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Uric acid (UA) is the end product of purine metabolism and can reportedly act as an antioxidant. However, recently, numerous
clinical and basic research approaches have revealed close associations of hyperuricemia with several disorders, particularly those
comprising themetabolic syndrome. In this review, we 
rst outline the twomolecularmechanisms underlying in�ammation occur-
rence in relation to UA metabolism; one is in�ammasome activation by UA crystallization and the other involves superoxide free
radicals generated by xanthine oxidase (XO). Importantly, recent studies have demonstrated the therapeutic or preventive e�ects of
XO inhibitors against atherosclerosis and nonalcoholic steatohepatitis, which were not previously considered to be related, at least
not directly, to hyperuricemia. Such bene
cial e�ects of XO inhibitors have been reported for other organs including the kidneys
and the heart. 	us, a major portion of this review focuses on the relationships between UA metabolism and the development
of atherosclerosis, nonalcoholic steatohepatitis, and related disorders. Although further studies are necessary, XO inhibitors are a
potentially novel strategy for reducing the risk of many forms of organ failure characteristic of the metabolic syndrome.

1. Introduction

Uric acid (UA) is the end product of the metabolic path-
way for purines, the main constituents of nucleotides. 	e
pathway of UA generation is shown in Figure 1. Brie�y,
inosine monophosphate (IMP) is derived from de novo
purine synthesis and from purine salvage. Hypoxanthine
from IMP is catalyzed to xanthine and then to uric acid by
xanthine oxidase (XO). De novo nucleotide synthesis gener-
ates IMP via ribose-5-phosphate, catalyzed to 5-phosphor-
ibosyl-1-pyrophosphate (PRPP). In the salvage pathway,

hypoxanthine-guanine phosphoribosyl transferase (HGPRT)
plays an important role in generating IMP, thereby inhibiting
UA generation.

Since humans are unable to catabolize UA to the more
soluble compound allantoin due to lack of urate oxidase or
uricase [1], the serum UA concentration is higher in humans
than almost all other mammals. However, this high UA level
in humans has been regarded as being bene
cial in the
presence of elevated oxidative stress [2]. UA is oxidized to
allantoin and other metabolites via nonenzymatic oxidation
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Figure 1: Metabolic pathways involving UA.

[3] and, thus, UA can function to neutralize prooxidant
molecules, such as hydroxyl radicals, hydrogen peroxide,
and peroxynitrite. UA shows the highest scavenging rate
constant against O2

−∙, with constants being low against
CH3∙ and t-BuOO∙ [4]. UA directly (nonenzymatically)
and preferentially deletes nitric oxide (NO) and forms 6-
aminouracil in physiological environments or in association
with antioxidants [5]. In vitro, UA has both an antioxidant
e�ect on native LDL and a prooxidant e�ect on mildly
oxidized LDL [6]. Allantoin does not have these e�ects. 	e
mechanisms of these reactions vary among combinations of
prooxidant molecules and solution polarities [7].

It has been suggested that this antioxidant e�ect of the
high UA concentrations in humans contributes to neuropro-
tection in several neurodegenerative and neuroin�ammatory
diseases [8–14].

However, despite the potential antioxidant e�ect of UA
itself, numerous studies have revealed close associations of
serum UA concentrations and various disorders, most of
which are included in themetabolic syndrome category.	us,
UA metabolism may be a so-called double-edged sword as
regards the in�ammatory and/or oxidative responses inmany
organs, though on the whole, its harmful e�ects appear to
outweigh the bene
ts of UA in most cases.

In this review, we 
rst explain the two putative molecular
mechanisms underlying in�ammation occurrence in relation
to UA metabolism; one is in�ammasome activation via UA

crystallization and the other involves superoxide free radicals
generated by XO. While the UA crystallization mechanism
would be dependent on a high serum UA concentration, the
latter may not necessarily re�ect the serumUA concentration
though XO activity does lead to the production of reactive
oxygen species (ROS).

Subsequently, lines of research showing relationships
between UA metabolism and the development of various
disorders are introduced and discussed. Importantly, recent
studies have demonstrated bene
cial e�ects of XO inhibitors
against the occurrence and/or progression of several dis-
orders, particularly atherosclerosis and nonalcoholic steato-
hepatitis (NASH), both of which are associated with insulin
resistance, hyperlipidemia, and/or obesity. In this review,
atherosclerosis and NASH are discussed extensively, while
studies of gout and chronic kidney diseases (CKD) are
mentioned brie�y. In conclusion, we propose that such XO
inhibitors may be more useful for preventing a variety of
disorders, such as atherosclerosis and NASH, than previously
believed, probably via an anti-in�ammatory e�ect.

2. Inflammation Occurrence Related to
UA Metabolism

Among the disorders related to hyperuricemia, gout is the
most representative and well known. Features of gout include
painful arthritis a�ecting the limbs, caused by reduced UA
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crystals in the joints. While symptoms of a gout attack are
typical of an acute in�ammatory response, as indicated by
the presence of swelling, heat, rubescence, and pain, there
are many disorders with mild but chronic in�ammation
which are very likely to be related to UA metabolism. In the
latter case, superoxide free radicals generated by XO are key
players leading to chronic in�ammatory processes eventually
resulting in impaired organ functions. 	us, we introduce
two independent mechanisms underlying UA metabolism-
induced in�ammation.

2.1. In�ammasome Activation by Crystallized UA Particles. In
2002, the in�ammasome concept was proposed to involve
multiple proteins and to control the cleavage of prointer-
leukin 1 (IL-1) [15]. Initially, in�ammasomes were considered
to play a role in immune responses and serve as defense sys-
tems against pathogens [16, 17]. However, a line of subsequent
studies has elucidated that in�ammasomes are key players in
the onsets of a wide range of diseases as well as host defense.
Excessive metabolites, such as ATP or monosodium urate
crystals (MUC), were also con
rmed to be involved in the
activation of in�ammasomes, and in�ammatory responses
occurring via in�ammasomes have been demonstrated to
be linked to the onset and progression of human diseases,
including gout, atherosclerosis and NASH, as described
below in detail [18–24].

In�ammasomes are known to be divided into dis-
cernible patterns, depending on component proteins [16].
Among them, the NLRP3 in�ammasome, comprised of three
major components, Nod-like receptor 3 (NLRP3), apoptosis-
associated speck-like protein containing a CARD (ASC) and
caspase-1, has beenwell investigated.Maturations of both IL-1
and IL-18 by in�ammasomes require a two-step mechanism.
First, the Toll-like receptor ligands, such as lipopolysaccha-
ride (LPS), activate the NF-�B pathway and upregulate the
expression levels of interleukins, including pro-IL-1� and
pro-IL-18. Subsequently, the in�ammasome complex acti-
vated by pathogen-associated molecular patterns (PAMPs)
or damage-associated molecular patterns (DAMPs) cleaves
pro-IL-1� or pro-IL-18, resulting in the production of mature
interleukins [15–17].

MUC also reportedly serve as a danger signal and trigger
the activation of in�ammasomes [18]. Although the mech-
anism of in�ammasome activation by MUC has not been
fully elucidated, the following mechanism was proposed.
MUC stimulate the Toll-like receptor 2/4-Myd88 pathway
and raise transcriptional levels of pro-IL-1� through the
NF-�B pathway [25]. It is theorized that MUC-induced
in�ammasome activation is driven by two key factors. One
is a decrease in the intracellular potassium concentration.
Indeed, the addition of high potassium abrogated IL-1�
release by MUC.	e other is the generation of ROS, because
an antioxidant, N-acetyl-cysteine, abolished IL-1� secretion
by MUC [26]. Other studies have indicated the application
of MUC to raise intracellular ROS levels. However, the
relationship between intracellular K+ level changes and ROS
generation remains unknown, and future studies are expected
to resolve this issue [27, 28]. Elevation of intracellular ROS
mediates the detachment of thioredoxin-interacting protein

(TXNIP) from thioredoxin and enables TXNIP to associate
with NLRP3, leading to NLRP3 in�ammasome activation
[29, 30]. 	us, MUC accumulation promotes in�ammatory
responses through in�ammasomes (Figure 2) and thereby
promotes the onset of diseases, such as gout.

2.2. Superoxide Free Radicals Generated by XO. When mam-
malian xanthine dehydrogenase (XDH) is converted to XO
under stressed conditions such as tissue damage and ischemia
[31], superoxide anion and hydrogen peroxide are produced
during molybdenum hydroxylase-catalyzed reactions in a
molar ratio of about 1 : 3 [32]. 	e proteolytic activation
from XDH to XO is required for superoxide generation [33].
In essence, XO oxidizes a variety of purines and pterins,
classi
ed as molybdenum iron-sulfur �avin hydroxylases.
When XO reacts with xanthine, electrons are transferred
from Mo, Fe-S, and FAD. XO produces FADH2, while XDH
produces FADH. Only FADH2 reacts with O2 [34]. In the
UA metabolic pathway, XO oxidizes hypoxanthine from
nucleic acid metabolites into xanthine and xanthine into
UA (Figure 1). XO, as well as nicotinamide adenine dinu-
cleotide phosphate (NADPH) oxidase and the mitochondrial
electron-transport chain, generates ROS [35].

ROS fromXOmight play physiological roles, especially in
development. Treatment during pregnancy with allopurinol
alters maternal vascular function involving �1-adrenergic
stimulation and impairs the fetal �1-adrenergic vasore�ex
response involving NO [36]. Fetal XO is activated in vivo
during hypoxia and XO-derived ROS contributes to fetal
peripheral vasoconstriction, leading to fetal defense against
hypoxia [37]. XO depletion induces renal interstitial 
brosis,
and renal epithelial cells from XOR (−/−) mice are more
readily transformed into myo
broblasts [38]. Indeed, how
ROS from XO directly and physiologically acts in vivo is
unknown.

	e tissue and cellular distributions of XO in mammals
are highest in the liver and intestines due to XO-rich
parenchymal cells [39]. Xanthine oxidoreductase (XOR) is
present in hepatocytes, while XO is present in bile duct
epithelial cells, concentrated toward the luminal surface.
Moreover, in human liver disease, proliferating bile ducts are
also strongly positive for XO [40]. Molybdenum supplemen-
tation signi
cantly increased XO activities in the liver and
small intestinal mucosa [41]. XO activity is low in human
serum, the brain, heart, and skeletal muscle, while being rich
in microvascular endothelial cells [42] and is also present in
macrophages [43]. Circulating XO can adhere to endothelial
cells by associating with endothelial glycosaminoglycans
[44]. 	e study using electron spin resonance measure-
ments revealed the contribution of increased XO activity
to endothelial dysfunction in patients with coronary artery
diseases [45].

XO activation is induced by LPS, angiotensin II, NADPH
oxidase, hypoxia, hypoxia-inducible factor 1, and in�amma-
tory cytokines such as IL-1� [46–49]. 	e release of XO is
increased in hypercholesterolemia, chronic hyperammone-
mia, thermal trauma, beta-thalassemia, brain ischemia, and
pulmonary artery hypertension [50–54]. Aging is another
factor associated with elevated XO activity. Indeed, XO was
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Figure 2: MUC induces in�ammasome activation. MUC activates the NF-�B pathway through TLR2/4, thereby increasing the expressions
of pro-IL-1� or pro-IL-18. At the same time, MUC induces ROS release from mitochondria. 	e generated ROS detaches TXNIP from
thioredoxin and enables TXNIP to interact with the NLRP3 complex. 	e binding of TXNIP to NLRP3 activates in�ammasomes, leading to
the production of mature IL-1� or IL-18. MUC: monosodium urate crystals, TLR: Toll-like receptor, TXNIP: thioredoxin-interacting protein,
TXR: thioredoxin, and ROS: reactive oxygen species.

signi
cantly higher in the aortic walls and skeletal muscles
of old rats than in those of their young counterparts. 	e
correlation between plasma XO activity and age is observed
in both humans and rats [55]. It appears that hyperglycemia
itself has no impact on liver XO activity, though cardiac,
renal, and brain XO activities were shown to be increased
in rats with advanced diabetes [56, 57]. XO activity rises
remarkably in ischemic congestive heart failure and XO
localizes within CD68 positive macrophages [43]. 	e asso-
ciation between XO and ischemic reperfusion injury has
been well investigated. XO is one of the major superoxide
sources in ischemia/reperfusion injuries of the heart [58],
forebrain [59], skin [60], liver [61, 62], and gastric mucosa
[63], as well as multiple system organ failure a�er hind limb
reperfusion [64]. XO activity, along with lipid peroxidation,
myeloperoxidase activity and NO levels, is increased in the
liver in response to renal ischemia/reperfusion in diabetic rats
[65]. Ischemia/reperfusion injury is attributable to elevated
XO activity and ATP depletion related to increasing hypox-
anthine and xanthine levels during ischemia, and reperfusion
provides O2 for oxidation of these compounds [1].

Superoxide production by XO may also be enhanced
by increasing the amount of its substrate, purine bodies.
Excess fructose metabolism results in ATP depletion which
is associated with degradation of AMP to hypoxanthine,
followed by conversion to UA by XO [66]. Indeed, the
serum UA level is upregulated in response to a fructose
burden [67]. Inversely, UA stimulates fructokinase and fruc-
tose metabolism during fatty liver development [68]. ATP

depletion, such as that characteristic of glycogen storage
disease type 1 [69], hypoglycemia [70], exercise [71], and
starvation [72], also increases UA production. Conditions
associated with DNA turnover, such as tumor progression
[73] and tumor lysis [74], are also mediated by XO.

Superoxide produced by XO is an important messenger
inducing in�ammation and signal transduction, leading to
tissue damage. We found in�ammatory cytokines to be
induced via XO when foam cells form with lipid accu-
mulation [75]. XO regulates cyclooxygenase-2 [76] in the
in�ammatory system, and XO appears to be critical for
innate immune function [77]. XO increased Egr-1 mRNA
and protein, as well as the phosphorylation of ERK1/2, while
pretreatment with an ERK1/2 inhibitor prevented induction
of Egr-1 by XO [78]. In addition, XO reportedly reduced
SUMOylation of PPAR� in in�ammatory cells [79]. ROS
from XO augment TRB3 expression in podocytes [80].

As noted above, superoxide from XO has been suggested
to play roles in various forms of in�ammatory or ischemic
pathophysiology (Figure 3), not necessarily involving hyper-
uricemia.

3. UA Metabolism and Chronic Renal Disease,
Atherosclerosis, Heart Failure, and NASH

While gout is a disorder well known to be caused by the pre-
cipitation of UA crystals, the involvement of hyperuricemia
in CKD is also widely recognized. 	e major causes of CKD
have been regarded as diabetes mellitus and hypertension,
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Figure 3: Involvement of XO in molecular pathologies related to in�ammation; “causes and results.”

and thus, hyperuricemia was long viewed as a consequence of
CKD. In fact, loss of kidney function reduces the excretion of
UA into urine, resulting in hyperuricemia. In contrast, recent
studies demonstrated a signi
cant association between serum
UA and the development of CKD. While each metabolic
syndrome component, including hyperglycemia, hyperlipi-
demia, and hypertension, was associated with an increased
CKD risk, hyperuricemia was apparently an independent risk
factor not in�uenced by the others.	erefore, hyperuricemia
is both a cause and a consequence of CKD and is frequently
associated with other metabolic syndrome features.

In terms of CKD pathogenesis, serum UA is likely to
activate the renin-angiotensin system resulting in vascular
smooth muscle cell proliferation [81] and to induce an
epithelial-to-mesenchymal transition of renal tubular cells
[82]. XO inhibitor treatment reportedly reduced intercel-
lular adhesion molecule-1 (ICAM-1) expression in tubular
epithelial cells [83] of mice. We speculate that UA itself

and superoxide free radical generation both play roles
in the molecular mechanisms underlying hyperuricemia-
related CKD development, but further research is required
to elucidate the complex mechanistic interactions between
serum UA and CKD.

As mentioned in Section 2, both UA and superoxide free
radicals are simultaneously produced by XO and might be
the pathophysiological cause of these diseases. As shown in
Figure 3, chronic in�ammation is also involved in pathophys-
iological processes, generally exhibiting a close relationship
with oxidative stress. ROS from XO induces LPS-induced
JNK activation via inactivation of MAPK phosphatase-
(MKP-) 1 [84] and XO regulates cyclooxygenase-2, one of
the master regulators of in�ammation [76]. 	erefore, dam-
age from UA, ROS, and UA-induced and/or ROS-induced
in�ammation might together contribute to the progression
of certain diseases, and distinguishing whichmechanism acts

rst is o�en di�cult in lifestyle-related diseases.
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3.1. Atherosclerosis, Vascular Dysfunction, and Heart Failure.
Although the relationships between serum UA levels and
atherosclerotic diseases, including hypertension [85, 86],
have been documented, whether or not serum UA itself is an
independent cardiovascular risk factor remains controversial
as most hyperuricemic patients with cardiovascular diseases
(CVD) have other complications such as hypertension, dys-
lipidemia, diabetes, and CKD as well, which are generally
regarded as more established risk factors for CVD than hype-
ruricemia. Recently, however, a growing body of evidence
from both clinical and basic research supports the hypothesis
that hyperuricemia, partly via elevated XO activity, is an
independent risk factor for hypertension and CVD.

Despite the association between hyperuricemia and
hypertension having been recognized since the 19th cen-
tury [85], it was not until recently that hyperuricemia was
demonstrated to be an independent risk factor for hyper-
tension development [87–93]. A recently published meta-
analysis showed that the adjusted relative risk of developing
hypertension was 1.48 for hyperuricemic patients [94], and
this association was apparently much stronger in younger,
early-onset hypertensive patients [86, 95]. Several clinical
trials have demonstrated the bene
cial e�ects of UA low-
ering therapy for hypertension [96–99]. In a trial targeting
prehypertensive obese adolescents, administration of either
allopurinol (XO inhibitor) or probenecid (uricosuric agent)
lowered blood pressure [98]. Consistently, both allopurinol
and benziodarone (uricosuric agent) reduced blood pressure
in rats with hypertension induced by hyperuricemia [100,
101], suggesting that not only XO activity but also UA itself
plays an important role in the pathogenesis of hypertension.

Besides the associationwith hypertension, hyperuricemia
or gout has been con
rmed to be related to the morbidity
and the mortality of CVD [102–106]. According to a recently
published meta-analysis [107], the relative risks of morbidity
and mortality for coronary heart diseases were 1.13 and
1.27, respectively, in hyperuricemic patients as compared to
controls. Several clinical studies have indicated the bene
ts
of XO inhibitors for reducing the incidence of myocardial
infarction [108], improving exercise tolerance in patients
with stable angina [109], and enhancing endothelial function
[110, 111]. However, interestingly, unlike the case of treating
hypertension, uricosuric agents have failed to show any
bene
ts in patients with hyperuricemia or gout [110, 112].

What are themechanisms underlying the aforementioned
association between hyperuricemia and atherosclerotic dis-
eases? First, the role of XO in the pathogenesis of atheroscle-
rosis merits attention. As described above, XO produces ROS
when converting hypoxanthine into xanthine and then UA.
XO is also expressed in endothelial cells [113] and was shown

to be increased in the aortic endothelial cells of ApoE−/−mice
[114], an established model of atherosclerosis. Since oxidative
stress inactivates NO and leads to endothelial dysfunction
[115], endothelial XO, especially given its enhanced expres-
sion during the development of atherosclerosis, contributes
to vascular damage via ROS production.

Recently, we established that XO activity in macrophages
also plays a key role in the development of atherosclerosis
[75].During atherosclerosis development,monocytesmigrate

beneath the endothelium and transform into macrophages,
which then turn into foam cells by incorporating modi-

ed low density lipoproteins (LDL) (such as oxidized LDL
and acetyl LDL) or very low density lipoproteins (VLDL).
Foam cells contribute to the formation of unstable plaques
by secreting in�ammatory mediators and matrix-degrading
proteases (such as matrix metalloproteinases (MMPs)) and
by generating a prothrombotic necrotic core by eventually
undergoing necrotic or apoptotic death [116]. We demon-
strated that allopurinol treatment ameliorated aortic lipid
accumulation and calci
cation of the vessels of ApoE-KO
mice and that allopurinol markedly suppressed the transfor-
mation of J774.1 murine macrophages or primary cultured
human macrophages into foam cells in response to stimula-
tion with acetyl LDL or VLDL. 	e expressions of scavenger
receptors (SR-A1, SR-B1, and SR-B2) and VLDL receptors
in J774.1 cells were upregulated by XOR overexpression and
downregulated by siRNA-mediated XOR suppression, raising
the possibility that XO activity in macrophages positively
regulates foam cell formation by increasing the uptake of
modi
ed LDL or VLDL. Conversely, expressions of ABCA1
and ABCG1, which regulate cellular cholesterol e�ux, were
decreased by XOR overexpression and increased by XOR
knockdown. Furthermore, allopurinol suppressed the expres-
sions of in�ammatory cytokines such as IL-1�, IL-6, IL-
12, and TNF�, and the expressions of VCAM1, MCP-1, and
MMP2, which were upregulated in J774.1 cells transformed
into foam cells by atherosclerogenic serum. Subsequently,
febuxostat, another XO inhibitor, was also demonstrated
to attenuate the development of atherosclerotic lesions in

ApoE−/− mice [114]. 	at study showed XO expression
to be increased in macrophages in
ltrating atherosclerotic
plaques and that febuxostat diminished the ROS level in the

aortic walls of ApoE−/− mice. 	e authors demonstrated that
cholesterol crystals (CCs) increased endogenous XO activity
and ROS production in macrophages and that CCs enhanced
not only IL-1� release via NLRP3 in�ammasome activation
but also secretions of other in�ammatory cytokines such as
IL-1�, IL-6, and MCP-1 from macrophages, processes which
in turn were suppressed by febuxostat or ROS inhibitors.
	e signi
cance of NLRP3 in�ammasome activation in
macrophages by CCs was veri
ed by the observation that
atherosclerosis in high-cholesterol diet fed LDL receptor-
(LDLR-) de
cient mice was alleviated by transplanting bone
marrow from NLRP3-de
cient, ASC-de
cient, or IL-1�/�-
de
cient mice [117]. Taking these observations together, we
can reasonably speculate that XO in macrophages enhances
foam cell formation, ROS production, andNLRP3 in�amma-
some activation, all three of which exacerbate in�ammation
and plaque formation, thereby contributing to the develop-
ment of atherosclerotic diseases [75, 114–116].

Independently of XO, UA itself is widely recognized to
exert direct e�ects on vascular functions. Vascular endothe-
lial cells express several UA transporters [118] and incorpo-
rated UA impairs NO production and leads to endothelial
dysfunction [118, 119]. In vascular smooth muscle cells, UA
stimulates proliferation andROS production and inhibits NO
production via increased angiotensin II expression [81, 120].
As noted above, not only XO inhibitors but also uricosuric
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agents markedly lowered blood pressure, especially in studies
targeting early-stage hypertensive patients [98] and those
using animal models [100, 101]. 	e results obtained suggest
that UA presumably contributes to early-stage hypertension
by promoting renal vasoconstriction via reducedNOproduc-
tion and activation of the renin-angiotensin system [86, 98].

3.2. Nonalcoholic Steatohepatitis. 	e number of nonalco-
holic fatty liver disease (NAFLD) patients including those
with NASH has been increasing worldwide and a portion
of NASH patients will progress to hepatocarcinoma onset
[121–123]. 	erefore, numerous investigations have been
performed in e�orts to elucidate the causes of NASH.

NASH is characterized by fat deposition, in�ammation
and 
brosis in the liver, and a two-hitmechanism of onset has
been proposed [124–126]. 	is hypothesis is that fatty liver
formation and subsequent injuries, including in�ammation
and oxidative stress, cause NASH pathology [127]. Interest-
ingly, recent studies have raised the possibility that UA is
among the risk factors for NASH pathology. We discuss the
relationship between UA and NASH below.

3.2.1. Serum UA Is a Predictor of NAFLD/NASH Onset and
Progression. Many clinical studies have been carried out to
investigate the relationship between serum UA levels and
NAFLD/NASH progression. For example, a cohort study
in Korea found the serum UA level to be a useful marker
for predicting NAFLD development because the serum UA
concentration correlated positively with the 5-year incidence
rate of NAFLD [128]. 	eir conclusion is supported by
another study showing that serum UA levels of NAFLD
patients are higher than those of control groups [129]. In
addition, there are also studies demonstrating that serumUA
is a risk factor for the development and/or progression of
NAFLD including NASH [130–132].

Consistent with these observations, hepatic XO activities
and serum UA levels are reportedly increased in murine
NAFLD/NASH models [133, 134]. Moreover, a fraction of
NAFLD/NASH patients also have obesity, and hypertrophic
adipocytes were also reported to secrete UA [135]. Taken
together, these results indicate serumUA to be a good param-
eter for predicting the development of NAFLD/NASH, and
that XO inhibitors or uricosuric agents might have potential
as treatments for ameliorating the features of NAFLD.

3.2.2. e Mechanism of UA-Induced NAFLD/NASH Pro-
gression. As described above, increasing serum UA or XO
activity apparently plays important roles in NAFLD/NASH
onset and progression. Interestingly, UA was reported to
induce fat depositions by enhancing lipogenesis in hepato-
cytes. Fructose treatment ofHepG2 cells reportedly increased
both the intracellularUA concentration and triglyceride (TG)
accumulation, while allopurinol, an XO inhibitor, suppressed
this fructose-mediated TGdeposition.Moreover, the applica-
tion of UA alone was demonstrated to increase intracellular
TG contents as well as ROS generation in mitochondria
[136]. As a mechanism of UA-induced TG accumulation, the
authors asserted that the elevation of intracellular ROS by
UA raised both the citrate concentration and ATP citrate

lyase activity via enhanced phosphorylation at S455, resulting
in the induction of lipogenesis. 	ese observations are sup-
ported by those of another study in which pretreatment with
antioxidants inhibited the elevation of triglyceride contents
by UA [137].	e authors asserted that ROS generation by UA
evoked endoplasmic reticulum stress, leading to upregulation
of lipogenic genes, such as acetyl CoA carboxylase1 and FASN
[137].

ROS generation by UA is considered to depend on
NADPH oxidase activation [136, 138, 139]. For example, UA
reportedly promotes translocation of the NADPH oxidase
subunit NOX4 into mitochondria [136]. It was also reported
that UA treatment raises NADPH oxidase activity and alters
its localization, leading to lipid oxidation [139]. In addition,
XOmay also function as a source of ROS generation because
XO activity is upregulated in the livers of murine NASH
models.

Collectively, these observations indicate thatUAenhances
fatty acid synthesis by regulating lipogenesis and induces
ROS generation by regulating NADPH oxidase activity and
upregulating fatty acid synthesis, thereby contributing to
NASH development.

3.2.3. In�ammasome Participation in NASH Progression.
As described elsewhere, UA is involved in in�ammasome
activation. Recent investigations have provided convincing
evidence that in�ammasomes are key players inNASHdevel-
opment. An initial study revealed that in�ammasome impair-
ment exacerbated the NASH progression induced by feeding
a methionine-choline de
cient diet for 4 weeks to ASC or
IL-1 KO mice [140]. Subsequent studies, however, found that
in�ammasomes themselves exacerbateNASH symptoms. For
example, it was reported that NLRP3 de
ciency prevents liver

brosis in response to a choline diet de
cient in amino acids
[141]. In addition, caspase-1 de
cient mice were also resistant
to developing steatosis or 
brosis while being fed a high-fat
diet [142]. Moreover, other groups have demonstrated that
diets which lead to NASH also increase the expressions of
in�ammasome components [143–145].

Taking these lines of evidence together, in the initial stage
of NASH, in�ammasomes appear to exert a protective e�ect,
but continuous in�ammasome activation appears to cause
excessive productions of in�ammatory cytokines, ultimately
resulting in liver injury. Although, to date, numerous factors
playing important roles in NASH progression have been
identi
ed, UA also appears to be a key participant in the onset
of NAFLD/NASH.

3.3. Insulin Resistance, Diabetes, and Hyperlipidemia. Hype-
ruricemia was reportedly found to be related to insulin
resistance in several clinical analyses [146–152]. In addition,
several meta-analyses have suggested the UA level to be
positively associated with the development of type 2 diabetes
mellitus (DM) [153–156], althoughMendelian randomization
studies did not support circulating UA as being among the
causes of DMdevelopment [157, 158]. Inmetabolic syndrome
patients, an oxidative stress marker, the myeloperoxidase
level, was decreased by allopurinol and endothelial function
improved [159]. On the other hand, rapid UA reduction
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Figure 4: Increased catalyst activity of XO, originating from pathological and physiological events. Involvement of XO in pathophysiological
processes suggests applications of XO inhibitors to the treatment of various disorders.

achieved by rasburicase, a urate oxidase, in obese subjects
with high UA resulted in increasing the markers of systemic
and skeletal muscle oxidative stress while having no e�ect on
insulin sensitivity [160].

Furthermore, excess fructose intake is one of the major
causes of the development of obesity with hyperuricemia,
fatty liver, and metabolic syndrome. Fructose is metabo-
lized by fructokinase to fructose-1-phosphate and results
in a drop in both intracellular phosphate and ATP levels
[161]. 	e intracellular phosphate decrease stimulates AMP
deaminase (AMPD), the enzyme catalyzing the degradation
of AMP to inosine monophosphate and eventually UA.
Activated AMPD increases the expressions of gluconeo-
genesis genes, that is, PEPCK and G6Pase, via inhibition
of AMP-activated protein kinase (AMPK) [162]. AMPD
also increases lipogenesis through AMPK inhibition. AMPK
phosphorylation was decreased in HepG2 cells treated with
UA. 	e UA increased fructose-induced TG accumulation
and decreased �-hydroxybutyrate levels, dose-dependently,
while allopurinol, a XO inhibitor, blocked it. Because UA
is the downstream product of AMPD and allopurinol abol-
ished fructose-induced lipid accumulation, AMPD e�ects
on AMPK appeared to depend on UA [163]. UA activates
the transcription factor ChREBP, which triggers a vicious
cycle of fructokinase transcription and accelerated fructose
metabolism [68]. Via these mechanisms, activated AMPD
and increased UA production tend to promote fat accumu-
lation and glucose production.

UA is considered to be an antioxidant in human blood,
though UA induces oxidative stress in cells [164]. UA raised
NADPH oxidase activity and ROS production in mature
adipocytes. 	e stimulation of NADPH oxidase-dependent
ROS by UA resulted in the activation of MAP kinase p38
and ERK1/2, a decrease in NO bioavailability, and increases
in both protein nitrosylation and lipid oxidation [138].
Increased UA production, in turn, generates mitochondrial
oxidants. Mitochondrial oxidative stress inhibits aconitase in
the Krebs cycle, resulting in citrate accumulation and the

stimulation of ATP citrate lyase and fatty acid synthase, ulti-
mately leading to de novo lipogenesis [136]. In hepatocytes
treated with high UA, oxidative stress is increased, which
activates serine (rat Ser307 and human Ser312) phosphory-
lation of IRS-1. 	is activity impairs Akt phosphorylation,
thereby resulting in acute hepatic insulin resistance a�er
exposure to highUA levels [165].	erefore, UA-induced lipid
accumulation and oxidative stress are responsible for the
development of insulin resistance and diabetes.

4. Beneficial Effects of XO Inhibitors

Involvement of increased XO catalyst activity in patho-
physiological processes (Figure 4) suggests applications of
XO inhibitors to the treatment of various disorders. At
present, XO inhibitors, including allopurinol, oxypurinol,
febuxostat, and topiroxostat, are widely used for treating gout
and hyperuricemia. Furthermore, XO inhibitors have been
experimentally or clinically shown to exert bene
cial e�ects
by lowering serum UA and oxidative stress.

Febuxostat preserved renal function in 5/6 nephrec-
tomized rats with and without coexisting hyperuricemia
and prevented diabetic renal injury in streptozotocin-treated
rats [166, 167]. Febuxostat also ameliorated tubular dam-
age, diminished macrophage interstitial in
ltration, and
suppressed both proin�ammatory cytokine activities and
oxidative stress [168]. Febuxostat also reduced the induction
of endoplasmic reticulum stress, as assessed by GRP-78
(glucose-regulated protein-78), ATF4 (activating transcrip-
tion factor-4), and CHOP (C/EBP homologous protein-10)
[169]. 	e clinical signi
cance of measuring the serum UA
level and XO inhibition for renal protection has largely been
established by the results of recent studies [170–173].

On the other hand, bene
cial e�ects of XO inhibitors
on atherosclerosis and NASH constitute an evolving concept
that has yet to be proven. In rats with fructose-induced
metabolic syndrome, febuxostat treatment reversed hyper-
uricemia, hypertension, dyslipidemia, and insulin resistance
[174]. 	e bene
cial e�ects of XO inhibitors on NASH are
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rarely reported, except by our research group [134], because
animal models of NASH with obesity, in�ammation, and

brosis have been di�cult to establish. NASH in response
to the MCD diet, as used in our studies, caused primarily
in�ammation and also made the mice lean, such that no
bene
t of XO inhibition was obtained [134]. 	us, we next
used a high-fat diet containing trans-fatty acids and a high-
fructose diet to induce NASH development in our animal
models. Another report showed that inhibition of XO activity
also signi
cantly prevents hepatic steatosis induced by a high-
fat diet in mice. XO has also been indicated to regulate
activation of the NLRP3 in�ammasome [175].

Atherosclerosis has been far more extensively investi-
gated than NASH, both clinically and experimentally. Tung-
sten, acting as an XO inhibitor, has an inhibitory e�ect on
both atherosclerosis and oxidative stress [176]. We reported
for the 
rst time that more speci
c XO inhibition, using
allopurinol rather than tungsten onmacrophages, resulted in
the inhibition of foam cell formation and reduced atheroscle-
rotic lesions in ApoE-KO mice, independently of the serum
lipid pro
le [75]. We also identi
ed phenotypic changes of
macrophages in response to allopurinol, such as alterations of
gene expressions involved in lipid accumulation. Moreover,
both XO overexpression and knockdown of XO expression
revealed VLDL receptors to be dramatically upregulated
by XO. Febuxostat was also proven to have similar e�ects
in terms of reducing the atherosclerotic lesions in ApoE-
KO mice, and oxidative stress was reduced in macrophages
from atherosclerotic lesions [113]. Febuxostat also suppressed
LPS-induced MCP-1 production via MAPK phosphatase-1-
mediated inactivation of JNK [84]. As a strategy for suppress-
ing atherosclerosis, XO inhibition is expected to act on either
macrophages or in�ammatory cells.

XO inhibitors also improve endothelial function and pre-
vent vascular remodeling. Oxypurinol reduces O2

− radical
dot production and improves endothelial function in blood
vessels from hyperlipidemic experimental animals [69].
XO inhibition can also provide protection from radiation-
induced endothelial dysfunction and cardiovascular com-
plications [177]. Allopurinol treatment prevents hypoxia-
induced vascular remodeling in the lung [178]. However,
controversy persists as to whether the e�ect of XO on
endothelial function is clinically relevant as an interventional
target [49]. Pretreatment with XO inhibitors has bene
cial
e�ects on ischemia/reperfusion injuries of the intestine [179],
in the impaired liver [61, 62], the edematous brain [180],
kidneys with contrast induced nephropathy [181], and coro-
nary ischemia [182]. XO inhibitors prevent postischemic O2

−

generation [183].

5. Conclusion

In�ammation related to UA metabolism is induced via
either in�ammasome activation by UA crystal precipitation
or free radical production in response to XO activity. In
addition to gout, many disorders are known to be related
to UA metabolism and XO inhibitor treatments have been
shown to be e�ective for preventing the onset and/or the
progression of such disorders. In particular, atherosclerosis

and NASH are diseases for which relationships with UA
metabolism were not immediately recognized, but rodent
model studies revealed the importance of UA metabolism
maintenance for managing these disorders. We believe the
impact of UA metabolism on many diseases accompanying
chronic in�ammation to have been underestimated. Future
studies are anticipated to reveal the pathological contribution
of serum UA and/or XO activity to the speci
c processes
underlying various disorders. Further study of the detailed
molecular mechanisms is clearly warranted.
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[176] K. Schröder, C. Vecchione, O. Jung et al., “Xanthine oxidase
inhibitor tungsten prevents the development of atherosclerosis
in ApoE knockout mice fed a Western-type diet,” Free Radical
Biology and Medicine, vol. 41, no. 9, pp. 1353–1360, 2006.

[177] K. G. Soucy, H. K. Lim, D. O. Attarzadeh et al., “Dietary
inhibition of xanthine oxidase attenuates radiation-induced
endothelial dysfunction in rat aorta,” Journal of Applied Phys-
iology, vol. 108, no. 5, pp. 1250–1258, 2010.

[178] R. P. Jankov, C. Kantores, J. Pan, and J. Belik, “Contribution
of xanthine oxidase-derived superoxide to chronic hypoxic
pulmonary hypertension in neonatal rats,” American Journal of
Physiology—Lung Cellular and Molecular Physiology, vol. 294,
no. 2, pp. L233–L245, 2008.

[179] A. N. Sha
k, “Febuxostat improves the local and remote organ
changes induced by intestinal ischemia/reperfusion in rats,”
Digestive Diseases and Sciences, vol. 58, no. 3, pp. 650–659, 2013.

[180] A. Patt, A. H. harken, L. K. Burton et al., “Xanthine
oxidase-derived hydrogen peroxide contributes to ischemia

reperfusion-induced edema in gerbil brains,” e Journal of
Clinical Investigation, vol. 81, no. 5, pp. 1556–1562, 1988.

[181] A. Kumar, G. Bhawani, N. Kumari, K. S. N. Murthy, V.
Lalwani, and C. N. Raju, “Comparative study of renal protective
e�ects of allopurinol and n-acetyl-cysteine on contrast induced
nephropathy in patients undergoing cardiac catheterization,”
Journal of Clinical and Diagnostic Research, vol. 8, no. 12, pp.
HC03–HC07, 2014.

[182] S. Wang, Y. Li, X. Song et al., “Febuxostat pretreatment attenu-
ates myocardial ischemia/reperfusion injury via mitochondrial
apoptosis,” Journal of Translational Medicine, vol. 13, no. 1,
article 209, 2015.

[183] M. Duda, A. Konior, E. Klemenska, and A. Beresewicz, “Pre-
conditioning protects endothelium by preventing ET-1-induced
activation of NADPH oxidase and xanthine oxidase in post-
ischemic heart,” Journal of Molecular and Cellular Cardiology,
vol. 42, no. 2, pp. 400–410, 2007.



Submit your manuscripts at

http://www.hindawi.com

Stem Cells
International

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

MEDIATORS
INFLAMMATION

of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Behavioural 
Neurology

Endocrinology
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Disease Markers

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

BioMed 

Research International

Oncology
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Oxidative Medicine and 
Cellular Longevity

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

PPAR Research

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Immunology Research
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Obesity
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Computational and  
Mathematical Methods 
in Medicine

Ophthalmology
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Diabetes Research
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Research and Treatment

AIDS

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Gastroenterology 
Research and Practice

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Parkinson’s 

Disease

Evidence-Based 
Complementary and 
Alternative Medicine

Volume 2014
Hindawi Publishing Corporation
http://www.hindawi.com


