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Tumor necrosis factor α (TNFα) is a pleiotropic cytokine which signals through TNF 

receptor 1 (TNFR1) and TNF receptor 2 (TNFR2). Emerging evidence has demonstrated 

that TNFR1 is ubiquitously expressed on almost all cells, while TNFR2 exhibits a lim-

ited expression, predominantly on regulatory T cells (Tregs). In addition, the signaling 

pathway by sTNF via TNFR1 mainly triggers pro-in�ammatory pathways, and mTNF 

binding to TNFR2 usually initiates immune modulation and tissue regeneration. TNFα 

plays a critical role in upregulation or downregulation of Treg activity. De�ciency in TNFR2 

signaling is signi�cant in various autoimmune diseases. An ideal therapeutic strategy for 

autoimmune diseases would be to selectively block the sTNF/TNFR1 signal through the 

administration of sTNF inhibitors, or using TNFR1 antagonists while keeping the TNFR2 

signaling pathway intact. Another promising strategy would be to rely on TNFR2 agonists 

which could drive the expansion of Tregs and promote tissue regeneration. Design of 

these therapeutic strategies targeting the TNFR1 or TNFR2 signaling pathways holds 

promise for the treatment of diverse in�ammatory and degenerative diseases.

Keywords: tumor necrosis factor α, tumor necrosis factor receptor 1, tumor necrosis factor receptor 2, regulatory 

T cells, autoimmune diseases

INTRODUCTION

Tumor necrosis factor α (TNFα) is an essential signaling protein in the innate and adaptive immune 
systems. It also plays an important role in tissue degeneration and repair (1). It is now recognized 
that the expression of TNF receptor 2 (TNFR2) is more limited than that of TNF receptor 1 (TNFR1). 
In addition, new evidence suggests that the sTNF-mediated signaling pathway via TNFR1 drives a 
predominantly pro-in�ammatory program whereas mTNF binding to TNFR2 primarily initiates 
immune modulation and tissue regeneration. �ese �ndings suggest that we may selectively target 
TNFR1 and TNFR2 for therapeutic purposes, providing promise for the context-speci�c treatment 
of autoimmune diseases. �is review is provided to summarize TNFα and TNFR expression, struc-
ture, and signaling pathways, to discuss TNFR1/TNFR2 signaling in autoimmune diseases especially 
concerning their correlation with Tregs and organ regeneration, as well as to propose treatment 
strategies aimed at TNFR1/TNFR2 in autoimmune diseases.

THE BASIC BIOLOGY OF TNFα AND TNFR

Expression, Structure, and Function of TNFα

Tumor necrosis factor α plays a vital role in many physiological and pathological conditions. First, 
TNFα is essential for the regulation of embryonic development, the sleep–wake cycle, lymph node 
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FIGURE 2 | When the TNF receptor 2 (TNFR2) signaling pathway is activated, it increases Tregs stability, responses to TCR stimulation, expansion, and function. It 

enhances Tregs and effector T cells to produce IL-2 and promotes the sensitivity of Tregs to IL-2. IL-2 can inhibit Th17 cells differentiation and the effect of TNFR2 

signaling on Tregs. Under in�ammatory condition, mTNFR2 can shed to sTNFR2, sTNFR2 neutralizes TNF and hampers IL-6 expression.

FIGURE 1 | When mTNF/TNF receptor 2 (TNFR2) is activated, the intracellular domains recruit existing cytoplasmic TNF receptor-associated factor-2 

(TRAF-2)–cIAP-1–cIAP-2 complexes resulting in the initiation of both canonical and non-canonical NF-κB/Rel and MAPK pathways activation. NF-κB/Rel 

and MAPK pathways activate IL-2 promoter and trigger IL-2 expression. NF-κB pathways also transcript genes associated with cell survival and cell 

proliferation. So, mTNF/TNFR2 signaling can enhance expansion and stability of Tregs and increase Treg sensitivity to low level of IL-2. It also activates the 

reciprocal PI3K/Akt pathway. Activation of Akt signaling impairs Th17 differentiation, correlated with an increased phosphorylation of STAT5 (143). When 

soluble TNFα (sTNFα)/TNFR1 is activated, the intracellular domains interact with TRADD, which receptor interacting protein-1 (RIP-1) and TRAF-2 to form 

Signal complex I, then further triggering extracellular signal-regulated kinases (ERKs), p38, and c-Jun N-terminal kinase (JNK). The mechanisms of TNFR1 

on Th17 differentiation are still unclear. These transcription factors might phosphorylate STAT3, upregulate the level of ROR-γt, and increase IL-17 

production.
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follicle, and germinal center formation. Second, TNFα not only 
promotes the production of in�ammatory cytokines but also 
enhances the adhesion and permeability of endothelial cells and 
promotes the recruitment of immune cells such as neutrophils, 
monocytes, and lymphocytes to sites of in�ammation (2, 3). 
�ese actions help to mediate both acute and chronic systematic 
in�ammatory reactions under conditions of infection or autoim-
munity. In addition, TNFα also causes cell apoptosis and necrosis 
under speci�c conditions. Furthermore, high levels of TNFα can 
also result in cachexia and endotoxin-induced septic shock (4). It 
has also been identi�ed as an endogenous pyrogen.

Tumor necrosis factor α is primarily generated by macrophages 
and monocytes. However, other cells such as some subsets of 
T cells, NK-cells, dendritic cells, B cells, cardiomyocytes, �bro-
blasts, and astrocytes are also the producers of this cytokine at a 
low level (5, 6).

Tumor necrosis factor α is a type II transmembrane protein. 
It exists as a membrane-bound form (mTNFα) with relative 
molecular weight 26  kDa primarily. mTNFα can be processed 
into 17  kDa soluble TNFα (sTNFα) through the action of the 
matrix metalloproteinase known as TNFα converting enzyme 
(TACE: ADAM17) (7, 8). In addition, mTNFα also has the ability 
to process external signals as a receptor (9). sTNFα circulates 
throughout the body and confers TNFα with its potent endocrine 
function, far away from the site of its synthesis. Both sTNFα and 
mTNFα are active as non-covalently bonded homotrimers.

While bacterial lipopolysaccharide (LPS) serves as a major 
stimulant of the innate immune system, microbial antigens, 
enterotoxins, and cytokines including TNFα itself are also able to 
trigger TNFα production. TNFα also stimulates the generation 
of numerous pro-in�ammatory cytokines including IL-6, IL-8, 
TNFα itself, adhesive molecules, chemokines, and metallopro-
teinases (10, 11), potentially leading to a TNFα-mediated pro-
in�ammatory autocrine loop (12). On the other hand, TNFα can 
boost the synthesis of anti-in�ammatory factors such as IL-10 
and corticosteroids, to limit the in�ammatory cytokines secre-
tion. As a whole, TNFα initiates a rapid and vigorous immune 
reaction, thus limiting the extent and duration of in�ammation 
when the invasion has been resolved (13). Furthermore, serving 
as a co-stimulator, TNFα enhances the reactions of neutrophils, 
monocytes, and lymphocytes for defense against microbes.

Expression, Structure, and Signaling 

Pathways of TNFR
Tumor necrosis factor α exerts its function via two di�erent type 
I transmembrane receptors, TNFR1 and TNFR2. Each has a char-
acteristic extracellular domain, a transmembrane segment, and 
intracellular domain. �e extracellular domains of both receptors 
have similar a cysteine-rich motif that is repeated two to six times, 
are active as homodimers but intriguingly do not form TNFR1/
TNFR2 heterodimers (14). Nevertheless, the intracellular seg-
ments of TNFR1 and TNFR2 do not bear homologous sequences 
and activate distinct signaling pathways (15).

Both TNFR1 and TNFR2 membrane receptors also can be 
converted into soluble forms (sTNFR1 and sTNFR2) through 
the activity of TACE enzymes. Both TNFRs can interact with 
either mTNFα or sTNFα. TNFR1 is ubiquitously expressed on 

nearly all cells in the body and can be activated by both mTNFα 
and sTNFα. TNFR2, conversely, is restricted to thymic T  lym-
phocytes, endothelial cells, microglia, and oligodendrocytes (16), 
and can only be fully initiated by mTNFα. Once mTNFα binds to 
TNFR2, the combination is too stable to dissociate (17). �is is 
not the case for sTNFα which induces weak signaling and exhibits 
a low a�nity for TNFR2 (18). Other salient features of TNFR2 are 
that cellular activation status highly regulates its expression and 
unlike TNFR1, it does not contain a cytoplasmic death domain.

It is well accepted that TNFα binding to TNFR1 activates two 
di�erent intricate signal pathways: the maintenance of cell sur-
vival and the promotion of in�ammatory cytokine expression; cell 
apoptosis and necrosis. �e balance between these two pathways 
hinges upon many factors such as cell type, cell activation status, 
an intracellular or extracellular microenvironment, recruitment 
of adaptor molecules, the concentration of complex inhibitors of 
apoptosis proteins (cIAP), or the level of NF-κB expression (19). 
When TNFα binds to TNFR1, the intracellular domains interact 
with TNFR type 1-associated death domain protein (TRADD), 
which recruits receptor interacting protein-1 (RIP-1) and TNF 
receptor-associated factor-2 (TRAF-2) to form Signal complex I  
(5) (Figure  1). Signal complex I can trigger NF-κB, which 
launches the transcriptions of many di�erent genes including 
those associated with cell survival, production of in�ammatory 
cytokines, and antiapoptotic gene pathways. Signal complex I is 
also able to activate extracellular signal-regulated kinases, the 
stress-activated MAP kinases p38, and c-Jun N-terminal kinase 
(JNK), which are important for AP-1, the important promoter of 
in�ammation and proliferation, and other transcription factors 
through MAPK3 signaling pathways (20–22).

Signal complex I formation is temporary and rapidly dissoci-
ates from TNFR1, mediating the binding of the Fas-associated 
death domain protein (FADD) to form Signal complex II which 
coordinates downstream signaling of the caspase cascade (23). 
When the kinase activities of RIP-1 and RIP-3 inhibit apoptosis 
signaling, necrosis is activated (24).

Recently, several studies have demonstrated that TNFR2 
promotes a remarkable degree of cell activation, migration, and 
proliferation (24). When TNFα binds to TNFR2, the intracellular 
domains recruit existing cytoplasmic TRAF-2–cIAP-1–cIAP-2 
complexes (25) (Figure 1). cIAP can exert ubiquitin-ligase activity 
and can inhibit caspases and other apoptosis-inducing factors (5), 
resulting in the initiation of both canonical and non-canonical 
NF-κB activation (25–27). �e interaction of TNFα with TNFR2 
also activates the reciprocal PI3K/Akt pathway. �is pathway not 
only maintains survival and enhances proliferation (28, 29) but 
also recruits Etk and forms the TNFR2–Etk–VEGFR2 (vascular 
endothelial growth factor receptor 2) complex which participates 
in cell adhesion, migration, survival, and proliferation (30, 31).

Although TNFR2 triggers NF-κB in a slower manner than 
TNFR1, TRFR1 maintains a longer duration of NF-κB activity 
(25). Even though TNFR2 lacks a death domain, caspase activa-
tion and cell apoptosis can be initiated under conditions of stress 
or when the cIAP pool exhausted via interaction of intracellular 
domains with Signal complex II. Other theories suppose that 
TNFR2 activation exhausts the cIAP pool, which facilitates a shi� 
of TNFR2 signaling to FADD, triggering the apoptosis pathway.
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THE FUNCTION OF TNFR1 AND TNFR2 

ON AUTOIMMUNE DISEASES

Disease models using transgenic mice have broadened our hori-
zons concerning the importance of pathogens in triggering or 
shaping autoimmunity. Compared with wild-type mice, TNFα−/− 
mice exhibit an enhanced susceptibility to pathogen invasion (2). 
�ey also exhibit a de�ciency in TNFR1 (32). It is noteworthy that 
mice expressing non-cleavable TNF (which cannot be processed 
into sTNF) have a diminished capacity to resist pathogens (33, 
34). �is demonstrates that many of the pro-in�ammatory func-
tions of sTNF are indeed mediated by TNFR1 signaling, while 
mTNF (predominantly via TNFR2) can at least partly provide the 
immune system with some pathogen protection.

Overexpression of TNF results in a severe chronic in�amma-
tory arthritis in collagen-induced arthritis (CIA) mice, an animal 
model of rheumatoid arthritis (RA). When the TNFR1 gene is 
knockout, these arthritic e�ects are largely diminished, whereas 
TNFR2 de�ciency exacerbates disease (35, 36). Interestingly, the 
use of TNF inhibitors dramatically improves symptoms in a man-
ner reminiscent of TNFR1 de�ciency (36, 37). In addition, central 
nervous system-speci�c overexpression of TNF in transgenic 
mice also resulted in a spontaneous severe demyelination (38). 
�ese results con�rm the pro-in�ammatory role of TNFR1, while 
leaving the door open for an immune-modulatory role of TNFR2. 
In the experimental autoimmune encephalomyelitis (EAE) 
mouse model, TNF knockout delayed disease onset, however, 
once established, the symptoms were more serious in knockouts 
than in wild-type mice (39). �is raises the suggestion that TNF 
is essential to the promotion of a potent immune response via 
TNFR1. However, once the immune response is triggered, the 
absence of TNF may result in the failure to expand and activate 
Tregs via TNFR2 which in turn results in tissue and organ dam-
age. Increasing evidence indicates that TNFR2 plays a vital role 
in the modulation of the immune system, most likely through its 
interactions with Tregs.

It has been well studied that polymorphisms in the TNFR2 
gene have a strong correlation with a wide variety of autoim-
mune diseases, e.g., RA (40–42), Crohn’s disease (43), systemic 
lupus erythematosus (44), ankylosing spondylitis (AS) (45), 
in�ammatory bowel diseases (IBD) (46), and ulcerative colitis 
and scleroderma (47). �e consequence of this polymorphism 
is to hamper TNF binding to TNFR2, which subsequently limits 
the activation of NF-κB (48), and most likely hampers TNFR2 
signaling pathway in Tregs.

TNFR2’s RELATIONSHIP WITH TISSUE 

REGENERATION AND Tregs

The Relationship Between TNFR2 and 

Tissue Regeneration
TNF receptor 2 provides a critical contribution to neural survival 
and regeneration. In the mouse model of retinal ischemia, TNFR2 
showed a protective function by activating the Akt signaling 
pathway (49). �e cuprizone-induced demyelination and remy-
elination mouse model gave similar results. In this model, TNF 

or TNFR2 knockout led to delayed remyelination and a decreased 
proliferation and maturation of oligodendrocyte progenitors. 
�ese �ndings provide support for the notion that TNF/TNFR2 
serves as principal players in oligodendrocyte regeneration (50). 
A tissue regenerative role for the TNFR2 signaling pathway has 
also been described in several other disorders (51). Several other 
studies have also indicated that TNFR2 agonists are active in 
pancreatic regeneration, cardioprotection, remyelination, and 
survival of some neuron subtypes and also in stem cell prolifera-
tion (51–54).

The Relationship Between TNFR2  

and Tregs
�e interplay between in�ammatory and regulatory pathways 
orchestrates an e�ective immune response that provides protec-
tion from pathogens while limiting injury to host tissue. Tregs 
are prototypical immunosuppressive cells that dampen excessive 
immune responses and maintain immune homeostasis by inhib-
iting e�ector T cell proliferation and cytokine production which 
prevents the development of autoimmune diseases and tissue 
destruction (55–58). Regulatory T  cells can mediate their sup-
pressive function either by secreting cytokines like IL-10, TGF-β, 
or IL-35 or by direct cell–cell contact (59, 60). �ese cells can 
act by suppressing the e�ector T cells directly at the target site 
(61), by suppressing DC in the regional lymph nodes and thereby 
preventing priming of T cells in the regional lymph nodes (62), or 
by recruiting mast cells to the site (63). Mice de�cient in Foxp3+ 
T cells develop fatal autoimmune disease (64), and continuous 
expression of Foxp3 throughout life prevents autoimmunity 
(65). Recent studies have contradictorily demonstrated that TNF 
upregulates or downregulates the expansion and function of 
Tregs via TNFR2.

One speci�c study has demonstrated that as with human Tregs, 
both thymic and peripheral murine CD4+CD25+ Tregs expressed 
remarkably high levels of TNFR2 relative to CD4+CD25− e�ector 
T cells (66). By contrast, TNFR1 was barely detectable.

When responding to TCR stimulation, TNFR2 expression on 
Tregs is further increased relative to activated e�ector T cells (67). 
In TNFR2 knockout mice, although the numbers and function of 
Tregs are comparable with wild-type mice, these Tregs failed to 
expand when stimulated under in�ammatory conditions either 
in  vivo or in  vitro. �is suggests that under non-in�ammatory 
conditions, TNF is not required for thymic Tregs to maintain 
immune homeostasis (67, 68). Conversely, TNFR2 can mediate 
the activation of anergic Tregs in response to TCR stimulation 
(67), having profound e�ects on their stabilization (69), prolifera-
tion (70), and function (71).

Interestingly, one study about type 1 diabetes model on NOD 
mice found that TNFR1 de�ciency protected the mice from 
diabetes and showed mild peri-insulitis. �e absence of TNF–
TNFR1 signaling increased the number and function of Tregs 
both in  vitro and in  vivo (72). �ey proposed that the primed 
e�ector T cells secreting TNF that signals through TNFR2, which 
is constitutively expressed at a high level on Tregs (67), leads to 
expansion of Tregs. We also considered the TNFR1 de�ciency is 
consequential to elevated TNFR2 signaling on Tregs, as a result 
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of increased ligand availability as opposed to a loss of stimulatory 
TNFR1 signaling. As a consequence, increased Tregs prevent 
e�ector T  cells migrating into islets. Similar work has been 
exhibited in EAE model (73).

We and other investigators have reported that IL-2 is essen-
tial for the development and maintenance of Foxp3+ Treg cells 
(56, 57). Neutralization of circulating IL-2 elicits autoimmune 
gastritis in BALB/c mice and triggers early onset of diabetes by 
inhibiting physiological proliferation of peripheral CD4+CD25+ 
cells, but not CD4+CD25− cells (74). Interestingly, TNF can 
enhance this e�ect markedly both in human and mice (67, 75). In 
mice, it exerts the e�ect markedly in a time-dependent and dose-
dependent manner (67). �e initial exposure to TNF transiently 
abrogates Treg suppressive functions, whereas longer exposures 
restore their suppressive activity. �is means that short-term 
stimulation of TNF mimics the early phases of the in�ammatory 
reaction, thus allowing e�ector T cells to escape from the inhibi-
tion mediated by Tregs, presumably favoring elimination of the 
pathogens. However, long-term exposure to TNF may facilitate 
the activation and expansion of Tregs, restoring their suppressive 
capabilities, thus limiting excessive in�ammation.

Recently, one investigation showed that anti-TNF antibody, 
adalimumab expanded the pool of Tregs and maintained their 
function via mTNF/TNFR2 both in vitro and in vivo. Moreover, 
upregulation of Foxp3 by adalimumab was reliant upon low levels 
of IL-2 production and subsequently STAT5 activation of Tregs 
(76). �ey proposed that TNFR2 is able to increase the sensitivity 
of IL-2 signaling, thereby amplifying the impact of small changes 
in IL-2 production (77). Coincidentally, another study demon-
strated that IL-2 transcription was directly triggered by TNFR2. It 
showed that CD4+ T cell intrinsic tmTNF/TNFR2, but not sTNF/
TNFR1, promotes Il2 promoter activity and IL-2 mRNA stability 
in a Foxp3-independent manner both in vitro and in vivo. When 
tmTNF/TNFR2 signaling is blocked or impaired, IL-2 production 
is reduced, and the �17 di�erentiation elevated, which was asso-
ciated with increased STAT3 activity and ROR-γt level, decreased 
STAT5 activity, while, it can be prevented by adding exogenous 
IL-2 (78). However, whether TNFR2 regulates IL-2 expression 
in a Foxp3-independent manner or a Foxp3-dependent manner, 
whether IL-2 can in turn regulate TNFR2 expression, the precise 
signaling pathways by which TNFR2 regulates IL-2 expression 
still remain important areas for future studies (Figure 2).

Work in the last decade has established that the subset of 
Foxp3+ Tregs expressing TNFR2 showed increased suppressive 
function relative to those that did not express TNFR2. However, 
these studies suggested that Foxp3 expression may not be the only 
factor to confer Treg suppressive capacity (79). Indeed, TNFR2 
may be needed as a unique activator to maximize their suppres-
sive activity (67, 79). Furthermore, when TNFR2−/− mice are used 
in the colitis model, some studies have found that nTregs require 
TNFα via TNFR2 as a critical factor for optimizing Treg sup-
pressive function under in�ammatory conditions whereas iTregs 
are fully suppressive without TNF signaling (79). �erefore, it is 
likely that anti-TNFα therapy for di�erent human autoimmune 
diseases may have dichotomous e�ects on the function of nTregs 
versus iTregs. Whether or not this has any in�uence on disease 
expression would depend on whether nTregs or iTregs play the 

predominant regulatory role in that speci�c disease. Diseases 
in which iTregs are functionally predominant would encourage 
the anti-in�ammatory e�ects of anti-TNFα therapy, with no 
deleterious e�ects on iTregs and a favorable response. By contrast, 
diseases in which nTregs functionally predominate, anti-TNFα 
therapy might result in a loss of Treg function. �is dichotomy 
o�ers a novel mechanistic paradigm for the enigma of variable 
responses to anti-TNF-α therapy in di�erent human diseases.

It is well accepted that Tregs consist of two major identi�ed 
subtypes: natural or thymic Tregs (nTregs/pTregs), developed in 
the thymus; induced Tregs or peripheral Tregs (iTregs/pTregs) 
generated in the periphery from CD4+CD25− T  cells (pTregs) 
or iTregs induced with anti-CD3/CD28 coated beads, IL-2 and 
TGF-β from naive CD4+ T cells in vitro (iTregs) (80–82). �e two 
populations have subtle di�erence, such as methylation status of 
conserved non-coding sequence 2 [known as the Treg cell-speci�c 
demethylated region (TSDR) in the Foxp3 locus]. Although the 
stability of Tregs is still controversial, most researchers gener-
ally recognized that nTregs are predominantly more stable and 
long-lived than iTregs because TSDR in nTregs but not iTregs is 
hypomethylated, which is great important for Foxp3 stability (83, 
84). While, a small percentage of nTregs may become unstable, 
losing Foxp3 expression and transforming to e�ector T  cells, 
such as �1, �17 cells under some pathogenic conditions. As 
stated earlier, the suppressive function of Foxp3+ Tregs express-
ing TNFR2 was superior to those that did not express TNFR2 
(79). Okubo et al. found one method for Tregs expansion ex vivo 
using a synthetic TNFR2 agonist which produces Tregs with 14 
homogenous cell-surface markers (85). Although it still needs 
more researches to de�nite this issue, the relationship between 
TNF–TNFR2 and nTregs provides a promising way to apply Tregs 
to autoimmune therapy. Even if some researchers insisted that 
iTregs induced by IL-2 and TGF-β is less stable, we and others 
found these iTregs are more stable and resistant to phenotypic 
plasticity in some autoimmune diseases and acute gra�-versus-
host disease (58, 86–90). Furthermore, our laboratory recently 
found that TNF (via TNFR2) enhanced the di�erentiation and 
suppressive function of iTregs induced in  vitro (unpublished 
observation). As such, therapeutic intervention with these iTregs 
via TNFR2 has become a promising strategy for the treatment of 
autoimmune disorders (91).

Intriguingly, van Mierlo et al. described that CD4+CD25+ Treg 
cells were able to shed higher amounts of TNFR2 for a longer 
period of time than CD4+CD25− T cells. In addition, WT Tregs 
can suppress IL-6 production when LPS was injected into mice. By 
contrast, TNFR2-de�cient Tregs failed to do this but maintained 
their suppressive function in vitro (92). �us, shedding of TNFR2 
might represent yet another novel mechanism for Tregs to inhibit 
the pro-in�ammatory action of TNF at in�ammatory sites. It was 
presumed that low concentrations of TNFR2, through receptor 
shedding or other processes, might possibly decrease the concen-
tration of TNF and prevent it from binding to in�ammatory cells 
(93, 94). Unfortunately, this concept highlights a discrepancy. If 
CD4+CD25+ Tregs shed enough of their TNFR2, TNF will fail to 
have any e�ects on Treg activation, expansion, or function.

Despite this question, some laboratories have o�ered con�ict-
ing results concerning the e�ect of TNF on human Tregs. �ey 
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believe that TNF stimulation directly hampers the suppres-
sive capacity of human CD4+CD25high Tregs both in  vitro and  
ex vivo (71, 95–98). Moreover, the inhibitory e�ects of TNF are 
more apparent under coculture conditions than they are under 
pretreatment condition (99). �is discrepancy may be due to the 
cross-species di�erences between murine and human T cells. It 
also raises the possibility of di�erences in the sensitivity of the 
experimental conditions or the di�ering methodologies employed 
in each laboratory. Valencia et  al. showed that CD4+CD25high 
Tregs stimulated with high levels of TNF and IL-2 lost their 
immune suppressive capabilities, presumably these �ndings were 
as a result of only the early stages of TNF stimulation (95).

Indeed, these studies also showed that neutralization of TNF 
might actually restore Treg suppressive ability and maintain 
the survival of Tregs in patients with RA and IBD (95, 98, 100, 
101). In neonatal NOD mice, treatment with TNF promoted the 
development of diabetes accompanied with a reduced number 
and impaired function of Tregs instead (102). By contrast, admin-
istration of TNF to young adult NOD mice also ameliorated 
diabetes but enhanced the proliferation of Tregs (102) instead. 
We hypothesized that the NOD mouse is a spontaneous animal 
model of T1DM. �e severity of in�ammation is deteriorating 
with age in NOD mice, and the immune microenvironment is 
changing, which may impact the density of TNFR1 and TNFR2 
on the surface of Tregs, the sensitivity to TNF, even the TNF 
form tending to sTNF or mTNF, and the activation of TNFR1 
or TNFR2 signaling pathways. Nonetheless, the precise e�ect of 
TNF on Tregs activity remains elusive, and it still needs more 
in-depth investigations.

TARGETING sTNF/TNFR1 IN 

AUTOIMMUNE DISEASES

Treatment with TNF inhibitors has been a successful strategy for 
several diseases such as RA, IBD, psoriasis, and cancer-related 
cachexia. Recent anti-TNF therapies are all aimed at directly 
binding the ligand to TNF. Five anti-TNF drugs are currently 
approved for the therapy of human autoimmune disorders: RA, 
plaque psoriasis, psoriatic arthritis, AS, and IBD. Trade names 
for these drugs include in�iximab, adalimumab, certolizumab 
pegol, golimumab, and etanercept (103–107). Notably, it raises 
a novel mechanism that adalimumab prefers binding to mTNF 
on monocytes and increased their mTNF expression, followed 
by enhancement of Treg TNFR2 expression and its binding to 
mTNF. As a consequence, adalimumab expanded functional 
Tregs equipped to suppress �17 cells (76).

Despite the wide use of TNF inhibitors, drawbacks include 
severe side e�ects like opportunistic infections, reactivation of 
tuberculosis, and even development of autoimmune diseases, 
lymphoma, and many other cancers (108–111). In addition, some 
patients do not respond well to these anti-TNF treatments (105, 
106). Furthermore, in clinical trials on MS patients, treatment 
with TNF inhibitors resulted in disease exacerbation (112, 113).

Because sTNF/TNFR1 may play a role in promoting in�am-
mation, and because mTNF/TNFR2 can result in immune 
modulation and tissue regeneration, new therapeutics selectively 
targeting sTNF/TNFR1 have emerged. Both TNFR1-selective 

antagonists and sTNF-special antagonists may leave the mTNF/
TNFR2 signaling pathway intact, which may minimize or 
diminish the detrimental e�ects caused by TNF inhibitors. �is 
provides protective TNF-mediated responses such as neural 
regeneration, survival, and immune modulation without promot-
ing in�ammation. Indeed, mTNF alone may be enough to form 
TNF-dependent secondary lymphoid organ structure and granu-
lomas (114, 115), and to partially provide resistance to pathogens 
(116, 117), without causing any autoimmune diseases (114, 116).

sTNF-Selective Dominant-Negative  

TNF (dnTNF) Derivatives
A novel type of TNF inhibitor called signaling-incompetent 
dnTNF derivatives was described in 2005 (118). �is TNF 
mutein can rapidly and speci�cally inactivate sTNF through 
interaction with endogenous sTNF, followed by formation of 
mixed TNF heterotrimers, leaving mTNF una�ected. XPro1595, 
an improved version of this mutein, exhibited a profound ame-
liorating e�ect on EAE and in�ammatory arthritis. XPro1595-
treated animals were also less susceptible to infection (119, 
120). In addition, relative to etanercept, XPro1595 treatment 
signi�cantly delayed onset and more e�ciently ameliorated 
EAE symptoms (121), even when applied at the disease peak 
period (122). Interestingly, XPro1595 administration increased 
the level of TNFR2 expression in the lesion area, illustrating that 
mTNF signaling via TNFR2 may indeed play a role in neural 
regeneration (123).

TNFR1-Selective Antagonistic TNF
Some investigators have identi�ed R1antTNF, a TNFR1-selective 
antagonistic mutant TNF from a phage display library (124). 
�e a�nity of R1antTNF to TNFR1 is comparable to that of the 
human wild-type TNF, and it does not interfere with TNFR2-
mediated bioactivity. In two acute hepatitis models, R1antTNF 
signi�cantly ameliorated liver injury as demonstrated by reduced 
serum levels of alanine aminotransferase and pro-in�ammatory 
cytokines. �is therapeutic e�ect of R1antTNF had an advantage 
over that of current TNF inhibitors (125). PEG-R1antTNF, 
another TNFR1-selective antagonistic mutant TNF, remark-
ably decreased morbidity, ameliorated disease symptoms, and 
improved demyelination in EAE mouse model. Furthermore, it 
signi�cantly suppressed �1 and �17 cell activation and in�ltra-
tion in the spinal cord (126).

TNFR1-Speci�c Antibodies
Recently, one study compared the therapeutic e�ects of the 
TNFR1-speci�c antibody, DMS5540 with that of etanercept in 
the CIA model. Both reagents comparably suppressed disease 
progression. One di�erence noted was that etanercept admin-
istration increased e�ector T-cell activity, speci�cally in joints 
undergoing remission. �is was not observed in mice treated 
with DMS5540 (127). �ese �ndings suggest that the immune 
regulatory function of TNFR2 is masked by traditional TNF 
inhibitors, like etanercept. It proves the hypothesis that selective 
targeting of TNFR1 not only inhibits autoimmune responses but 
also enhances Treg activity, making it a better choice for TNF 
therapy over standard TNF inhibitors (127).
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TARGETING TNFR2 IN AUTOIMMUNE 

DISEASES

It remains to be veri�ed whether selective inhibition of sTNF/
TNFR1 proves enough to redirect the available TNF to TNFR2 
for improving immune regulation and tissue regeneration. In 
support of this, mTNF/TNFR1 plays a role in neuron cell survival 
in under certain circumstances (128). On the other hand, sTNF 
probably activates TNFR2 in high TNFR2-expressing cells such 
as Tregs (128). It still remains to be determined whether mTNF 
signaling via TNFR2 is enough to activate Tregs and if additional 
activation of sTNF via TNFR2 can promote Treg activity. Most 
importantly, it is likely to have a narrow range of safe and e�ective 
dose since TNFR1 is expressed ubiquitously almost all types of 
cells throughout the body. �us, selective TNFR2 agonists can 
provide yet another tissue-speci�c or cell-speci�c therapy for 
autoimmune disorders.

TNF receptor 2 agonists were engineered using point mutation 
(129). Treatment with these TNFR2 agonists has been success-
fully used for cancer therapy and also for research in immunology 
(130). As mentioned earlier, mTNF binds much greater a�nity to 
TNFR2 than to sTNF itself (130). �e investigators undertaking 
this line of research also found another small synthetic molecule 
that acted as trimer ligands which were similar to TNFR2 (131). 
Over time, additional literature indicates that TNF and TNFR2 
agonists exert a tremendous e�ect on heart regeneration, bone 
marrow stem cells, and even neuron regeneration in murine 
models of Parkinson’s disease (132–134).

TL1A-Ig, a natural TNF-receptor superfamily member agonist 
is used as a novel method for the in vivo expansion of Tregs (135). 
Okubo et al. found another method for Treg expansion ex vivo 
using a synthetic TNFR2 agonist which produces Tregs with 14 
homogenous cell surface markers (85). �is method provides an 
optimal way to obtain su�cient quantities of Tregs use in autoim-
mune therapy.

TNF Inducers
One well-known TNF inducer is the mycobacterium bacillus 
Calmette–Guerin (BCG) vaccine. Another one is the BCG 
equivalent, complete Freund adjuvant. Although BCG induction 
of TNF can interact with both TNFR1 and TNFR2, it may induce 
TNF production at low levels, thereby possibly boosting the 
expansion of Tregs (85), which can provide bene�ts for the treat-
ment of autoimmune diseases. Newly synthesized TNF inducers 
improve the speci�city for the TNFR2 receptor and may hold the 
promise for the treatment of type 1 diabetes (136).

CD3-Speci�c Antibodies
As a distinctive cell-surface marker of T cells, CD3 antagonists 
are targeted to be mainly applied as immunosuppressive agents to 
protect against organ transplant rejection. While a CD3-speci�c 
antibody generally seen as an immunosuppressive agent, it may 
promote TNF generation and TNFR2 expression (137), and thus 
exert the similar e�ects as the TNFR2 agonist.

It is particularly noteworthy that the safety pro�le of TNFR2 
agonists has not been well de�ned. Not all of TNFR2 agonists 

exert their e�ects using the same mechanism. Some can function 
as agonists while some TNFR2 antibodies can be antagonists 
and still others may induce anergy. It is clear that many di�erent 
factors come into play concerning the activation and regulation 
of the balance between TNFR1 versus TNFR2 signaling. �ese 
subtle di�erences in TNF stimulation can result in the generation 
of divergent intracellular signaling pathways (138). More studies 
with these new agents are needed to determine if their use results 
in any changes in TNF signaling and what e�ects these changes 
have on physiological consequences.

To avoid the systemic toxicity, injection of TNFR2 agonists 
directly into sites of in�ammation or lymphoid organs might 
be a promising approach. �eir local application would be 
attractive for diseases such as autoimmune Sjogren’s syndrome 
or skin diseases because the skin is an easily accessible organ 
that is amenable to agonist delivery at desired concentrations, 
thus reducing systemic toxicity. However, not all lesions are 
as accessible. Pancreatic injection might potentially trigger 
pancreatitis.

In spite of their non-speci�city, several alternative strategies 
are also in progresses which act via immune modulation of 
TNFR2 signaling pathways. However, high concentrations of 
TNFR2 agonists could potentially overwhelm TNFR2 signaling 
and might shi� their activities to the pro-apoptotic pathway via 
TNFR1. �is would result in apoptosis of both autoreactive and 
bystander cells. In spite of their lower relative toxicity to TNFR1 
agonists, TNFR2 agonists might still have some degree of toxicity, 
particularly toward CNS cells (139). Overexpression of TNFR2 
in a transgenic mouse model resulted in systemic toxicity (140) 
and also elicited several autoimmune diseases as mentioned 
earlier (141). It is noteworthy that one speci�c TNFR2 agonist 
enhanced thymocyte proliferation in  vitro and in  vivo, caused 
a febrile reaction and a transient in�ammatory reaction (142). 
�us, the potential toxicity of TNFR2 agonist therapy still needs 
to be investigated carefully.

CONCLUSION

Taken together, as with anti-cytokine or immunosuppressive drug 
therapies which must be used continuously to keep steady blood 
concentration, any of the absolute TNF inhibitors, sTNF inhibi-
tors, TNFR1 antagonists, or TNFR2 agonists, could potentially be 
given at a low dose discontinuously and intermittently. However, 
sTNF/TNFR1-special antagonists can speci�cally block TNFR1 
signaling pathway and leave the protective e�ect, e.g., neural 
regeneration and immune modulation via TNFR2. Furthermore, 
TNFR2-special agonists avoid the detrimental e�ects initiated 
by total TNF inhibitors and sTNF/TNFR1-special antagonists 
due to their limited tissue expression. sTNF inhibitors, TNFR1 
antagonists, and TNFR2 agonists, when used alone or in combi-
nation therapy, may provide a superior therapeutic strategy for 
the treatment of various autoimmune and degenerative diseases.
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