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Abstract

Background: Photocatalysis of titanium dioxide (TiO2) substrates is primarily induced by ultraviolet light irradiation. Anion-
doped TiO2 substrates were shown to exhibit photocatalytic activities under visible-light illumination, relative
environmentally-friendly materials. Their anti-spore activity against Bacillus anthracis, however, remains to be investigated.
We evaluated these visible-light activated photocatalysts on the reduction of anthrax spore-induced pathogenesis.

Methodology/Principal Findings: Standard plating method was used to determine the inactivation of anthrax spore by
visible light-induced photocatalysis. Mouse models were further employed to investigate the suppressive effects of the
photocatalysis on anthrax toxin- and spore-mediated mortality. We found that anti-spore activities of visible light
illuminated nitrogen- or carbon-doped titania thin films significantly reduced viability of anthrax spores. Even though the
spore-killing efficiency is only approximately 25%, our data indicate that spores from photocatalyzed groups but not
untreated groups have a less survival rate after macrophage clearance. In addition, the photocatalysis could directly
inactivate lethal toxin, the major virulence factor of B. anthracis. In agreement with these results, we found that the
photocatalyzed spores have tenfold less potency to induce mortality in mice. These data suggest that the photocatalysis
might injury the spores through inactivating spore components.

Conclusion/Significance: Photocatalysis induced injuries of the spores might be more important than direct killing of
spores to reduce pathogenicity in the host.
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Introduction

Naturally occurring anthrax is a disease acquired following

contact with anthrax-infected animals or anthrax-contaminated

animal products. The disease most commonly occurs in herbi-

vores, which are infected by ingesting spores from the soil. For

centuries, anthrax has caused disease in animals and, uncommon-

ly, serious illness in humans throughout the world [1]. Research on

anthrax as a biological weapon began more than 80 years ago [2].

Recently, the anthrax-letter attacks further evidenced this

emerging terrorist threat, leading to renewed attention to the

importance of prophylaxis, prevention and handling for anthrax

[3]. Treatments or agents commonly cited to inactivate anthrax

spores include heat, formaldehyde, hypochlorite solutions, chlo-

rine dioxide, and radiation [4]. However, most of these treatments

and reagents are hazardous to humans that limit their usage in

public environments only after detecting the contamination

sources, rather than prevention. Thus, a safer disinfection

technique, which could exert a continuous antimicrobial effect in

our living environment, would be highly desirable. Here, we

present a visible light inducible photocatalyst which might provide

a complementary and possibly alternative approach to meet this

need.

Photocatalytic titanium dioxide (TiO2) substrates have been

shown to eliminate organic compounds and to function as

disinfectants [5]. Upon ultraviolet (UV) light excitation, the

photon energy excites valence electrons and generates pairs of

electrons and holes (electron-vacancy in the valence band) that

react with atmospheric water and oxygen to yield reactive oxygen

species (ROS) such as hydroxyl radicals ( . OH) and superoxide

anions (O2
2) [6]. Electron holes, . OH and O2

2 are extremely

reactive and could react with cellular components and function as

biocides [5]. Since pure TiO2 photocatalyst is effective only upon

irradiation by UV-light at levels that would induce serious damage

to human cells, the potential applications of TiO2 substrates for

use in our living environments are greatly restricted. Recently,

anion-containing anatase TiO2 photocatalysts have been identi-

fied, which are activated by illumination with visible light [7,8],
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offering the potential to overcome this problem [9]. Previously, we

demonstrated that nitrogen-doped TiO2 [TiO2 (N)] photocatalyst

could significantly eliminate Escherichia coli and other mild

pathogens [9]. However, its antimicrobial activity and the

antimicrobial mechanism against biological weapons, such as

Bacillus anthracis, has not yet been reported. In this study, the anti-

spore activity of TiO2 (N) photocatalysts against B. anthracis was

compared with several other bacillus species including Bacillus

subtilis, Bacillus thuringiensis, and Bacillus cereus. Among these

bacteria, B. subtilis is broadly distributed worldwide where it

mainly inhabits the upper layers of soil [10,11]; B. thuringiensis is an

insect pathogen [12]; and B. cereus causes broad clinical infections

including local infections, septicemia, central nervous system

infections, respiratory infections, endocarditis, pericarditis and

food poisoning [13]. In this study, visible light-mediated

photocatalysis was found to inactive 25%–40% spores of B.

subtilis, B. thuringiensis, B. cereus and B. anthracis. Even though the

efficiency of bacterial-killing is less than 1 log CFU, intriguingly,

animal experiment revealed that the photocatalysis reduced more

than ten times potency of B. anthracis spores to induce mortality in

mice. To further investigate the underlining mechanism, here we

analyzed photocatalyst-mediated inactivation of anthrax lethal

toxin (LT) and the survival rate of spore after the macrophage

clearance in vitro.

Results

UV-Vis absorption spectroscopic analysis
To investigate the physical properties of pure, carbon- and

nitrogen- doped TiO2 films, respectively, X-ray diffraction (XRD)

patterns and Raman spectra (data not shown) were obtained. Our

results showed that all the films were anatase phase but the

intensity of XRD and Raman peaks was slightly decreased in

carbon and nitrogen doped films, indicating that the carbon/

nitrogen incorporation induced decreasing crystallinity. The UV-

Vis spectra of pure, carbon and nitrogen doped TiO2 films are

shown in Fig. 1. The carbon and nitrogen substitution of oxygen in

TiO2 caused the absorbance edge of TiO2 to shift to the higher

wavelength region. The pure TiO2 film absorption edge which

was at 380 nm gradually red-shifted to ,425 nm and ,565 nm in

carbon and nitrogen doped TiO2 films, respectively. This shift in

the visible region is the result of incorporation of carbon and

nitrogen into the TiO2 network to form Ti-C and Ti-N bonds.

Substitutional carbon or nitrogen atoms introduce new states (C2p

or N2p) close to the valence band edge of TiO2 (i.e. O2p states). As

a result of this the valence band edge shifts to higher energy

compared with the reference TiO2 and the band gap narrows.

The energy shift of the valence band depends on the overlap of

carbon states and O2p states. A higher doping concentration of

carbon or nitrogen results in higher energy shift due to significant

overlap of carbon or nitrogen and oxygen states and this leads to a

narrower band gap in the compound [14].

Bactericidal activities of TiO2 photocatalysts against
Bacillus subtilis

Before the spore experiments, living bacteria were used to test

the photocatalysis system. Since B. anthracis is a hazardous

microorganism, we first used B. subtilis as a surrogate to determine

the bactericidal activity of nitrogen-doped [TiO2 (N)] and carbon-

doped TiO2 [TiO2 (C)]. We placed 16104 CFU B. subtilis on

different substrates including cover glass (silica, without TiO2

coating), and silica substrates coated with thin films of TiO2, TiO2

(N), and TiO2 (C). These preparations were then illuminated with

visible light and the levels of surviving bacteria were quantified as

previously described [9]. We found that TiO2 (N) exhibited a

significantly better performance to reduce the number of surviving

B. subtilis bacteria when compared to TiO2 and TiO2 (C) (Fig. 2,

**P,0.01).

To obtain dose dependent and kinetic data for B. subtilis on

photocatalytic substrates, we further analyzed the effects of visible-

light illumination at various distances (5 cm, 10 cm, 20 cm, and

with respective illumination intensities of 36104, 1.26103, and

36102 lux) or at various time points (Fig. 3). The results showed

that TiO2 and TiO2 (C) substrates had no detectable bacterial-

killing effect, while TiO2 (N) contained significantly greater

bactericidal activity, by which it induced nearly a 1 log CFU

reduction under 36104 lux visible-light illumination for 25 min-

utes (Fig. 3A, 3B, *P,0.05; **P,0.01, compared to respective

Figure 1. UV-Vis absorption spectrum analysis. UV-Vis absorption
spectra of pure, carbon- and nitrogen-doped TiO2 thin films that used in
this study were shown. Both doped samples absorbed light extending
into the visible (.380 nm) region.
doi:10.1371/journal.pone.0004167.g001

Figure 2. Bactericidal activity against B. subtilis. Visible-light
induced bactericidal activities of TiO2–related substrates against B.
subtilis after illumination at 4uC. Illumination was carried out at a light
density of 36104 lux (90 mW/cm2) for either 1 or 5 min. ‘‘Without
illumination’’ indicates experiments conducted in a dark room without
illumination. **P,0.01, compared to both respective cover glass groups
and without visible light illumination TiO2 (N) groups.
doi:10.1371/journal.pone.0004167.g002

Photocatalyzed Anthrax Spore
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TiO2 groups). Although prolonged illuminations tended to

increase the bactericidal effect of TiO2 (C) substrates (25 min,

Fig. 3B), the killing efficiency was still not statistically significant as

compared with the TiO2 groups.

Anti-spore activities of TiO2 (N) against Bacillus species
Photocatalyst-mediated killing was performed to determine the

bactericidal effect of photocatalysis on B. cereus, B. thuringiensis and

B. anthracis. Compared to TiO2 thin films, we found that TiO2 (N)

thin films were significantly more effective in killing the living B.

cereus, B. thuringiensis and B. anthracis bacteria under visible light

illumination (Fig. 4A, *P,0.05, **P,0.01).

In spore experiments, TiO2 (N) also exhibited a better anti-

spore activity than TiO2 thin films, although this activity was less

efficient (25–40% killing/inactivation) (Fig. 4B, *P,0.05) com-

pared to the results obtained in living bacteria experiments

(Fig. 4A).

Treatments of photocatalyzed spores and LT to mice
A mouse model was further used to investigate whether these

photocatalyzed spores are less pathogenic. Before the photocata-

lyst experiment, we determined anthrax spore mediated mortality

in mice. We found that 50% mortality required a single

inoculation of 16106 CFU anthrax spores, and the mortality

reached to 100% when 7.56106 CFU spores were used (Fig. 5A).

In photocatalyst experiment, we found that visible-light induced

photocatalysis on TiO2 (N) but not pure TiO2 thin-films

significantly attenuated the ability of anthrax spores (16107

CFU, before photocatalysis) to cause mortality in mice (Fig. 5B,

n = 6). Notably, the mortality of mice in TiO2 (N) groups was

lower than those given treatments of 16106 CFU spores without

photocatalysis [Fig. 5B, TiO2 (N), mortality 33.3%, vs. Fig. 5A,

16106 groups, mortality 50%]. According to the killing efficiency

estimated in spore-killing experiments (approximately 25%,

Fig. 4B), around 7.56106 CFU spores should be remained viable,

and theoretically the mortality of mouse should have reached up to

100% (Fig. 5A, 7.56106 CFU groups). As a result, the reduced

pathogenicity of photocatalyzed spores could not be simply

attributed to the reduction of viable spores. To explain this

Figure 3. Dose dependency and kinetics. Dose dependent (A) and
kinetic (B) analyses of the bactericidal activity of TiO2–related substrates
against B. subtilis after visible light illumination were shown.
Illumination was carried out either at different light densities for
25 min (A) or at a light density of 36104 lux (90 mW/cm2) for different
time periods (B). For each illumination condition, the surviving bacteria
on the TiO2 groups were normalized to 100%. *P,0.05 and **P,0.01
compared to the respective TiO2 groups.
doi:10.1371/journal.pone.0004167.g003

Figure 4. Elimination of living bacteria (A) and spores (B).
Bacteria B. subtilis, B. thuringiensis, B. cereus and B. anthracis were placed
on TiO2 and TiO2 (N) substrates, respectively. All surviving bacteria (A) or
spores (B) in the TiO2 groups were normalized to 100%. The relative
percentages of surviving pathogens in the TiO2 (N) groups are shown.
The illumination intensity was 36104 lux (90 mW/cm2) and the reaction
time was 25 minutes. *P,0.05 and **P,0.01 compared to respective
TiO2 groups.
doi:10.1371/journal.pone.0004167.g004
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phenomenon, we hypothesized that photocatalysis on TiO2 (N)

might not only eliminate 25% of the viable population but also

injure the remaining spores through inactivating bacterial

components. Such injuries could be resolved during germination

of spores on cultural dishes but the repair process could not be

accomplished in time to enable the bacteria escape from

phagocytic clearance in mice. To investigate whether photocatal-

ysis could inactivate protein components of B. anthracis, anthrax

lethal toxin (LT), an example of bacterial proteins and the major

virulence factor, was subjected to visible light activated photoca-

talysis on TiO2 and TiO2 (N) substrates. As expected, compared to

untreated LT, photocatalysis of LT on TiO2 (N) but not on TiO2

substrates significantly reduced the potency of LT to induce

mortality in mice (Fig. 5C). To investigate whether LT reduced its

cytotoxicity after photocatalysis, a cell culture model was used. We

found that LT could induce significant cell death of macrophage

J774A.1 cells before but not after being subjected to TiO2 (N)-

mediated photocatalysis (Fig. 6A, **P,0.01). Western blot analysis

revealed that the intact forms of both purified lethal factor (LF)

and protective antigen (PA) molecules, two components of LT

[15,16], did not decrease after photocatalysis (Fig. 6B). These data

might suggest that protein degradation dose not play major role in

the inactivation of LT.

In vitro phagocytic clearance analysis
Anthrax spore can multiply in phagocytes [17]. To investigate

whether photocatalysis might injure the spores and make them

vulnerable for the clearance by phagocytes and further handi-

capped the bacterial amplification within phagocytes, photocata-

lyzed anthrax spores were then treated to macrophage J774A.1

cells. We found that spores in light illuminated-TiO2 (N) groups

were not significantly multiplied in phagocytes within 24 hours

(Fig. 7A, TiO2 (N)+L 1 hr vs. 24 hr). By contrast, untreated

spores, or spores from groups without light illumination, or spores

from illuminated-TiO2 groups were all significantly multiplied 3–4

fold within 24 hours (Fig. 7A, untreated/TiO2-L/TiO2 (N)-L/

TiO2+L, 1 hr vs. 24 hr, *P,0.05, **P,0.01). Since low level of

surviving bacteria in the 24-hour groups might be also possible

Figure 5. B. anthracis spore and LT caused mortality. Mortality of
C57BL/6J mice after intravenous injection of different doses (0 to 16107

CFU) of B. anthracis spores within one-week interval is revealed (A)
(n = 8). Aliquots of B. anthracis spores (16107 CFU) was subjected to
photocatalysis on TiO2 and TiO2 (N) photocatalysts, respectively; spores
in TiO2 (N) groups induced less mortality in mice (g) compared to
untreated (#) or TiO2 (.) groups (B) (n = 6). Aliquots of anthrax LT
(500 mg PA : LF = 5:1) was subjected to photocatalysis on TiO2 and TiO2

(N) photocatalysts, respectively; LT (100 mg/g) in TiO2 (N) groups (g)
induced less mortality in mice compared to untreated (#) or TiO2 (.)
groups (C) (n = 6).
doi:10.1371/journal.pone.0004167.g005

Figure 6. Cytotoxicity and Western blot analysis of photocat-
alyzed LT. Macrophage J774A.1 cells were subjected to LT treatments
for three hours, surviving cells of untreated groups were adjusted to
100% (A). Columns designated TiO2 or TiO2 (N) represent that LT was
pretreated with photocatalysis on TiO2 or TiO2 (N) substrates,
respectively, before treated to J774A.1 cells. Columns designated ‘‘+L’’
or ‘‘2L’’ represent experimental conditions with or without light
illumination, respectively. **P,0.01, compared to LT, TiO2-L and TiO2

(N)+L groups (A). Western blot measurements of intact LF and PA levels
(arrows) of purified LT before and after visible light induced
photocatalysis; band intensities of individual LF and PA samples are
shown, and respective untreated groups were normalized to 100% (B).
doi:10.1371/journal.pone.0004167.g006
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attributed to the low phagocytic efficiency, to investigate whether

photocatalysis might make these spores hard to be engulfed by

phagocytes, we analyzed the remaining viable spores in the

macrophage-culture medium. We found that the viable spores in

the medium showed no significantly differences between each

groups (Fig. 7B, 1 hr vs. 2 hr, 3 hr and 24 hr, all groups compared

to each other), indicating that the low level of surviving bacteria in

the TiO2 (N)+L/24 hr groups is not attributed to the low

phagocytic efficiency (Fig. 7A). These results suggest that visible-

light induced photocatalysis on TiO2 (N) substrates handicapped

the amplification of anthrax in phagocytes.

Discussion

The antibacterial property of photocatalysts was primarily

induced under UV irradiation [5,18,19], and more recently by

visible-light illuminated conditions [9,20–25]. These studies

provide valuable observations for the bactericidal activity of

photocatalysts. Since these researches were mainly using labora-

tory E. coli strains as experimental materials, the potential

application to apply on the eradication of spores of pathogenic

bacteria, and especially the capability and the mechanism to

reduce their pathogenicity were rarely discussed. Here we used

spore forming bacillus bacteria as model systems to study the anti-

spore activity of the visible-light photocatalyst. Since B. anthracis is

a hazardous microorganism, in this study we first used B. subtilis, a

bacillus bacterium with natural habitat in the soil that is not

harmful to humans, as a surrogate for B. anthracis. We found that

TiO2 (N) exerted anti-spore effects against B. subtilis and all our

tested Bacillus species including B. cereus, B. thuringiensis and B.

anthracis, with similar killing-efficiencies among these bacteria.

These results suggest that B. subtilis, B. cereus, B. thuringiensis might

be useful as surrogates for further photocatalyst-mediated anti-

anthrax research. Even though the spore-killing efficiency is not

good enough as compared with other well-developed methods [4],

the contrast between the low spore-killing and a relatively high

reduction of pathogenicity, inspired us to further investigate the

underlining mechanism, by which it led us to find that the

photocatalysis could inactivate the LT and handicapped the spore

to multiply in the phagocytes. This is a finding not yet been

reported previously.

The molecular target of photocatalyst-induced damage on

bacteria is rarely discussed. It is shown that bacterial membrane

lipid components likely to be the cellular target of photocatalyst

induced ROS [5]. Using living E. coli as a model system, the

authors found that TiO2-mediated photocatalysis promoted

peroxidation of the polyunsaturated phospholipid component of

bacterial membranes and then further led to respiratory activity

loss and cell death [5]. Unlike vegetative cells, spores contain

strong resistance to almost all antibacterial agents [4,26,27], as first

observed by Koch over 100 years ago that B. anthracis spores could

survive boiling. In the century that followed, it was learned that the

protein components involving not only the composition of high

density spore coat, a multilayered structure surrounding the spore

that attributed to the resistance, but also the sensing responses to

the renewed presence of nutrients in the environment, the

condition under which the spore can convert to a growing cell

through a process called germination [17,27,28]. Thus, the

inactivation of a spore might be not just by disrupting the lipid

components; deteriorated protein function could be involved as

well. Photocatalysis-mediated protein dysfunction is rarely dis-

cussed. Evidence from enzyme-linked immunosorbent assays

(ELISA) indicates that photocatalysis could affect the antigenic

property of hepatitis B virus surface antigen and reduce its binding

to specific antibody [29]. In this present study, we demonstrate the

first time that photocatalysis could inactivate the bacterial exotoxin

LT efficiently. Anthrax LT is a major virulence factor beneficial

for the bacterium to establish initial infections in macrophages

[30,31]. Our Western blotting analysis revealed that both PA and

LF, two components of LT, remained intact after photoreactions,

indicating protein degradation does not play a major role in the

inactivation. Although evidences indicate that LT is not expressed

in anthrax spores [32,33], since both protein toxin and spores are

sensitive to photocatalysis, it seems likely that some of the spore

proteins might be also sensitive to the photoreactions. Further

investigation to identify the specific protein is needed.

Taken together, this study demonstrated that TiO2 (N)

substrates could inactivate both spores and toxin of B. anthracis

under illumination by ordinary light sources such as incandescent

lamps. Our results suggest that the suppressed amplification of B.

anthracis in phagocytes might be more important than the direct

killing for photocatalysts to reduce the pathogenicity of the spores.

These concepts might provide a new prospect to develop next

generation antimicrobial agents.

Figure 7. Surviving spores after clearance by macrophages.
Anthrax spores were treated to J774A.1 macrophage cells (MOI: 0.01
spores/cell). Surviving bacteria (CFU) that harvested from macrophage
cell lysate (A) or macrophage cell cultural medium (B) were shown.
Columns designated TiO2 or TiO2 (N) represent anthrax spores were
pretreated with photocatalysis on TiO2 and TiO2 (N) substrates,
respectively. Columns designated ‘‘+L’’ or ‘‘2L’’ represent experimental
conditions with or without light illumination, respectively. *P,0.05,
**P,0.01, compared to 1 hr groups of respective conditions (A).
doi:10.1371/journal.pone.0004167.g007
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Materials and Methods

Preparation of TiO2 substrates
Three types of films, TiO2, TiO22xCx and TiO22xNx, were

prepared in an ion-assisted electron-beam evaporation system

(Branchy Vacuum Technology Co., Ltd., Taoyuan, Taiwan). The

distance between the rotating substrate holder and the electron-

beam evaporation source was 550 mm. The chamber was

evacuated with a mechanical pump (ALCATEL-2033SD, LACO

Technologies, Salt Lake City, UT, USA) and a cryopump (Cryo-

Torr8H, ULVAC Cryogenics, Chigasaki City, Kanagawa Prefec-

ture, Japan) to a base pressure below 2.761024 Pa. The substrates

used were polished Si (100), quartz and glass coupons, which were

sputter-etched with argon ions (Ar+) for 5 minutes prior to the

deposition to remove any residual surface pollutants. The substrate

temperature was maintained at 300uC with a quartz lamp. The

TiO2 films were deposited in oxygen atmosphere (6.7 61023 Pa)

using rutile TiO2 (99.99%) as a source material. The nitrogen flow

for TiO22xNx films was 15 standard cm3 min21 through the ion

gun at a constant pumping speed and the chamber pressure was

4.4 61022 Pa. The carbon dioxide gas flow for TiO22xCx films

was 7 standard cm3 min-1 and the chamber pressure was

2.661022 Pa. The ion gun beam current of 10 mA and voltage of

21000 V was maintained by a Commonwealth Scientific IBS

controller. Sufficient energy and current of the ion beam are

critical to incorporate significant dopant concentration in the film.

Without ion bombardment, it is difficult for the dopant to compete

with the oxygen for incorporation into anatase titania. The

deposition rate was adjusted to 0.2 nm?s21 using a quartz crystal

monitor for all films deposited at a thickness of 1.2 mm. The three

types of films were prepared under the optimized conditions for

their categories of anatase crystallinity and dopant concentration

[34,35]. The structure and crystallinity of the films were

investigated using a Rigaku D/MAX-2500V 18 kW low angle

X-ray diffractometer (XRD) (Rigaku, Shibuya-Ku, Tokyo, Japan)

operating with Cu-Ka radiation at 40 kV and 150 mA and a

Renishaw 1000B Raman spectrometer equipped with a charge-

coupled detector (CCD) and a CW 532 nm wave length diode

pump solid state (DPSS) laser as the excitation source (Renishaw

plc, Representative Office, Nantun District, Taichung, Taiwan).

The UV-Vis absorption spectra were recorded on a Hitachi

3300H spectrophotometer (Hitachi Taiwan, Taipei, Taiwan).

Bacterial strains and culture
B. anthracis (ATCC 14186), which contains both pXO1 and

pXO2 plasmids that express functional lethal toxin (LT) and

edema toxin (ET), was grown and maintained as previously

described [16,36,37]. B. cereus (ATCC 13061) and B. thuringiensis

(ATCC 35646) were maintained and cultured in nutrient agar or

nutrient broth at 30uC [38,39], and B. subtilis (ATCC 39090) was

maintained and cultured in trypticase soy agar or broth at 37uC
[40]. All bacteria were stored in 50% medium and 50% glycerol

solution in freezers at 280uC before use. To reactivate bacteria

from frozen stocks, 25 ml bacterial stock solution was transferred to

a test tube containing 5 ml of freshly prepared culture medium

and then incubated at 30uC or 37uC under agitation overnight

(16–18 hr). Spores of B. anthracis were prepared as previously

described [41,42]. Overnight tryptic soy broth cultures of B.

anthracis were diluted to about 107 CFU/ml in phosphate-buffered

saline, and 0.1-ml aliquots were inoculated onto blood agar plates.

The agar plates were incubated at 25–37uC until 90–99% phase-

bright spores were observed by phase-contrast light microscopy

(see below). Spores were harvested and washed with cold sterile

distilled ionized (DI) water as previously described [41] and stored

in DI water at 4uC until use for up to 2 weeks, changing the water

at least once a week, or in the freezer at 220uC for up to a month.

The quality of spores was determined by two complementary

criteria previously established to validate the presence of dormant

spores [42]. The criteria consisted in the evaluation of (i) the

absence of vegetative cells (rods) determined by microscopic

examination as described, and (ii) the survival of spores in

hydrochloric acid (2.5 N). Spore preparations of B. subtilis, B. cereus

and B. thuringiensis were followed a similar protocol.

Photocatalytic reaction and detection of viable bacteria
In this study, bacterial concentrations were either determined

by the standard plating method or inferred from optical density

readings at 600 nm (OD600). For each Bacillus species, a factor for

converting the OD600 values of the bacterial culture to

concentration (CFU/ml) was calculated as follows. A fresh

bacterial culture was diluted by factors of 1021 to 1027, and

OD600 of these dilutions was measured. Bacterial concentrations of

these dilutions were determined by the standard plating method.

The OD600 values were plotted against the bacterial concentration

log values, and the conversion factors for the particular bacteria

were calculated from three independent measurements. For

example, the conversion factor for B. subtilis was calculated to be

16108 CFU/ml per OD600 by this method.

In order to determine the bactericidal effects of the TiO2-

related substrates, 200 ml of bacterial overnight culture was

transferred into 5 ml of culture medium and incubated at 37uC
until an OD600 of 0.3 to 0.6 (log phase) was reached. The bacterial

concentrations were calculated using the previously determined

conversion factor for the bacteria, and the cultures were diluted to

16105 CFU/ml with culture medium. One hundred microliters

(16104 CFU) was then applied to an area of approximately 1 cm2

of the different TiO2-related substrates using a plastic yellow tip.

The bacteria substrates were then placed under an incandescent

lamp (Classictone incandescent lamp, 60W, Philips, Taiwan) for

photocatalytic reaction. A light meter (model LX-102, Lutron

Electronic Enterprises, Taiwan) was used to record the illumina-

tion density. In the following photocatalysis experiments, the

bacteria solution was supplied by 5–10 ml additional distil water

every 5 minutes to maintain approximately 100 ml of total volume.

After the photocatalyst-killing for 25 minutes, the bacteria

containing solution approximately 85 ml was recovered from the

photocatalyst substrates using a tip, additional 60 ml fresh medium

was used to wash the remaining bacteria on the photocatalyst

substrates. Two bacterial containing solutions were mixed, diluted

and placed on agar plates. To test whether spores have different

efficiency to adhere on TiO2 substrates that might influence the

photocatalysis result, we analyze the spore recovery rates from

TiO2, TiO2 (C) and TiO2, TiO2 (N) substrates. We found that the

recovery rates are similar (data not shown), which has no statistic

significant among these groups. In the dose-dependence experi-

ments, illumination was carried out for 5 min at distances of 5, 10,

and 15 cm from the lamp, corresponding to the illumination

densities of 36104, 1.26103, and 36102 lux (lumen/m2)(90, 30,

and 10 mW/cm2), respectively. In the kinetic analysis experi-

ments, illumination was carried out for 1, 5, 10, 15, and 25 min at

a distance of 5 cm, corresponding to an illumination density of

36104 lux (90 mW/cm2). Unless specified, illumination was

carried out in a 4uC cold room to prevent over-heating of the

photocatalyst substrates and prevent drying. After illumination,

the bacterial solutions were recovered from the photocatalyst

substrates, and an aliquot of fresh culture medium was used to

collect the residual bacteria on the substrates. The two bacterial

solutions were pooled to make a total volume of 150 ml. The
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bacterial concentration was determined by the standard plating

method immediately after the bacterial collection, and the

percentage of surviving bacteria was calculated. In spore

experiments, 16104 CFU (16105 CFU/ml in 100 ml) were used,

and the procedures followed the same protocols as in the live

bacteria experiments.

Mouse model
Six to 8 week-old C57BL/6J mice were purchased from the

National Experimental Animal Center (Taipei, Taiwan) [37,43].

The methods used in bacteremia experiments were modified from

previous descriptions [9]. Mortality of C57BL/6J mice from

various anthrax spores treatments (from 16106 to 16107) was

recorded within one week to serve as reference points. To

determine the anti-bacterial effect of TiO2 (N), each mouse

received an intravenous injection of 16105 CFU spores of B.

anthracis, a lethal dose for mice, with or without pretreatment by

photocatalysis on TiO2 (N) or TiO2 substrates (36104 lux,

10 minutes at 4uC). In the lethal toxin (LT) experiments, mortality

of mice after a lethal dose of LT was performed based on

previously described methods [37]. Each mouse received an

intravenous injection of LT (100 mg/g, LF:PA = 1:5), a lethal dose

for mice, with or without pretreatment of photocatalysis on TiO2

(N) or TiO2 substrates (36104 lux, 10 minutes at 4uC or 25uC).

The mortality of mice was then recorded. During the photoca-

talysis reaction, the distance between lamps with bacteria- or LT-

containing photocatalyst substrates was 5 cm, corresponding to an

illumination density of 36104 lux (or 90 mW/cm2). Relative

protein levels of PA and LF in the LT mixtures used in animal

experiments were detected by Western blot using rabbit polyclonal

anti-PA and anti-LF antibodies, and then probed by secondary

horseradish peroxidase-conjugated goat anti-rabbit immunoglob-

ulins [16,44,45]. The gel intensities of PA and LF were measured

using Image J software (version 1.32; National Institutes of Health,

USA). The Animal Care and Use Committee of Tzu-Chi

University approved the protocol of the mice experiments.

Cytotoxicity analysis
Cytotoxicity of LT was measured following a previously

described method [16]. In brief, a cytotoxic dose of LT (10 mg/

L, LF:PA = 1:5) with or without photocatalysis pretreatment on

TiO2 and TiO2 (N) thin film was used to treat mouse macrophage

J774A.1 cells. Three hours after the LT treatments, cell viability of

J774A.1 cells were measured using a WST-1 kit (Roche,

Mannheim, Germany), following the instructions provided by

the manufacturer. Photocatalysis of purified LT was carried out as

described in mouse experiments (36104 lux, 10 min at 4uC).

Phagocytosis analysis
Anthrax spores is normal saline (100 ml, 16105 CFU/ml) were

placed on cover glass, TiO2 and TiO2 (N) coated thin films [9],

respectively. The spore-photocatalyst mixtures (100 ml) were then

illuminated with visible light (Classictone incandescent lamp, 60W,

Philips; 90 mW/cm2; lamp-target distance 10 cm) for 30 minutes.

After illumination, the spore containing solutions (85 ml) were

recovered from the photocatalyst substrates, and an aliquot of

normal saline (60 ml) was used to collect the residual spores on the

substrates. The two spore solutions were pooled to make a total

volume of 145 ml. This spore solution was then added into one

well of a six-well cell culture dish that containing confluent murine

macrophage J774A.1 cells (16106 cells/well) (MOI: 0.01 spores/

cell). After phagocytosis was carried out for one, two and three

hours, respectively, culture medium was removed, and 200 ml cell

lysis buffer (100mM Tris-HCl [pH 7.4], 10mM MgCl2, 100mM

NaCl, 0.2% sucrose, 0.5% Triton X-100) that was modified from

previous literatures [46,47], was then added to release the cell-

engulfed or cell-bound spores. Additional 100 ml fresh medium

was used to further collect the residual spores on the dishes. Two

spore containing solutions were mixed and placed on agar plates.

Cell culture medium (DMEM) without antibiotics and serum

supplements was used in this analysis.

Statistical analysis
All results were calculated from data of at least three

independent experiments. A t-test was used to assess the

significance of differences in results of anti-microbial effects. A P

value of less than 0.05 (P,0.05) was considered statistically

significant. The statistical tests were carried out and output to

graphs using Microsoft Excel (Microsoft Taiwan, Taipei, Taiwan)

and SigmaPlot (Systat Software, Point Richmond, CA, USA)

software.
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