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Liver has a unique vascular system receiving the majority of the blood supply from the
gastrointestinal tract through the portal vein and faces continuous exposure to foreign
pathogens and commensal bacterial products. These gut-derived antigens stimulate liver
cells and result in a distinctive immune response via a family of pattern recognition recep-
tors, the Toll-like receptors (TLRs). TLRs are expressed on Kupffer cells, dendritic cells,
hepatic stellate cells, endothelial cells, and hepatocytes in the liver.The crosstalk between
gut-derived antigens and TLRs on immune cells trigger a distinctive set of mechanisms
to induce immunity, contributing to various acute and chronic liver diseases including liver
cirrhosis and hepatocellular carcinoma. Accumulating evidence has shown thatTLRs stim-
ulation by foreign antigens induces the production of immunoactivating and immunoreg-
ulatory cytokines. Furthermore, the immunoregulatory arm of TLR stimulation can also
control excessive tissue damage. With this knowledge at hand, it is important to clarify the
dual role of disease-specific TLRs as activators and regulators, especially in the liver. We
will review the current understanding of TLR signaling and subsequent immune activation
and tolerance by the innate immune system in the liver.
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INTRODUCTION
The liver faces continuous exposure to many pathogens and com-
mensal bacterial products, and the innate and adaptive immune
responses of the liver favor the induction of immunological activa-
tion and tolerance as appropriate (1–5). Although various immune
compartments, such as T cells including CD4+CD25+Foxp3+ reg-
ulatory T cells (Tregs), natural killer (NK) cells, natural killer T
(NKT) cells, macrophages [Kupffer cells (KC)], conventional or
classical dendritic cells (cDCs), and plasmacytoid DCs (pDCs),
reside in the normal liver (1, 2), it is unknown which types
of cells induce inflammation and tolerance and how these cells
work together to maintain immunological balance. The innate
immune system is thought to play a major role in maintaining
homeostasis in the liver. Gut-derived bacterial products enter the
liver through the portal vein. However, liver inflammation usu-
ally does not occur because the intact mucosal barrier system of
the healthy intestine prevents translocation of microbial prod-
ucts. When this barrier is disrupted, bacteria translocate to the
liver in large quantities, resulting in the activation of the hepatic
innate immune system. Cells within the hepatic sinusoids express
a receptor that recognizes lipopolysaccharide endotoxin (LPS),
expressed in the outer membrane of Gram-negative bacteria, and
effectively remove this molecule. The Toll-like receptors (TLRs)
recognize pathogen-associated molecular patterns (PAMPs) as
part of innate immune defenses against foreign pathogens, includ-
ing bacteria, DNA and RNA viruses, fungi, and protozoa (6,
7). Thirteen mammalian TLRs have been identified, and TLR1–
10 are expressed in humans. TLRs, their ligands, and down-
stream signaling pathways are shown in Figure 1. In general,
the healthy liver contains low mRNA levels of TLRs and their

downstream signaling molecules, such as myeloid differentiation
primary response gene-88 (MyD88), compared with other organs
(8, 9). The continuous antigen exposure and recognition via TLRs
in the liver may trigger a distinctive set of mechanisms to maintain
self-tolerance and induce immunity against infection depending
on the particular situation. Here, we will review the dual role of
TLRs as activators and regulators of immune responses in the liver.

TLR SIGNALING IN THE LIVER
In the liver, hepatocytes account for 60–80% of the total cell
population (10). Non-parenchymal cells consist of KCs, DCs, lym-
phocytes, hepatic stellate cells (HSCs), liver sinusoid endothelial
cells (LSECs), and biliary cells. Each cell population exhibits a
different TLR expression.

KUPFFER CELLS
Kupffer cells are hepatic-resident macrophages and account for
about 20% of the non-parenchymal cells in the liver. KCs engage in
phagocytosis and antigen presentation, and they are the primary
cells that encounter gut-derived toxins such as LPS and orches-
trate immune responses within the liver (11). Accordingly, KCs
express TLR4 and are responsive to LPS (12). KCs also express
TLR2, TLR3, and TLR9 and respond to their ligands (13–15).
Following LPS stimulation, KCs produce tumor necrosis factor
α (TNFα), interleukin (IL)-1β, IL-6, IL-12, and IL-18 (16). How-
ever, KCs also release anti-inflammatory cytokines such as IL-10 in
response to continuous stimulation with low levels of LPS, a phe-
nomenon known as LPS tolerance (17). Similarly, several murine
experiments demonstrated a role for macrophages in restricting
inflammatory responses during the recovery phase of liver injury
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FIGURE 1 |TLRs and downstream signaling pathways.

(18). These results indicate that KCs act as both immune acti-
vating and immune regulatory cells depending on the specific
situation.

DENDRITIC CELLS
Hepatic DCs account for a very small proportion (<1%) of non-
parenchymal cells in the liver. DCs in lymphoid and non-lymphoid
tissues are classified into two major subsets: pDCs and cDCs.
Murine lymphoid-resident cDC subsets can be further divided
into CD8α+ DCs and CD8α− DCs (19, 20). Likewise, two distinct
migratory cDC subsets are subcategorized based on CD103 and
CD11b expressions in non-lymphoid tissues: CD103+CD11b−

cDCs and CD103−CD11b+ cDCs (21, 22). In humans, pDCs
express TLR1, TLR7, and TLR9, while other DC subsets express all
other TLRs except for TLR9 (23). In mice, both pDCs and cDCs
express TLR2, TLR4, TLR7, and TLR9. In response to signaling
through TLR2, TLR3, and TLR4, hepatic cDCs produce TNFα

and IL-6 (24). However, recent reports showed that murine cDCs
can produce an anti-inflammatory cytokine, IL-10, through TLR9
following ischemia/reperfusion injury (25). Hepatic pDCs pro-
duce inflammatory cytokines in response to TLR7 and TLR9 (24,
26, 27). Of note, a new subset of CCR9+ pDCs was identified as
tolerogenic pDCs in an acute graft-versus-host disease model (28).
Our group demonstrated CCR9+ pDCs exist abundantly within
the murine liver, produce IL-10, and transforming growth factor
β (TGFβ) and differentiate naïve T cells to a regulatory phenotype
through TLR7 and TLR9 signaling (29).

LYMPHOCYTES
Intrahepatic lymphocytes account for about 25% of the non-
parenchymal cells in the liver. They consist of NK, NKT, γδ T,
αβ T, and B cells. Hepatic NK cells express TLRs1, 2, 3, 4, 6, 7, 8,
and 9 and respond to the corresponding TLR ligands (30). TLR3
ligands negatively regulate liver regeneration via activation of NK
cells (31). In general, T cells are indirectly activated by TLR sig-
naling, but direct activation of T cells by TLR signaling through
TLR2, 3, and 9 has been reported (32, 33).

HEPATIC STELLATE CELLS
Hepatic stellate cells account for a very small proportion (<1%) of
non-parenchymal cells in the liver. Following liver injury, activated
HSCs produce extracellular matrix components in the liver, such
as collagen types 1, 3, and 4, leading to liver fibrosis (34). Activated
human HSCs express TLR4 and CD14, and respond to LPS with
the secretion of proinflammatory cytokines (35). Activated mouse
HSCs express TLR2, TLR4, and TLR9, and respond to the corre-
sponding ligands with the secretion of IL-6, vascular cell adhesion
molecule 1 (VCAM-1), TGFβ1, and monocyte chemoattractant
protein-1 (MCP-1) (36–38).

LIVER SINUSOIDAL ENDOTHELIAL CELLS
Liver sinusoidal endothelial cells account for about 50% of non-
parenchymal cells in the liver. LSECs express mRNAs for TLR1–9
and respond to the corresponding ligands except for that of TLR5.
LSECs respond to TLR1, 2, 4, 6, 9 ligands by producing TNFα, and
respond to TLR3 ligands by producing TNFα, IL-6, and interferon
(IFN) (27). After repetitive LPS challenge, sinusoidal endothe-
lial cells reduce NF-κB activation and mediate liver tolerance to
maintain hepatic homeostasis (39). In the same way, LSECs play a
role in maintaining the homeostasis of the liver through induc-
tion of antigen-specific T cell tolerance (40). A recent report
demonstrated that LSECs mediate angiogenesis and subsequent
liver fibrosis via TLR4 signaling (41).

HEPATOCYTES
Primary cultured hepatocytes express TLR1–9, but only respond
to TLR2 and TLR4 ligands (42). In the steady state, the responses
to TLR2 and TLR4 are weak, while the expression of TLR2 and
responsiveness to ligands is enhanced under inflammatory condi-
tions (43, 44). Of note, hepatocytes, in concert with TLR4, CD14,
and MD-2 play a role in the uptake and removal of LPS from the
systemic circulation (45–47).

ROLE OF TLRs IN MURINE AND HUMAN LIVER INJURY
EXPERIMENTAL ACUTE LIVER INJURY (CONCANAVALIN A)
A single intravenous injection of Con A triggers acute liver
injury in mice. It is accepted that Con A-induced acute liver
injury is mediated mainly by CD3+CD4+NK1.1+NKT cells
and CD3+CD4+NK1.1- T cells (48–50). However, liver antigen-
presenting cells (APCs) including KCs and DCs might be critically
involved in the pathogenesis of Con A-induced liver injury, since
it is significantly suppressed in KC-depleted mice (51–53). Sig-
naling through TLR2, TLR3, TLR4, and TLR9 has been reported
to contribute to liver injury in this model, especially in the
early phase (54–56). We recently reported that TNFα-producing
CCR9+CD11b+CD11c− macrophages expressed TLR2, TLR4,
and TLR6 mRNAs and had a major role in the pathogenesis
of acute liver injury in this model by activating Th1 and NKT
cells (25). Of note, in the inflamed liver the number of tolero-
genic CCR9+CD11b−CD11c+ pDCs that express TLR7 and TLR9
mRNAs decreases following Con A injection, suggesting the bal-
ance between inflammation and tolerance might be regulated by
distinct immune cell subsets and TLRs in this model (Figure 2).
Following Con A injection, up-regulation of TLR3 expression is
observed in liver mononuclear cells and LSECs. The pathologi-
cal role of TLR3 in this model was confirmed as TLR3−/− mice
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FIGURE 2 | Role of innate immune cells in the pathogenesis of Con
A-induced acute liver injury. Following Con A administration, CCL25
expression is up-regulated in the inflamed liver and CCR9+ macrophages

accumulate to this site, while pDCs are down-regulated. CCR9+ macrophages
produce TNFα and promote proliferation of IFNγ-producing Th1 and NKT cells
via TLR4/6.

were protected from Con A-induced hepatitis (57). In contrast, it
was reported that Poly-I:C pretreatment activated NK cells and
subsequently protected against Con A-mediated liver injury via
down-regulation of T/NKT cells (58). Importantly, the protective
effect of TLR3 was also reported in an LPS/D-GaiN-induced acute
liver injury model (14). These results collectively indicate that
TLR3 signaling has pleiotropic functions and is involved in inflam-
mation, regeneration, and tolerance during the course of acute
liver injury. The contribution of TLR9 in this model is controver-
sial. TLR9 activation by CpG oligodeoxynucleotides (CpG-ODN)
can exacerbate Con A-induced liver injury by promoting the acti-
vation of hepatic CD4+ NKT cells. The effect of TLR9 signaling on
hepatic NKT cells was dependent on KCs and IL-12 (59). However,
another report showed that pretreatment with CpG-ODN pro-
tected mice from Con A-induced hepatic injury by attenuating the
activation of inflammatory cells (60). These contradictory findings
could have resulted from differences in the DNA sequences used,
because a different DNA sequences might trigger TLR9 signal-
ing with different consequences, such as the release of potentially
harmful (TNFα) or beneficial (IL-12) cytokines (61). Immuno-
logical tolerance to Con A was demonstrated as repeated Con A
injection within 8 days after an initial Con A injection significantly
reduced hepatic injury (62). The authors of that study concluded
that CD4+CD25+ Tregs, KCs, and IL-10 were required for Con
A tolerance. Further studies are required to clarify the contribu-
tion of specific TLRs and their downstream signaling to Con A
tolerance.

ISCHEMIA–REPERFUSION AND LIVER TRANSPLANTATION
Ischemia–reperfusion (I/R) injury is most commonly seen in the
early period after liver transplantation. Recipients transplanted
with livers from TLR4-deficient mice exhibited less I/R injury
than those transplanted with wild-type livers (63), suggesting the
inflammatory response seen in I/R injury is mainly mediated by

TLR4. An alternative explanation is that TLR4 plays an indirect
role by exacerbating I/R, as opposed to initiating the pathology.
TLR4 expression on non-parenchymal cells is up-regulated by
damage-associated molecular pattern molecules (DAMPs), such as
high-mobility group box 1 protein (HMGB1) released from dam-
aged hepatocytes during I/R (64, 65). Regarding allograft rejection
and tolerance in liver transplantation, hepatic TLR4 expression
has a distinctive role in CD8 T cell apoptosis and memory T cell
generation (66). Increased TLR4-mediated expression of adhesion
molecules in LSECs and KCs following continuous LPS exposure
promoted trapping of T cells within the liver, resulting in lower
numbers of circulating primed CD8 T cells and weak immune
responses (39). The balance between alloimmune responsiveness
and tolerance might be mediated by the level of TLR ligands that
act as PAMPs or DAMPs, in association with clinical events such as
I/R injury and infection after transplantation (67). It was recently
reported that IL-10-producing cDCs reduced liver I/R injury in
mice via TLR9 (25). Although the liver can mount an appropriate
and sometimes excessive immune response to eliminate invading
organisms, the overall balance appears to favor a state of immune
permissiveness. As critical regulators of both innate and adap-
tive immunity, hepatic cDCs might play a role in orchestrating
immune responses to limit undesirable inflammation and pro-
mote tolerance via TLR9. It is still unclear how the immune system
can distinguish between threats from pathogens and endogenous
danger signals, and contribute to both immune activation and
tolerance through TLR9 signaling.

HEPATITIS B AND HEPATITIS C VIRAL INFECTION
The gene expression of TLR1, TLR2, TLR4, TLR6, TLR7, and TLR9
was decreased in peripheral blood mononuclear cells (PBMCs)
from chronic Hepatitis B virus (HBV) infected patients, compared
with healthy controls (68, 69). Impaired cytokine production with
TLR2 and TLR4 ligands was also observed in PBMCs from chronic

www.frontiersin.org May 2014 | Volume 5 | Article 221 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Immunological_Tolerance/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Nakamoto and Kanai Toll-like receptors in the liver

Hepatitis B (CHB) patients (68). Several TLR signaling pathways
induce antiviral effects by up-regulating IFNs. Activation of TLR3,
TLR4, TLR5, TLR7, and TLR9 by ligands mediates the inhibition
of viral replication in HBV transgenic mice (70, 71). Importantly,
HBV infection also induces immunosuppressive effects through
TLR signaling. Overexpression of TLR2 and TLR4 on monocytes
is reported to account for persistent HBV infection by modu-
lating Treg functions (72). In PBMCs from chronic Hepatitis C
virus (HCV) infected patients, the gene expression of TLR2, TLR3,
TLR4, TLR6, TLR7 was increased (73, 74). HCV activates innate
immune receptors including TLRs and retinoic acid-inducible
gene 1 (RIG-I) to induce a chronic inflammatory state. Concur-
rently, HCV suppresses specific intracellular signaling to evade the
host immune control (75). HCV core and NS3 proteins trigger
TLR1, TLR2, and TLR6 on monocytes to enhance the produc-
tion of inflammatory cytokines (76, 77). However, NS3/4a pro-
teins degrade TIR-domain-containing adapter-inducing IFN-β
(TRIF) and inhibit TLR3-mediated TRIF-dependent IFN-β pro-
duction (78, 79). Furthermore, NS5 inhibits the recruitment of
IL-1 receptor-associated kinase 1 (IRAK1), resulting in a decrease
in TLRs-Myd88-dependent signals (80). An appropriate T cell
response is required to eradicate HBV and HCV, while exhausted
HCV-specific T cells with inhibitory immune receptors, such as
PD-1 and CTLA-4, account for persistent viral infection within the
liver (3, 4, 81, 82). LSECs with up-regulated PD-L1 expression were
reported to induce antigen-specific T cell tolerance (40),and recent
reports indicated that stimulation of LSECs with TLR1/2 ligands,
but not TLR3 or TLR4 ligands could overcome liver-specific toler-
ance (83). Further study is required to clarify the effect of TLR1/2
ligands on the function of tolerant HBV- and HCV-specific T cells.

ALCOHOL-INDUCED LIVER DISEASE
Excessive alcohol intake induces elevated levels of LPS in the liver
through the portal circulation (84). The mechanism involved in
the elevation of LPS is thought to be as follows. First, ingested alco-
hol disrupts the intestinal mucosal barrier and causes enhanced
permeability (85, 86). Second, alcohol consumption leads to
changes in the intestinal flora (87), and they migrate to liver sinu-
soids through the portal vein. KCs are a major target of LPS in vari-
ous liver injuries including alcohol-induced liver injury (35, 88), as
demonstrated by reduced liver inflammation following KC deple-
tion (89). Recent reports indicated that TLR4 signaling in alcoholic
liver injury was mediated through a MyD88-independent, but
TRIF-dependent pathway (90, 91).

NON-ALCOHOLIC STEATOHEPATITIS
Accumulating evidence indicates that LPS/TLR4 is also involved in
the development of non-alcoholic steatohepatitis (NASH). A role
for LPS in NASH was demonstrated by the finding that genetically
obese ob/ob mice were sensitive to low-dose LPS (92). Further-
more, when fed a methionine/choline-deficient (MCD) diet, the
most widely accepted experiment model of NASH, TLR4-deficient
mice exhibited less severe hepatic injury and less accumulation of
intrahepatic lipids compared with wild-type mice (93). These find-
ings indicated activated TLR4 signaling pathways were critically
involved in the pathogenesis of NASH. Recently, up-regulation
of CD14 in KCs and hypersensitivity against low-dose LPS were

observed in mice with high-fat diet (HFD)-induced steatosis (94).
Hypersensitivity against low-dose LPS leads to accelerated NASH
progression, including liver inflammation and fibrosis. In con-
trast, TLR2-deficient mice were not protected from steatohepatitis
induced by MCD diet, affirming the TLR4 dependence of dis-
ease progression in this model (95). Notably, probiotics relieve
the severity of NASH in leptin-deficient ob/ob mice, suggesting
alterations of the intestinal flora might affect proinflammatory
responses by disease-specific immune components through TLRs
(96, 97).

LIVER FIBROSIS
Studies demonstrated elevated plasma LPS levels in experimen-
tal liver fibrosis induced by carbon tetrachloride (CCl4), thioac-
etamide, and bile duct ligation (BDL). TLR4 is expressed on both
parenchymal and non-parenchymal cells in the liver, and several
animal studies support the contribution of TLR4 in the devel-
opment of liver fibrosis (36, 98, 99). Mice deficient for TLR4,
CD14, MyD88, or TRIF exhibit reduced liver fibrosis in experi-
mental fibrosis models (36, 98). In a recent study, Seki et al., clearly
demonstrated that TLR4 on HSCs, but not on KCs or hepatocytes,
was crucial for inducing liver fibrosis (36). Low concentrations
of LPS can activate HSCs via TLR4 and downstream signaling to
secrete a number of chemokines and adhesion molecules. These
chemokines not only induce the migration of macrophages into
the liver but also directly activate HSCs, leading to liver fibrosis.
The role of chemokine receptors CCR1, CCR2, CCR5, CCR8, and
CCR9 in liver fibrosis has been reported (100–104). A human study
analyzing a large patient cohort demonstrated that certain single
nucleotide polymorphisms (SNPs) in TLR4 were associated with
reduced risk of liver cirrhosis in patients with chronic hepatitis
C (105). The participation of TLR9 during liver fibrosis has been
demonstrated in several mouse models of liver fibrosis, such as
CCl4 and BDL models, in which TLR9-deficient mice exhibited
significant reductions in liver fibrosis (106). Endogenous DNA
from damaged hepatocytes is reported to enhance HSC activation
through TLR9, thereby promoting liver fibrosis (37). TLR3 partic-
ipates in the early stages of liver fibrosis but not during advanced
liver fibrosis. Treatment with the TLR3 ligand Poly-I:C enhanced
the activation of NK cells for killing HSCs, leading to attenuation
of liver fibrosis (107). Recently, impaired TLR3 and TLR7/8 func-
tion was reported to affect rapid fibrosis progression post-liver
transplantation with HCV infection (108).

TLRs AND MICROBIOTA
The translocation of intestinal microbiota into the liver and their
recognition by TLRs results in both immune activation and tol-
erance under specific conditions. Importantly, this process is also
critically involved in the development of a variety of liver dis-
eases (109–112). Thus, targeting components of innate immune
signaling, such as intestinal microbiota and TLRs may be an
effective therapeutic approach to chronic liver diseases includ-
ing viral hepatitis, alcoholic liver disease, NASH, and subsequent
liver fibrosis. In particular, the mechanism of how endogenous
TLR ligands associated with bacterial translocation contributes
to immune activation and regulation, and subsequent chronic
liver disease, should be comprehensively studied. Recent advances
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in gnotobiotic technology have enabled analysis of the role of
specific bacterial strains in immunological responses (113–116).
Using these techniques, a recent study reported that a complex
mixture of 46 strains of Clostridium induced TGFβ in intestinal
epithelial cells, which promoted the subsequent accumulation of
IL-10-producing induced T regulatory cells, which in turn sup-
pressed colitis in a dextran sodium sulfate colitis model (117).
Very recently, our group reported that a single strain of Clostrid-
ium butyricum induced intestinal IL-10-producing macrophages
via TLR2 and suppressed a mouse model of acute experimental
colitis (118). Furthermore, butyrate-producing probiotics reduced
the severity of murine NASH (119). These results clearly indicate
that a single strain of microbiota can trigger immune activa-
tion and regulation via signaling through distinct TLRs. Further
research should address in detail the crosstalk between disease-
specific microbiota and the innate and adaptive immune system
that occurs via specific TLRs signaling pathways in chronic liver
diseases.

CONCLUSION AND PERSPECTIVES
The liver is continuously exposed to food antigens and PAMPs
from the gastrointestinal tract via the portal vein. TLR signaling
has a critical role in maintaining a balance between immune acti-
vation and tolerance. Following exposure to foreign antigens, TLRs
are immediately activated and promote the induction of inflam-
matory cytokines and antimicrobial peptides to remove foreign
microorganisms from the host. Concurrently, overactivation of
TLRs that causes fetal events such as sepsis and acute liver fail-
ure should be controlled, which in turn might result in persistent
infections in the liver. As described in this review, the following
mechanisms have substantial roles in organ-specific tolerance: (1)
hyporesponsiveness of individual TLR signaling due to the con-
tinuous exposure to ligands as seen in LPS tolerance (TLR4 on
macrophages and LSECs) (17, 39), (2) the induction of other TLR
signaling by DAMPs and host DNAs released from injured host
cells and subsequent immunosuppressive cytokine production as
seen in liver I/R injuries (TLR9 on cDCs) (25), and (3) dysfunc-
tional antigen presentation by PD-L1-expressing APCs and the
subsequent antigen-specific T cell exhaustion that can be reversed
by TLR1/2 ligand stimulation as seen in chronic viral infections
(TLR1/2 on LSECs) (83). Further studies, especially in humans,
are required to clarify the interaction of each ligand-TLR signal-
ing pathway on individual immune cell subsets that causes both
immune activation and tolerance depending on severity and phase
of the injury, and which eventually results in liver diseases such as
chronic hepatitis, liver cirrhosis, and liver cancer. Understanding
the underlying mechanisms in this area can aid the development
of new therapeutic strategies in the future.
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