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Abstract 

Tumorigenesis is a complex and dynamic process, consisting of three stages: initiation, 
progression, and metastasis. Tumors are encircled by extracellular matrix (ECM) and 
stromal cells, and the physiological state of the tumor microenvironment (TME) is closely 
connected to every step of tumorigenesis. Evidence suggests that the vital components of the 
TME are fibroblasts and myofibroblasts, neuroendocrine cells, adipose cells, immune and 
inflammatory cells, the blood and lymphatic vascular networks, and ECM. This manuscript, based 
on the current studies of the TME, offers a more comprehensive overview of the primary functions 
of each component of the TME in cancer initiation, progression, and invasion. The manuscript also 
includes primary therapeutic targeting markers for each player, which may be helpful in treating 
tumors. 

Key words: cancer-associated fibroblasts (CAFs), neuroendocrine cells, adipose cells, immune-inflammatory 
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Introduction 
Currently, ten major characteristics of cancer 

have been universally recognized, including 
unlimited multiplication, evasion from growth 
suppressors, promoting invasion and metastasis, 
resisting apoptosis, stimulating angiogenesis, 
maintaining proliferative signaling, elimination of cell 
energy limitation, evading immune destruction, 
genome instability and mutation, and tumor 
enhanced inflammation (Figure 1) [1]. Although 
researchers now have an understanding of most 
characteristics of cancer [2-30], the characteristics 
regarding cancer formation, which is the focus of the 
current study, remains unknown. After the ‘ecological 
therapy’ strategy was widely employed [31], much 
effort has been devoted to determining how cellular 
and noncellular components of the tumoral niche help 
tumors to acquire these characters. These cellular and 

noncellular components of the tumoral niche 
comprise tumor the microenvironment (TME). The 
TME consists of extracellular matrix (ECM) as well as 
myofibroblasts and cellular players, such as 
fibroblasts, neuroendocrine (NE) cells, adipose cells, 
immune-inflammatory cells, and the blood and 
lymphatic vascular networks [32]. Furthermore, TME 
has increasingly been shown to dictate aberrant tissue 
function and play a critical role in the subsequent 
evolution of more stubborn and advanced 
malignancies [33]. Oncologists have also found that 
when the microenvironment in a healthy state, it can 
help protect against tumorigenesis and invasion. By 
contrast, if it is not in a healthy state, it will become an 
accomplice.  

The intent of this paper was to summarize the 
existent knowledge on the potential role of each TME 
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component in tumorigenesis: initiation, progression, 
and metastasis, respectively. We have also 
summarized some of the main cellular players, such 
as cancer-associated fibroblasts, immune and 
inflammatory cells, blood and lymphatic vascular 
networks, adipose cells, neuroendocrine cells and 
ECM in the TME, as well as their corresponding 
targets in TME, in the hope of providing some clues 
for future TME research. We have also introduced the 
therapeutic target markers for various parts of TME 
based on the current research results. 

 

 
Figure 1. The tumor microenvironment and characteristics of 
cancer. It is currently widely recognized that tumor microenvironments are 
wildly influenced by the ten main characteristics of cancer: A. unlimited 
multiplication; B. escaping from growth suppressors; C. promoting invasion and 
metastasis; D. resisting apoptosis; E. stimulating angiogenesis; F. maintaining 
proliferative signaling; G. elimination of cell energy limitation; H. evading 
immune destruction; I. genome instability and mutation; J. tumor-enhanced 
inflammation. Lower cure rate and poor prognosis of cancer patients are closely 
related to these ten characteristics of cancer. These ten characteristics make 
cancer more mysterious within the complex tumor microenvironments. 

 

Cancer-associated fibroblasts (CAFs) 
A sub-population of fibroblasts with a 

myofibroblastic phenotype in cancerous wounds is 
distinguished as cancer-associated fibroblasts (CAFs). 
After activation, fibroblasts are known as CAFs or 
myofibroblasts [34-36]. During natural wound repair, 
myofibroblasts are transiently present [37]. Unlike the 
process of wound healing, CAFs at the site of a tumor 
remain perpetually activated, as in tissue fibrosis. 

Several studies have demonstrated that only the 
activated fibroblasts are required to initiate and 
promote tumor growth [38-40]. Fibroblast activation 
may be induced through various impetuses when 

tissue lesions occur, including growth factors, direct 
cell-cell communication, adhesion molecules 
contacting with leukocytes, reactive oxygen species 
[41], and microRNA [42, 43]. When the fibroblasts 
remain activated after the initial insult has regressed, 
these activated fibroblasts may work with other 
molecular pathways to boost neoplasm initiation. 
These CAFs have a significant impact on cancer 
progression through remodeling ECM, inducing 
angiogenesis, recruiting inflammatory cells, and 
directly stimulating cancer cell proliferation via the 
secretion of growth factors, immune suppressive 
cytokines, and mesenchymal-epithelial cell 
interactions [41, 44]. For instance, Galectin-1 
overexpression in CAFs advances the development of 
abutting cancer cells [45] and is correlated with poor 
prognosis in several types of cancer, including breast 
and prostate cancer and laryngeal carcinoma [46-49]. 
Chemokine (C–X–C motif) ligand 12 (CXCL12), 
violently uttered in CAFs, may induce 
epithelial-mesenchymal transition (EMT) of cancer 
cells to promote cancer progress in gastric and 
prostate cancers [50, 51]. Moreover, one team 
discovered that MMP-2, derived from senescent 
CAF-CMs, induced epithelial invasion and 
keratinocyte discohesion into collagen. Interleukin-22 
(IL-22) is also expressed by CAFs to encourage gastric 
cancer cell invasion through STAT3 and ERK 
signaling [52]. Using a 3D invasion model, another 
study found that HCT116 cells manifested a 
substantially invasive phenotype, while media 
originated from human dermal fibroblasts (HDF) [53].  

Since myofibroblasts can be distinguished by 
alpha-smooth muscle actin (α-SMA), laminin-1, 
transforming growth factor beta (TGF-β1), vascular 
endothelia growth factor A (VEGF-A), etc. [54, 55], 
CAFs have been recognized as playing an essential 
role in the metastasis and development of cancer [56]. 
Oncologists have found that through HGF, TGF-β, 
platelet-derived growth factor (PDGF) etc., CAFs may 
promote tumor growth and invasion (Figure 2). 
Through fibroblast growth factor 2 (FGF2), VEGF, etc., 
CAFs may promote tumor development by 
promoting angiogenesis [57]. Additionally, CAFs also 
interact with immune-inflammatory cells and 
neuroendocrine cells through different cell factors and 
cytokines to jointly promote the initiation, 
progression, and invasion of cancer [58-62]. However, 
many of the markers that have been gradually proven 
to be unable to identify all of the CAFs, are not unique 
to the CAFs [63]. The cardinal functions and the 
primary markers of CAFs are illustrated in Table 1. 
For instance, α–SMA, one of the previous major 
markers of CAFs, was found to be expressed in 
normal fibroblasts [64], pericytes, and smooth muscle 
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cells [65]. The cell-surface serine protease fibroblast 
activation protein α (FAPα), which is highly 
expressed in quiescent mesodermal cells in multiple 
tissue types [66], is also not specific to CAFs. 
Additional markers fibroblast-specific protein 1 
(FSP-1) [67], vimentin, and certain proteins, including 
NG2 (Neuroglial Antigen-2), platelet-derived growth 
factor receptor-β (PDGFR-β), fibroblast-associated 
antigen, and prolyl 4-hydroxylase have been shown to 
be expressed in cells other than CAFs [63]. 

 

Table 1. The function of cell players in the tumor 
microenvironment. 

Cell players Main markers Primary functions 
Cancer-associated 
fibroblasts (CAFs)  

PDGF*; FAP*; 
FGFR*; VDR* 

Regulating inflammation; 
Participating in wound healing; 
Integrating collagen and protein to 
form the ECM fiber network; 
Escaping damage; 

Immune & 
Inflammatory cell 

TNF-α; IL-10; IL-12; 
TGF-β; Foxp3+*; 
HMGB1*; CD163+*; 
KIR*; PD-1+* 

Treatment of wound healing and 
infection; Clearing dead cells and 
cellular debris; Having a double 
effect on tumor formation 

The blood & 
lymphatic 
vascular 
networks 

VEGRF3; LYVE-1; 
CD31; CD34; VEGF*; 
PlGF*; VEGF-B*; 
VEGF-C*; VEGF-D* 

Require nutrients and oxygen; 
Evacuating metabolic wastes and 
carbon dioxide; Helping to escape 
immune surveillance. 

Adipose cell AIs*; MBD6* Producing circulating blood 
estrogen; A major energy source; 
Relating with inflammation; 
Recruiting immune cells; Support 
vasculogenesis. 

Neuroendocrine 
cell 

NSE; CgA; K18&K8 
cytokeratins; PGP9.5; 
Ki-67; IL-2; KE108*; 
DLL3*; EGF* 

Extending lumina and adjacent 
epithelial cells; Regulating 
secretion and motility; Controlling 
lung branching morphogenesis; 
Providing a protective niche for a 
subset of lung stem cells. 

Note: *, the targeting markers. 
 

Similarly, although there is no unique marker, 
there are still some targets for significant help in 
cancer treatment. CAFs work in two main ways in 
cancer treatment. One method is by directly reversing 
CAFs into the normal fibroblasts or inhibiting their 
growth. This method highlighted that efforts such as 
reconstituting miRNA expression had been proven to 
deactivate CAFs [68-70] and inhibit PDGF signaling in 
the mouse model of cervical carcinogenesis; it can also 
reduce tumor proliferation [71]. Additionally, the 
fibroblast growth factor receptor (FGFR) signaling 
pathway may be one of the therapeutic objectives in 
gastric cancer [72].The other objective is 
dedifferentiating CAF into a quiescent state. One data 
set showed that Vitamin D receptor (VDR) ligands 
promoted the dedifferentiation of satellite cells and 
abrogated fibrosis [73]. Using a murine xenograft 
model of colon carcinoma, another recent study found 
that when targeting fibroblast activation protein 
(FAP), the accumulation of CAFs was markedly 
reduced [74]. FAP is expected to become another 
marker of CAFs targeted therapy. 

Immune and inflammatory cell 
The main function of the mammalian immune 

system is to monitor tissue homeostasis, to protect 
against invading or infectious pathogens and to 
eradicate damaged cells [75]. The primary theory 
advises that immune surveillance has significant 
roles in recognizing and eradicating a large part of 
nascent tumor cells [1]. However, unlike normal 
functions, immune-inflammatory cells would persist 
in sites of chronic inflammation, linked to diverse 

tissue pathologies, including 
fibrosis, aberrant 
angiogenesis, and neoplasia 
[76]. In light of recent 
discoveries in immune system 
research, it is difficult to 
ignore the crucial issue that 
immune-inflammatory cells 
may be the early cradle of 
cancer [77-83]. 

Several studies have 
revealed the contribution of 
adaptive and innate 
immunity in cancer 
immunoediting, including the 
unmanipulated innate 
immune system without 
adaptive immunity [84]. 
Dunn et al. divided the 
dynamic process of cancer 
immunoediting into three 
steps: elimination, 

 
Figure 2. The inactive network of cancer cells and the tumor microenvironment. 
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equilibrium, and escape [85]. These three stages can 
also be used to express the role of the immune system 
in cancer initiation, progression, and invasion. He 
pointed out that in the elimination phase, the 
immunologic system can defeat nascent tumors. This 
is accomplished by different inflammatory cells 
[86-88] and signaling molecules [88, 89]. Once cancer 
cells have been completely eliminated, these active 
factors and immune cells may have an additional role 
in producing “immunologic sculpting” or 
“immunoediting” [85]. This means that in the 
equilibrium stage, tumor cells cannot be completely 
cleared, but the tumor growth can controlled. In order 
to escape the immune surveillance, cancer cells tend 
to evolve a number of phenotypic changes in this 
stage, such as EMT [90]. These cells, with survival 
advantage, would eventually develop into the 
primary solid tumor. In other words, the immune 
microenvironment helps cancer cells to select the 
dominant cells so that the tumor can progress at the 
fastest rate in a limited environment. Several studies 
in mice have revealed that the depletion of 
macrophages during tumor induction restrained 
tumor growth [91, 92]. Regarding the escape stage, the 
immune system may help tumor cells to format the 
clinical characterization of tumor immune escape 
mechanisms, while many experiments have proven 
that immune cells can reduce anti-cancer proteins or 
cytokines to promote cancer invasion [93, 94]. In 
addition, one experiment also found that immune 
cells may be related to the regulation of apoptosis [95]. 
However, the greatest divergence between these 
transitional immune cells and the other stroma cells is 
that these immune cells can be redesigned toward the 
tumor destruction in therapies. How to activate the 
normal function of immune cells will be the focus of a 
future study. 

As depicted in Figure 2, CAFs [96], NE cells [97], 
adipose cells [98-100], and inflammatory cells 
[101-103] in the TME can affect the role of immune 
cells through the secretion of different cytokines, cell 
factors, or interacting proteins, which adds several 
difficulties to the search for markers and targets for 
cancer therapy [104, 105]. In different cell and tumor 
types, the complexity and heterogeneity of immune 
factors also provides a further complication to finding 
more specific markers of the immune cells. The 
immune system is divided into adaptive immunity 
and innate immunity. Adaptive immune cells include 
thymus-dependent lymphocytes (T cells), and 
bursa-dependent lymphocytes (B cells). Innate 
immune cells consist of dendritic cells (DC), killer 
lymphocytes, natural killer (NK) cells, hyaline 
leukocyte/macrophage, granulocytes, and mast cells 
[106]. According to the different clusters of 

differentiation, T cells are divided into CD4+ T (helper 
T cells, Th) and CD8+ T (cytotoxic T cells, Tc) cells. 
These secrete IFN-γ, TNF-α, and IL17, which have 
antitumor effects. B cells are mainly marked by 
different antigens in different physiological periods, 
such as mainly expressing CD19 and CD20 in pre-B 
cells, immature B cells, and plasma cells, mainly 
expressing IgM, IgD, and CR1 in mature B cells, and 
mainly expressing IgM, IgD, IgA, IgG in memory B 
cells. A key feature of human NK cells, which could 
efficiently recognize infected and malignant target 
cells, is the expression of HLA class Ⅰ-specific 
receptors of the KIR and NKG2 gene families [107]. 
DCs express co-stimulatory molecules and innate 
inflammatory cytokines, such as IL-12, IL-23, and IL-1, 
that promote IFN-γ-secreting CD4+ T cells and 
cytotoxic T lymphocyte responses [108]. DCs 
represent key targets for 1,25-dihydroxyvitamin D3 
(1,25(OH)2D3), which can directly induce T cells [109]. 

After the addition of immune-inflammatory cells 
into an emerging hallmark of cancer [1], studies have 
shown that immune cells were associated with 
immunosuppression. Some types of immune cells 
have an innate function of immune suppression, and 
some cytokines can also activate them through 
different signaling pathways. The main 
immunosuppressive cells are regulatory T (Treg) cells 
marked by Foxp3+ [110], myeloid-derived suppressor 
cells (MDSC) marked by HMGB1 [111], and M2 
macrophages marked by CD163+ [108, 112], which 
have emerged as a leading method in the 
development of new immunotherapeutics. Studies 
have also found that some granulocytes can promote 
cancer development through the expression of 
cytokines, such as the hematopoietic growth factor 
(HGF), granulocyte colony-stimulating factor 
(G-CSF), or inducing changes in stromal cells 
[113-115]. PD-1+ and cytotoxic T-lymphocyte 
antigen-4 (CTLA-4) expressed by “exhausted” CD8+ T 
cells are also targeting markers in treating patients 
with breast and non-small cell lung (NSCL) cancer 
[116-118]. In addition to the mutual activation [119], 
the antitumor effects also can be suppressed by some 
co-inhibitory molecules expressed by antitumor 
immune cells, such as PD-1/PD-L1 [120, 121]. Some 
antitumor cytokines can also promote 
immunosuppression, such as IL-10 and TGF-β 
secreted by DCs, which may activate Treg cells that 
are recruited to the tumor under the influence of the 
chemokines, including CCL22 and CXCL12 [108]. As 
for these immunosuppressive cells, cell depletion 
strategies [122-125], tumor vaccines [126], 
intratumoral injection with an agonistic antibody 
[127], targeting the transcription factor, and 
suppression of activated receptors [128, 129] have 
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been widely used in improving immune surveillance 
and promoting antitumor immune responses. Agonist 
antibodies of CD40, 4-1BB, GITR, and OX-40 can also 
be used to enhance antigen-specific T cell responses 
[130], CD25 antibody can be used to reduce the 
number of Treg cells or inhibit Treg function [131], 
and promote the maturation of DC and rational use of 
cytokines and antibodies to break the immune 
tolerance [132]. The significant roles and the master 
markers of the immune and inflammatory cells are 
indicated in Table 1.  

The blood and lymphatic vascular 
networks 

Similar to normal tissues, the blood and 
lymphatic vascular networks supply oxygen and 
sustenance as well as removing carbon dioxide and 
metabolic wastes for sustaining the survival of 
neoplasm growth. These networks have two main 
features. First, the new vessels surrounding tumors 
are usually inefficient, tortuous, or leaky [133]. 
Second, the angiogenic switch is almost always 
activated and remains active during the process of the 
tumorigenesis, resulting in continued growth of new 
natural blood vessels [134]. In the tumor angiogenesis 
process, new blood vessels form from pre-existing 
vessels, making the blood and lymphatic vascular 
network more complex [135]. 

The blood and lymphatic vascular networks 
have different roles during the stages of 
tumorigenesis [136]. Tumor normal cells are 
confronted with the challenge of hypoxic 
surroundings [137]. To survive in hypoxic 
circumstances, primary tumor cells may adjust to the 
low oxygen setting, or migrate to and recruit blood 
vessels [138]. A selection shape can be chosen, which 
is more enterprising and metastatic, and is provided 
by a chronically hypoxic environment [139, 140]. In 
the process of tumor progression, one of the primary 
functions of the blood and lymphatic vascular 
networks is to help tumor cells escape immune 
surveillance. Escape measures are mainly divided into 
two categories. Directly, the lymphatic 
microenvironment will weaken or eliminate the 
normal function of immune cells. For instance, the 
myeloid-derived suppressor cells (MDSCs) and the 
immature DCs in the sentinel lymph nodes (SLNs) 
could restrict the normal operation of T cells [141-143]. 
When the metastatic tumor enters a novel 
environment, CD4+and CD8+ T cells may help them to 
evade the host immune system [144, 145]. The 
remodeling of unusual endothelial venules (HEVs) 
can indirectly influence immune cells to traffic into 
lymph nodes [146]. Though some immune cells traffic 
into the lymph nodes through the draining afferent 

lymphatic vessels, lymphocyte recruitment into the 
SLN via HEVs is fundamental [144].  

Moreover, lymphatic vessels around the tumor 
also provide a physical link between the SLNs and 
primary tumor. When lymphatic vessels are 
obstructed, collateral lymphatic vessels can make up 
for the diminution in lymphatic capacity [144, 147]. 
This physical connection is like a highway through 
which tumor cells can reach other locations. Some 
phenomena showed that local tumor invasion 
correlated with excellent lymphatic vessel density in 
the tumor margin [148, 149]. Figure 2 shows that 
through different interacting factors, adipose cells, 
inflammatory cells, and CAFs can also closely connect 
with lymphatic vascular networks [150-153]. The 
physical and chemical connection makes the role of 
angiogenesis in tumor formation more of a mystery.  

The important functions and the primary 
markers of the blood and lymphatic vascular 
networks are listed in Table 1. Banerji et al. found that 
the lymphatic vessel endothelial HA receptor 
(LYVE-1) was expressed predominantly in lymphatic 
vessels [154]. Evidence suggests that VEGF is among 
the most important factors for anti-angiogenic 
treatment [155, 156]. A number of studies have 
discovered that VEGF would inhibit the development 
of new vessels, block the VEGF or its signaling 
pathways, prune pre-existing vessels, and induce 
vessel normalization [133, 157, 158]. Furthermore, 
clinical trials that targeted VEGF and other markers 
showed prolonged survival [155, 159]. Members of the 
VEGF family include placental growth factor (PlGF), 
VEGF-B, VEGF-C, and VEGF-D, which were also 
good candidates for anti-angiogenic treatment [133, 
160-164]. Another marker, PDGFβ, secreted by 
sprouting ECs, has two sides of the effects on tumors. 
It would recruit prostate cancer (PC) signaling 
through the presenting PDGF receptor-β (PDGFRβ) 
[165]. Studies have revealed that blockage of PDGFβ 
makes tumor vessels more sensitive to VEGF 
inhibitors [166, 167]. Consequently, the decrement of 
PDGFβ also enhances the risk of increased 
metastasis [158]. Generally, anti-PDGFβ drugs play 
an auxiliary role in anti-VEGF treatment. Some other 
markers, such as CRISP-3 [94], CCR7 [168], GATA2 
[169], Prox1 [170], and Foxc2 [171] have also been 
found and are well used in the treatment. In 
conclusion, abnormal tumor vasculature exhibited 
remarkable spatiotemporal heterogeneousness, and 
not only damaged perfusion and drug delivery, but 
also made chemoradiotherapy less expeditious. 

Adipose cells  
Adipose tissue comprises two cell types, white 

adipose tissue (WAT) and adipocytes [172]. The 
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significant functions and major markers of adipose 
cells are shown in Table 1. Extensive evidence has 
proven that some features of adipose tissue are 
associated with cancer. First, obese adipose tissue 
hypoxia establishes a highly proinflammatory 
microenvironment, which is more likely to breed 
tumors [173-175]. Second, adipose cells also secrete 
more than 50 different cytokines, chemokines, and 
hormone-like factors [176, 177]. These factors, whose 
production may upregulate in obesity, may be 
accomplices in tumor initiation. Similar to interleukin 
(IL)-6, IL-8, IL-1β, tumor necrosis factor-α (TNF-α), 
VEGF, chemokine (C-C motif) ligand 2 (CCL2) and 
CCL5 [178, 179]. Third, in obese patients, adipose 
tissue accommodates a higher proportion of 
preadipocytes, in which figures of macrophages and 
monocytes synergistic increase [180]. These 
alterations may also contribute to cancer development 
locally. Fourthly, adipose tissue reprogramming and 
the associated systemic secretion may have an effect 
on cancer growth and progression [180]. Excess 
adiposity leads to high circulating blood estrogen 
[181] and chronic, low-grade inflammation, which is 
involved in cancer development [176, 182-184]. 
Cancer progression has been proven to be 
accompanied by recruiting progenitor mesenchymal 
stromal cells (MSCs) in reaction to setting factors free 
by TME with hypoxic and inflammatory conditions 
[185, 186].  

Another type of cancer-associated adipose cell is 
the adipose stem cells (ASC), which have the 
capability to differentiate into multiple cell lineages 
[187-189]. ASC plays a chief role when it comes to the 
promotion of tumor progress. First, ASCs influence 
the tumor microenvironment (Figure 2). Eterno et al. 
[190] suggested that ASCs may worsen the 
tumorigenic behavior of c-Met-producing breast 
cancer cells by creating a TME characterized by 
inflammation. The TGFβ1 signaling pathway may 
also play a role in the interaction between ASCs and 
the TME [98]. Second, ASCs may promote 
angiogenesis [191]. Gehmert et al. [192] reported that 
ASCs might contribute to angiogenesis by migrating 
toward tumor-conditioned media through the 
platelet-derived growth factor BB/platelet-derived 
growth factor receptor-β (PDGF-BB/PDGFR-β) 
signaling pathway[193]. Third, ASCs may 
differentiate into carcinoma-associated cells. In 
breast-cancer tumor models, many studies have 
found that ASCs may differentiate into fibroblasts and 
promote tumor proliferation [194]. The same findings 
were also reflected in ovarian cancer and lung cancer 
progression [195-198]. Fourth, ASCs may promote 
EMT. Studies using pleural effusions or established 
breast cancer cell lines from breast cancer patients 

exemplified that either co-culture with ASCs or 
conditioned medium from could advance invasion 
and EMT of breast cancer cells [199-201]. 

Cancers are triggered by adipocytes to gain 
enterprising tumor phenotypes with some aggressive 
traits. In turn, cancer cells may express the 
corresponding markers. Although there is no unique 
marker for clinical identification, the increase or 
decrease in the number of a substance in adipose 
tissue may directly or indirectly reflect the initiation, 
progression, and invasion of the tumor, such as the 
EMT-like phenotypic alterations accompanied by the 
upregulation of matrix metallopeptidase 9 (MMP9) 
and TWIST1 [202, 203]. Higher aromatase activity and 
higher degrees of obesity may abate the efficacy of 
aromatase inhibitors [204]. Leptin, an 
adipocyte-derived cytokine, would arouse 
proliferation in some cell types, such as mammary 
epithelium, which has an effect on the neoplasm cell 
proliferation, apoptosis, and cell cycle [205-207]. Data 
has shown that high glucose levels can induce leptin 
signaling directly [208]. Additionally, adiponectin in 
given cells may inhibit proliferation promoting 
apoptosis through the adenosine monophosphate 
kinase (AMPK) and MAPK pathways [180]. 

Certain types of cancer have found 
adipose-related target markers. For instance, 
methyl-CpG-binding protein 6 (MBD6) is a direct 
target of octamer-binding transcription factor 4 (Oct4) 
and controls the stemness and differentiation of 
adipose tissue-derived mesenchymal stem cells 
(ASC)[209]. Aromatase is one of the newly discovered 
adipose-related markers for postmenopausal breast 
cancer. The majority of postmenopausal breast 
cancers are estrogen receptor (ER)-positive. Obesity 
results in the secretion of inflammatory factors, which 
stimulates the expression of the aromatase enzyme 
and converts androgens into estrogens in the adipose 
tissue [210]. Several clinical trials have revealed that 
many pathways could be targeted to specifically 
inhibit aromatase within the breast. For example, 
through targeting aromatase inhibitors (AIs), clinical 
treatment may inhibit the activity of aromatase 
enzymes and prevent estrogen production [211]. 
Although targeted therapy has achieved promising 
results, it also has certain side effects. 

Neuroendocrine cell 
In the late 1920s, Siegfried Oberndorfer found 

that the secretion of nerve cells in the hypothalamus 
enters the blood [212]. These cells are now called 
neuroendocrine (NE) cells, and a series of experiments 
proved that this type of cell exhibits a combination of 
neuronal and endocrine features [56]. In healthy 
organisms, normal NE cells play complex local 
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regulatory roles at the tissue level [213]. NE cells are 
part of the diffuse NE system, which is spread 
throughout the normal organism. They can also be 
found within endocrine glands or tissues, such as the 
hypothalamus, anterior pituitary gland, pineal gland, 
thyroid gland (calcitonin-secreting cells), thymus, 
breast, and the pancreatic islets of langerhans [212, 
214, 215]. Under the electron microscope, two 
different morphologies were found: open-type cells 
and closed-type cells [212]. There is no difference in 
the location of these two kinds of cells, but the 
function is not the same, which increases the difficulty 
in studying NE cells.  

NE cells are the accomplices of tumor formation 
[216]. Extensive evidence has proven that the NE 
system strongly influences the function of the 
immune system (Figure 2). The NE system can 
regulate the migration and cytotoxicity in NK cells 
through neurotransmitters [217]. Additionally, 
substance P showed the ability to block the 
β1-integrin-mediated adhesion of T lymphocytes 
[218] and increase their migratory activity [219]. 
Substance P also can induce the production of various 
cytokines in leukocytes [220]. Norepinephrine, 
another neurotransmitter, also showed a significant 
impact on T cells [219]. It could inhibit the generation 
of antitumor cytotoxic T-lymphocytes (CTLs) through 
the inhibition of TNF-α synthesis [221]. On the other 
hand, as a result of their secretory products, NE cells 
could stimulate the proliferation of prostate 
carcinoma cells and increase their aggressiveness 
[222], while in the development of NE-cell tumors, NE 
cells may play a leading role [223]. NE carcinomas are 
rare malignancies that originate from the 
hormone-producing cells of the body’s NE system. 
While there is no conclusive evidence, several studies 
have reflected on this conclusion. For example, one 
result showed that androgen-dependent lymph node 
carcinomas of the prostate (LNCAP) could only 
develop in the presence of NE tumors in castrating mice, 
which proved that NE tumor cells may secrete specific 
factors [224]. NE tumors had a highly internal 
heterogeneity, and there were 13 different types of NE 
cells [225]. Different NEs produce different secretions, 
which leads to different or mixed symptoms. NE 
tumors are also highly aggressive. Approximately 
50% of pancreatic NE tumors have hepatic metastases 
[226] due to the secretion of several peptide 
hormones. To improve the survival rate of NE tumors, 
it is becoming more and more urgent to find specific 
markers. 

The significant functions and the major markers 
of NE are shown in Table 1. Many markers have 
gradually been found to be expressed in a large 
number of prostatic NE cancer cases[227], such as K18 

and K8 cytokeratins [228], 
α-methylacyl-CoA-racemase (AMACR) [228], plasma 
anterior gradient 2 (AGR2) [229], and PGP9.5 [230]. 
Additionally, neuron-specific enolase (NSE) and 
chromogranin A (CgA) may be the most frequently 
expressed neuropeptides [231-233], but they also have 
limitations in sensitivity, specificity, reproducibility, 
etc. [234]. IL-2 was more specific than any marker 
other than Ki-67 in detecting gastroenteropancreatic 
NE tumors [235], even though some other targeting 
markers were promising for use in clinical treatment. 
Novel TDP-A-loaded and KE108-conjugated 
unimolecular micelles exhibited the best potential in 
suppressing NE cancer cell growth both in vitro and 
in vivo [236]. There also have also been some 
achievements in the fields of prostate, lung, pancreas, 
and gastrointestinal tracts. Delta-like canonical notch 
ligand 3 (DLL3) proteins are expressed on the surface 
of pulmonary NE tumor cells but not in normal adult 
tissues. One multiple model in vivo showed that a 
DLL3-targeted antibody-drug induced durable tumor 
regression [237]. In addition, more than 85% of lung 
cancer patients are diagnosed with NSCLC, while the 
other 15% are classified as small cell lung cancer 
(SCLC) [238, 239]. All the SCLC patients show 
histological features of NE morphology. 
Synaptophysin (Syn), and neural cell adhesion 
molecule 1 (NCAM1) are known as NE diagnostic 
markers. One recently study result showed that the 
positive expression rates of these three markers were 
112 (58.3%), 160 (83.3%), and 166 (86.5%), respectively, 
in a total of 192 SCLC patients [240]. In addition to 
targeted therapy, peptide receptor radionuclide 
therapy is a promising new treatment modality for 
inoperable or metastasized gastroenteropancreatic NE 
tumors patients [241]. Some studies have found that 
EGF receptor inhibition may disrupt some signaling 
cascades, which may inhibit the growth of foregut NE 
tumors/pancreatic NE tumors [242]. Another result 
also proved that PRCRT is an effective treatment in 
patients with FDG-avid NE tumors, even in patients 
for whom conventional therapies have failed[243]. 
Recent genomic profiling studies, which have 
demonstrated that prostate cancers with an NE 
phenotype are enriched for loss of RB, loss or 
mutation of TP53, loss of AR, and AR target gene 
expression, and overexpression of MYCN and 
AURKA, may also provide a new treatment method 
[244].  

ECM within the microenvironment 
ECM, a dynamic and complicated environment, 

is characterized using biophysical, mechanical and 
biochemical properties specific for each tissue. ECM 
contains all the cytokines, growth factors, and 
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hormones secreted by stromal and tumor cells. Many 
assays have respectively demonstrated ECM 
components, including collagens [245-247], laminins 
[248], fibronectins [249], proteoglycans [250], and 
hyaluronans [251, 252] in a specific organization [225]. 
In vitro, one three-dimensional (3D) model indicated 
that ECM heterogeneity is crucial for controlling 
collective cell invasive behaviors and determining 
metastasis efficiency [253-262]. Because of the 
complexity of ECM heterogeneity in vivo, its 
influence on collective cell behavior has been 
described but not quantified [253]. 

Depending on the different organization and 
locations, ECM has complementary effects on the 
development and metastasis of tumors in diverse 
ways. First, ECM may affect tumors through 
extracellular secretion. During embryogenesis, 
fibroblastic mesenchyme determines the sexual 
phenotype of the gland, while the adipocyte 
mesenchyme controls mammary-specific ductal 
morphogenesis [263-266]. One study illustrated that 
innate ECM scaffolds, derived from decellularized 
tissues, lead the cells derived from stem cell 
differentiation that reside in the tissue from which the 
ECM was derived [267]. Second, ECM may alter the 
phenotype type of stromal cells or tumor cells. 
Oncogenic mutations are broadly thought to increase 
cellular fitness and result in the clonal expansion of 
receivers. One experiment revealed that the ability to 
clean apoptotic colon cancer cells can be promoted by 
tumor-associated macrophages (TAMs) through the 
expression of sulfoglycolipids (SM4s). During this 
procedure, phenotypic change of TAM was 
accompanied by expression of TGF-β1 and secretion 
of IL-6, which may have an advantage in further 
activating the angiogenic process [268]. Third, ECM 
can help neoplasms to get away from immune 
surveillance. For instance, colon cancer cells always 
display an increased production of Fas ligand binding 
to its receptor on immune cells [269]. Fourth, the ECM 
tumor will provide a hypoxic or acidic environment in 
which the tumor cells have greater survival 
advantages than normal cells. ECM will select 
survival cells to aid in tumor growth and invasion at 
the fastest rate. 

Conclusion 
Tumor management strategies include surgery 

for a cure or for cytoreduction, radiological 
intervention, chemotherapy, and somatostatin 
analogs to control symptoms. However, tumor cells 
are extremely elastic and may adapt to treatments and 
environmental modifications speedily [270-277]. Once 
one component has been obstructed, other 
mechanisms will quickly follow. This may be one of 

the main factors that lead to poor prognosis. The 
major interaction between different stromal cells and 
active factors in the advanced TME is shown in Figure 
2. Different impeding mechanisms at the same time 
might lead to the best results of tumor development. 
In other words, it is important to understand the role 
of different components of the TME in the treatment 
and prevention of tumors. Moreover, the study of 
predictive biomarkers, which may fully address the 
complexities of the biology, will promote the 
development of therapies tailored to individual 
patients. At present, the emerging targeted 
microenvironment therapy has been widely accepted. 
According to the characteristics of different tissues, 
the synergistic therapies targeting multiple 
microenvironment stromal cells and the continuous 
discovery of multiple target markers may be the 
direction of future research. 
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