TSP-1 (84). 
conversely, proatherogenic flow conditions may induce 
endothelial apoptosis via TSP-1 (40). The absence of TSP-1 
accelerates the maturation of the atherosclerotic plaque in 
apolipoprotein E (ApoE-/-) mice, indicating that TSP-1 may 
function as an inhibitor of atherosclerosis (85,86). TSP‑1 
may also interact with lipoproteins. In hypercholesterolemic 
atherosclerotic rabbits, the overexpressed TSP-1 secreted by 
injured arteries may bind to very‑low‑density lipoprotein 
(VLdL), which may promote its incorporation into nascent 
atherosclerotic plaques, simultaneously delivering VLdL 
cholesterol into the lesions (87,88). These results indicate 
that TSP-1 may serve different roles in different pathological 
stages of atherosclerosis. Therefore, it is necessary to further 
investigate the specific role of TSP‑1 in atherosclerosis.

An important pathological process of atherosclerosis is 
the migration of media smooth muscle cells (SMcs) into the 
intima and hyperplasia. The expression of TSP-1 has been 
demonstrated to increase in VSMc in human atherosclerotic 
lesions (89), which may contribute to inflammation and 

atherogenesis. Hypoxia induces the migration of the coronary 
artery SMcs, which is elicited by TSP-1 (90,91). An additional 
study identified that TSP modulates SMCs migration, which 
may accelerate atherosclerotic lesion development during 
vascular injury or inflammation (92).

TSP-1 may also modulate the interaction between diabetes 
and atherosclerosis. Evidence reveals that TSP-1 expression 
is increased in large arteries of diabetic animals however, the 
protein levels of TSP-1 in microvascular endothelial cells are 
decreased when exposed to high glucose levels (89,93,94). 
In a hyperglycemic ApoE (-/-) mouse model, lack of TSP-1 
prevented atherogenic lesion formation (95). The expression 
of TSP-1 is increased in hypoxic pulmonary hypertension rats, 
which may contribute to the pathogenesis of hypoxic pulmo-
nary vascular remodeling (96).

compared with TSP-1, there is limited research on the 
association between TSP-2 and atherosclerosis. In atheroscle-
rotic specimens, TSP-2 mRNA was absent from intraplaque 
microvessels and endothelial cells lining the atheromatous 
plaque (97). Therefore, the specific mechanism of TSP‑2 in 

Figure 2. current understanding of the effect of TSP-1 and TSP-2 on various cVds. The red arrows represent suppression, the green arrows represent promo-
tion and the blue arrows represent not acquired. The primary roles TSP-1 and TSP-2 serve in cVds are considered to be inhibitory, but there are different 
hypotheses regarding the contribution of TSP-1 and TSP-2 to certain cVds, including atherosclerosis and arterial restenosis. However, the association between 
TSP-1 and TSP-2 and diseases such as valvular disease requires further study. TSP, thrombospondin; cVd, cardiovascular disease.
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the pathological process of atherosclerosis requires further 
investigation.

Angiogenesis. Angiogenesis is a fundamental physiological 
process associated with tissue repair following injury, which 
also promotes tumor progression. This process is tightly modu-
lated by various growth factors and the interaction between 
cells and the EcM. TSP-1 and TSP-2 have been revealed to 
regulate angiogenesis by interacting with specific growth 
factors, cells and EcM. Previous evidence indicates that 
downregulation of endothelial cell TSP-1 causes an enhance-
ment of in vitro angiogenesis (98). In vitro and in vivo models 
indicated that factor XIII, a clotting factor, may also promote 
angiogenesis by downregulating TSP-1 and stimulate endothe-
lial cell proliferation and migration (99). In TSP‑1‑deficient 
animals, tumor burden and vasculature increase markedly, and 
TSP-1 overexpression resulted in decreased tumor diameter 
and fewer tumor capillaries, indicating that TSP-1 may inhibit 
tumor angiogenesis (22,100). The inhibitory effect of TSP-1 on 
tumors may be accomplished via cross-talk with endothelial 
cells (101). The overexpression of TSP1-cd47 signaling in 
diabetes is associated with endothelial cell dysfunction, which 
leads to impaired angiogenesis (102). In the ischemic retina, 
glia-derived TSP-1 may inhibit angiogenic responses (103), 
and deficiency of TSP‑1 contributes to enhanced neovascular-
ization in the eye (104-108).

Similar to TSP-1, TSP-2 can also inhibit angiogenesis and 
tumor growth, even with greater potency compared with that of 
TSP-1 (109). In vitro experiments indicated that TSP-2 inhibits 
proliferation of microvascular endothelial cells (110,111), and 
the absence of TSP-2 is associated with enhanced angiogenesis, 
partly due to the altered endothelial cell and EcM interac-
tions (112,113). decreasing gelatinolytic activity in situ leads 
to TSP-2-limited angiogenesis (114). In rheumatoid arthritis, 
TSP-2 overexpression also inhibits vascularization (115).

In older mice, the delay of TSP-2 and MMP2 expression in 
wounds may promote the impaired rate of wound healing (116). 
TSP-2 gene knockout mice exhibited increased blood vessel 
density, but no such alteration was observed in TSP‑1‑deficient 
animals (117). This evidence indicates the role of TSP-2 in 
anti-angiogenesis.

Arterial restenosis. Restenosis of the arteries following 
cardiovascular surgery, such as PCI, is a major problem, which 
leads to a poor prognosis. The pathological process of arterial 
restenosis is similar to atherosclerosis to a certain extent, 
including endothelial injury, migration and proliferating of 
VSMcs into the intima. Similar to atherosclerosis, the precise 
role of TSP-1 in the pathological process of arterial restenosis 
is difficult to define. In the balloon catheter injury rat model, 
TSP was markedly increased in the thickening arterial wall, 
and the TSP antigen in thickening arterial wall is primary 
secreted by VSMcs (118). In rat resistance arteries, TSP-1 was 
able to reverse the pathological inward remodeling caused 
by spontaneous hypertension, indicating that TSP-1 may act 
as an inhibitor of arterial restenosis (119). A previous study 
identified that the interaction of TSP-1 and β1 integrin is 
associated with platelet-stimulated SMc proliferation (120). 
However, there is also evidence revealing that TSP-1 is not a 
major component of ECM in human restenotic tissues, even in 

the presence of hypercellularity or ongoing cellular prolifera-
tion (121).

In human aortic SMcs, TSP-2 silencing caused by siRNA 
improves cell attachment but does not affect cell proliferation 
and migration, suggesting that TSP-2 also participates in the 
pathological process of arterial restenosis (122), which repre-
sents a novel hypothesis.

Other CVDs. In addition to the aforementioned major CVDs, 
TSP-1 and TSP-2 also serve important roles in a number of 
other cVds. Evidence indicated that TSP-1 may contribute 
to the pathogenesis of pulmonary hypertension associated 
with hypoxia (123). TSP‑1 deficiency contributes markedly to 
maladaptive remodeling of the EcM, causing an acceleration 
of aortic aneurysm progression (124). during the abdominal 
aortic aneurysm development, TSP-1 regulates the adhesion 
and migration of mononuclear cells and promotes vascular 
inflammation (125). during autologous proangiogenic cell 
therapy, TSP-1-derived peptide RFYVVMWK may interact 
with priming cd34+ cells and enhance the vascular engraft-
ment (126). TSP‑2 (-/-) mice exhibit a bleeding diathesis even 
if they have normal blood coagulation and no thrombocyto-
penia (127), and an altered foreign body reaction characterized 
by an enhanced vascularity (128,129). The plasma TSP-2 level 
is elevated in acute Kawasaki disease, which may be a novel 
predictor for intravenous immunoglobulin resistance (130). In 
a TSP‑2‑knockout mouse model, significantly increased endo-
thelial cell density and reduced fibrosis were observed in the 
peri-graft region during the cardiac cell transplantation (131). 
These studies suggest that TSP-1 and TSP-2 also function in 
other cVds, such as pulmonary hypertension, aortic aneurysm 
progression and acute Kawasaki disease.

4. Signal pathways associated with TSP‑1 and TSP‑2 in 
CVDs

due to their multidomain structure, TSP-1 and TSP-2 can 
specifically bind to numerous types of different ligands. 
Therefore, they are involved in various signal pathways 
regulating cellular activities and EcM components in cVds 
(Tables II and III). A comprehensive description of these path-
ways may facilitate the understanding of the role TSP-1 and 
TSP-2 serve in the pathological processes of multiple cVds 
at the molecular level, which may provide certain potential 
therapeutic strategies.

ECM‑receptor interaction. Interactions between various cells 
and the EcM cause direct or indirect modulation of numerous 
cellular activities, such as proliferation, adhesion, migration, 
differentiation and apoptosis, which contributes markedly to 
numerous CVDs. TSP‑1 binds to HSPG with high affinity, 
which promotes human melanoma cell migration (132). At the 
sites of inflammation, TSP1 binding to tumor‑specific glyco-
protein 6 may regulate hyaluronan metabolism, indicating a 
critical role of TSP-1 in mediating cellular interactions with 
hyaluronan (9). During the vascular smooth muscle inflam-
matory response, TSP-1 and TSP-2 may bind to versican and 
negatively modulate the EcM component (11). In certain 
circumstances, TSP-1 can bind to LIMPII and promote cell 
adhesion (27). Previous data indicated that TSP-1 may bind 
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to calreticulin (cRT) on the cell surface and induce focal 
adhesion disassembly, as well as cell migration through the 
association of cRT with lipoprotein LRP (10,13,133).

Integrins are a family of glycosylated, heterodimeric 
transmembrane receptors that consist of α and β subunits, 
which provide a physical link between the EcM and the 
cytoskeleton. Previous studies identified that TSP‑1 and TSP‑2 
may also interact with various types of integrins. Binding 
of integrin α3β1 to TSP-1 mediates efficient migration of 
Ecs, indicating that the binding of TSP-1 and integrin α3β1 
stimulates cell adhesion and migration (15,16). Despite this, 
integrin α3β1 binding to TSP-1 can also mediate cell motility 
and inhibit angiogenesis (15,17). Studies have demonstrated 
that α4β1 integrin mediates cd47-stimulated sickle red 
blood cells adhesion to immobilized TSP-1 and modulate T 
cell behavior (18,134). In addition, the N-terminal domain of 
TSP-1 is also a ligand for α6β1 integrin, which modulates the 
adhesion of human microvascular endothelial to immobilized 
TSP-1 and TSP-2 (19). TSP-1 and TSP-2 may also interact with 
β1 integrin, contributing to the adhesion of cells that express 
β1 integrin (28,135). The type III repeats of TSP-1 and TSP-2 
may interact with integrin αIIβ3 and αvβ3, promoting their 
binding with platelets (136). A previous study has demon-
strated that TSP-2 may also contribute to anti-angiogenesis in 
diabetes myocardium (137). These results indicate the impor-
tant role of the interaction between integrins and TSPs in the 
EcM-receptor interaction.

PI3K‑AKT pathway. The PI3K-Akt pathway can be activated 
by various cellular stimuli, such as growth factors, and regu-
lates numerous fundamental cellular functions, such as cell 
proliferation, migration and apoptosis. These cellular activities 
are critical for the pathological process of cVds. TSP-1 and 
TSP-2 also participate in a number of these activities through 
the PI3K-Akt pathway. The N-terminal domain of TSP-1 can 
interact with platelet-derived growth factor, leading to media-
tion of VSMc proliferation and migration (138). In addition to 
the ability to degrade collagen, studies suggest that MMP-9 
may also release vascular endothelial growth factor to partici-
pate in modulating the invasion and the morphogenesis of 
endothelial cells, which can also be modulated by TSP-1 (139). 
The type II repeats of TSP-1 interacts with EGFR and increases 
cell migration (140). The type III repeat domain of TSP-1 and 
TSP-2 may interact with integrin αIIβ3 and αvβ3, promoting 
SMc migration (141). Binding of TSP-1 and TSP-2 to FGF2 
inhibits apoptosis (43) and triggers caspase-independent cell 
death (142).

CD36 is a multi‑ligand receptor that participates in various 
pathological processes of cVds, such as the formation of 
atherosclerosis. cd47 is a glycoprotein on numerous types 
of cell surfaces, which serves an important regulatory role in 
immune response and inflammation. The binding of TSP‑1 and 
CD36 inhibits angiogenesis through promoting endothelial 
cell apoptosis and inhibiting nitric oxide (NO) signal transduc-
tion (15,25,143). The c-terminal domain of TSP-1 and TSP-2 
can interact with cd47, which may promote cell migration 
and adhesion (18,42,144), inhibit cyclic guanosine monophos-
phate synthesis, nitric oxide (NO) signaling (143,145) and cell 
cycle progression in ECs (146). Previous data revealed that the 
binding of TSP-1 and cd47 may also inhibit angiogenesis, blood 
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flow, and adhesion of monocytes and macrophages (147‑150), 
which may promote foam cell formation (151), pulmonary 
arterial vasculopathy (152) and LV heart failure (68). Through 
these mechanisms, TSP‑1 and TSP‑2 serve a significant role in 
numerous cVds.

TGF‑β pathway. A wide range of different cellular func-
tions, such as cell proliferation, differentiation, migration 
and apoptosis, can also be modulated by TGF-β, a member 
of the transforming growth factor superfamily, which is a 
group of secreted cytokines. Studies also revealed that TSP-1 
regulates the above cellular activities through the TGF-β 
pathway. Previous data suggested that the type I repeats of 
TSP-1 may bind and activate latent TGF-β. The activated 
TGF-β can further stimulate new matrix deposition and 
angiogenesis (45,153‑155), promote inflammatory response via 
recruitment of inflammatory cells and increase myofibroblast 
differentiation (156) through the TGF‑β pathway.

TSP-2 may also bind to latent TGF-β. However, TSP-2 cannot 
activate latent TGF-β. In addition, due to this reason, TSP-1 and 
TSP-2 can regulate the activity of TGF-β and modulate the 
downstream pathways by competitively binding to it (45).

ECM homeostasis. Numerous pathological processes of cVds 
are accompanied by the destruction of EcM homeostasis. 
For example, excessive accumulation of type I and type III 
collagen is a significant feature of cardiac hypertrophy, which 
is due to the higher collagen synthesis capacity compared 
with the degradation ability. MMP2 and MMP9 serve crucial 
roles in maintaining EcM homeostasis. Evidence revealed 
that TSP-1 and TSP-2 may interact with MMP2 and MMP9, 
which can inhibit their activity and regulate collagen homeo-
stasis (20,157,158).

In addition, there is also evidence revealing that collagens 
can interact with TSP-1 directly. The c-terminal domain 
of TSP‑1 may bind to collagen I, contributing to fibroblast 
homeostasis (156). These results suggest that TSP‑1 and TSP‑2 
contribute markedly to EcM homeostasis.

Phagosome pathway. Phagocytosis of TSP-1 serves a critical 
role in tissue remodeling and inflammation in CVDs, which is 
mediated by various ligands. In vascular endothelial cells, the 
heparan sulfate proteoglycans expressed on the cell surface 
are associated with the process of binding and endocytosis of 
TSP-1, which leads to its lysosomal degradation (8). Evidence 
revealed that the HSPG on the endothelial cells may mediate 
the binding and degradation of TSP-1 (159). Studies suggest 
that LRP may also function in mediating phagocytosis of 
TSP‑1 in certain types of cells (160,161), indicating that LRP 
may serve a significant role in the catabolism of TSP‑1 in vivo. 
The binding of TSP‑1 and CD36 has been demonstrated to 
promote the internalization of oxidized LdL, fatty acids and 
phospholipids, leading to inhibition of atherosclerosis (162). 
However, little is known on the specific role of TSP‑2 in the 
phagosome pathway, and requires further study.

Calcium pathway. calcium is an indispensable ion involved 
in numerous physiological processes in the human body. It 
participates in maintaining the biopotentials on both sides 
of the cell membrane, maintaining normal muscle expansion 
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and relaxation, nerve conduction and vasoconstriction. TSP-1 
and TSP-2 can bind to calcium and affect the function of 
modulating physiological activities. Using a simulated model, 
previous studies have identified that the change between fully 
calcium-loaded and calcium-depleted TSP1-Sig1 may modu-
late its interactions, which may become a novel therapeutic 
target (38,163). Binding of TSP‑2 and FGF2 can be inhibited 
by calcium, indicating that calcium can affect cell function via 
intervening in interactions between other molecules (36).

Other pathways. In addition to the aforementioned pathways, 
TSP-1 and TSP-2 also interact with numerous other ligands. 
during the coagulation reaction, TSP-1 can interact with the 
vitamin d-binding protein, contributing to the chemotaxis 
of coagulation factor C5a (164). TSP‑2 can interact with 
cytochrome p450 1B1, promoting angiogenesis through the 
regulation of oxidative stress (165). In addition, as an impor-
tant gas signal in the cardiovascular system, NO can negatively 
regulate TSP‑2 transcription and induce angiogenesis (166).

A disintegrin and metalloproteinase with thrombospondin 
motifs (AdAMTS) is a type of metalloproteinase which has 
been demonstrated to be associated with numerous cVds. 
Studies have identified that ADAMTS1 contributes to wound 
closure and inhibits the angiogenesis via interaction with 
TSP‑1 and TSP‑2 (167). Evidence has revealed that there is a 
close association between AdAMTS7 and cVds. TSP-1 and 
TSP-2 interaction with AdAMTS7 promotes the pathological 
processes of atherosclerosis, coronary artery disease (168‑172), 
aortic aneurysm (173) and vascular remodeling (174‑176) 
through interacting with TSP-1 and TSP-2. conversely, 
there is also evidence revealing that AdAMTS7 may inhibit 
LV reverse remodeling following MI (177-179), suggesting 
AdAMTS7 may be a critical regulator in cVds.

5. Conclusions

The present review suggests that TSP-1 and TSP-2 serve 
significant roles in the pathological process of numerous 
cVds, and their multi-domain structural features and ability 
to bind to different ligands may also provide novel targets for 
the treatment of different cVds at the molecular level.

However, there are two limitations of the present study. 
Firstly, although both TSP-1 and TSP-2 have a similar multi-
domain structure, both bind to different ligands and serve 
different roles. There is limited research into the specific role 
of TSP-2 in the pathogenesis of numerous cVds, indicating 
that more research is required. Secondly, numerous novel 
ligands remain to be identified. Fortunately, with the devel-
opment of new large-scale techniques, including array-based 
surface plasmon resonance, new-generation yeast two-hybrid 
and numerous novel computational methods, novel TSP-1 and 
TSP‑2 ligands may be identified (4). Identification of these 
ligands may contribute to determination of the interaction 
networks of TSP-1 and TSP-2, which may provide an improved 
understanding of their role in cVds.
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