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Abstract: Microglia are the first line of defense at the level of the central nervous system (CNS).
Phenotypic change in microglia can be regulated by various factors, including the orexin system.
Neuroinflammation is an inflammatory process mediated by cytokines, by the lack of interaction of
specific receptors such as the OX2-OX2R complex, caused by systemic tissue damage or, more often,
associated with direct damage to the CNS. Chronic activation of microglia could lead to long-term
neurodegenerative diseases. This review aims to explore how tocopherol (vitamin E) and the orexin
system may play a role in the prevention and treatment of microglia inflammation and, consequently,
in neurodegenerative diseases thanks to its antioxidant properties. The results of animal and in vitro
studies provide evidence to support the use of tocopherol for a reduction in microglia inflammation
as well as a greater activation of the orexinergic system. Although there is much in vivo and in vitro
evidence of vitamin E antioxidant and protective abilities, there are still conflicting results for its use
as a treatment for neurodegenerative diseases that speculate that vitamin E, under certain conditions
or genetic predispositions, can be pro-oxidant and harmful.

Keywords: vitamin E; neuroprotection mechanisms; neuroinflammation; central nervous system

1. Introduction

Oxidative stress refers to a condition caused by the imbalance between oxidants
and antioxidants in a biological system [1]. Reactive oxygen species (ROS) are secondary
metabolites and arise from various essential biological processes, such as mitochondrial
respiration, yet they are potentially harmful to cells. Consequently, eukaryotic organisms
present various antioxidant defenses to avoid possible damage induced by ROS. They
include, for example, superoxide dismutase (SOD) and catalase, glutathione peroxidase
(Gpx) and peroxyroxins, as well as non-enzymatic factors including glutathione, flavonoids
and vitamins [2,3]. Oxidative stress occurs when the enzymatic defenses fail to counteract
the production of ROS causing damage. The result of this imbalance is an excess of ROS or
a malfunction of the antioxidant system [4]. Although oxygen is an essential building block
for life and is involved in signal transduction, gene transcription and other cellular activities,
it also has a deleterious effect on biomolecules when found in the form of free radicals and
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ROS [1]. Another key molecule, involved in oxidative stress, is nitric oxide (NO); it regulates
the relaxation and proliferation of vascular smooth muscle cells, leukocyte adhesion,
angiogenesis, platelet aggregation, thrombosis, vascular tone and hemodynamics [5,6].
At physiological concentrations in the body, ROS are regulators of various physiological
functions. In a chronic state of oxidative stress, reactive species can become harmful
because they oxidize proteins and lipids and can damage DNA [7–9]. Reactive species may
also mediate signaling, leading to microglia and primary astrocyte activation [10], resulting
in a high secretion of pro-inflammatory cytokines and chemokines [11–13]. Numerous
studies report that there is a significant connection between ROS and neurodegenerative
diseases as well as aging [14–17], further suggesting a significant role of ROS and oxidative
stress through a deleterious effect on biomolecules, in particular, on proteins. For example,
in Alzheimer’s Disease (AD), there is the deposition of protein aggregates, extracellular
amyloid plaques (Aβ), intracellular tau (τ) or neurofibrillary tangles [18,19]; in Parkinson’s
Disease (PD), there is an impairment of dopaminergic neurons (DA) [20]; in amyotrophic
lateral sclerosis (ALS) and Huntington Disease (HD), the mechanisms are still uncertain,
but the substantia nigra is thought to have elevated levels of oxidized lipids, proteins and
DNA [21–25].

2. The Orexin System

Hypocretins 1 and 2 (also known as orexin A and B, respectively, with the abbrevia-
tions OXA and OXB) are hypothalamic neurotransmitters involved in various regulatory
processes. The precursor of hypocretin formation is prepro-orexin, which generates OXA
and OXB through a proteolytic cleavage process [26,27]. Currently, two hypocretin re-
ceptors have been identified, the hypocretin 1 receptor (HcrtR1) and the hypocretin 2
receptor (HcrtR2) (i.e., the orexin 1/OX1R receptor and the orexin 2/OX2R receptor); these
are G protein (OX1-OX2) coupled receptors [27–29]. Both OXA and OXB bind to HcrtR2
(OX2R), while OXA preferentially binds to HcrtR1 (OX1R) [27,30]. A possible imbalance
of the hypocretin system can be associated with multiple diseases [31], narcolepsy [32,33]
and emotional disorders, such as depression [28,34]. Furthermore, and of fundamental
importance, they play an important role in neuroprotection by inhibiting oxidative stress
and the inflammatory response through their type 1 and 2 receptors (OX1R and OX2R).
In particular, some studies show that treatment with orexin A reduces the secretions of
IL-1β, IL-6 and IL-8, as well as the production of reactive oxygen species (ROS) [35], which
is why hypocretins may play a direct role in neurodegenerative diseases including PD and
AD, although these mechanisms are less well known [36]. The functions of orexins prove
to be different because of the multiple pathways involved, one of the main functions of
orexin is neuroprotection [37]. The orexin system could lead to a decrease in oxidative
stress, reducing the likelihood of neurodegenerative diseases. Currently, several in vitro
studies have shown that OXA promotes both neuronal survival and neuronal protection
from death caused by oxidative and hypoxic stress [38]. There are still few studies on
the role of orexin on oxidative stress. Among those analyzed [39–41], we find a study by
Butterick et al. [39] that shows how, in a hypothalamic cell line, the use of OXA leads to
changes in cell survival following oxidative stress, particularly after H2O2; this study, in
fact, has demonstrated that OXA is a neuroprotective molecule, partly because it reduces
caspase-committed apoptosis and lipid peroxidation. There are also further studies regard-
ing the orexin system and the reduction in oxidative stress, such as s study by Wang et al.,
which demonstrates how a neuroblastoma cell line reduces its oxidative stress induced
by H2O2 following pretreatment with OXA [42]. H2O2 treatment is commonly used to
induce oxidative stress [43]. These results indicate that orexin-A protects neuroblastoma
cells from H2O2-induced neurotoxicity; moreover, the treatment with H2O2 reduces the
antioxidant activity of SOD. It has been seen that this was attenuated by the pretreatment
with OXA, in line with a study by Bihamta et al. conducted on cardiomyocyte cells [44].
This is believed to be thanks to the ability of OXA to activate the PI3K/MEK1/2/ERK1/2
signaling pathway and to attenuate the H2O2-induced increase in apoptosis and decrease
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in SH-SY5Y cell viability [42]. In another set of experiments, Hah Y.S et al. showed how the
level of ROS in TNF-α-induced fibroblast-like synoviocytes was found to be reduced in the
presence of orexin A. It is thought to be related to the NF-κB pathway [45]. Therefore, the
limiting effect of orexin A on the inflammatory response is exerted via the classic NF-κB
signaling pathway. Consequently, OXA may be useful for treating neurodegenerative
diseases associated with oxidative damage. However, further in vivo studies are needed to
evaluate the clinical significance of OXA prior to its clinical use.

3. Orexin in Microglia Activation

Microglial cells are monocyte–macrophage cells resident in the brain. In brain tissue,
under physiological conditions, microglia cells are found in a quiescent state throughout
the brain parenchyma, accounting for about 15% of the cell population [46], they are respon-
sible for maintaining brain homeostasis by ensuring and controlling neuronal tropism [47].
At the morphological level, the microglia have narrow soma and long dynamic branches,
which act as sentinels of the surrounding microenvironment. After appropriate stimula-
tion, the microglial cells continue the differentiation process, previously interrupted to
maintain the state of quiescence, to become immunocompetent phagocytic cells, that is,
they undergo a rapid activation assuming an amoeboid form [48]. There may be different
phenotypes of activation of microglia, characterized by a multiplicity of responses such
as the phagocytosis, migration, proliferation and release of bioactive molecules [49]. In
particular, it is possible to distinguish the classic M1-type phenotype (classic activation)
associated with the production of pro-inflammatory cytokines, and the alternative M2-type
phenotype (alternative activation), associated with the production of anti-inflammatory
cytokines [50,51]. In conditions of acute inflammation, M1 cells are activated by LPS/IFN-γ
and increase pro-inflammatory mediators, including IL-1β, IL-6, ROS, iNOS and TNF-α,
as well as IL-8 [52], inducing a state of inflammatory tolerance. The M2 activation state
is induced by parasitic products or associated signals (IL-4 and IL-13) with a long-term
function for resolution and repair [53–57]. In this step, cellular signaling occurs through
the IL-4Rα receptor that determines the inhibition of the NF-κB signaling produced by
the activation of M1. In fact, M2 macrophages facilitate the resolution of inflammation
through anti-inflammatory factors (for example IL-10, IL-13, TGF-β, VEGF, EGF, Arg1)
to deactivate cellular phenotypes of inflammation and restoring homeostasis [54,58–60].
Increased levels of cytokines and chemokines, prostaglandin (PG) and prostaglandins E2
(PGE2), ROS and reactive nitrogen species, produced during inflammatory responses, lead
to blood–brain barrier (BBB) damage, resulting in further cell damage but also a loss of
neuronal function [61]. This type of activation is observed after brain injury or infection,
as well as during the development of neuropathies such as AD, stroke or demyelinating
diseases such as multiple sclerosis (MS), or even in the event that there is a lack of cells me-
diated by communication receptors. Consequently, in response to stress, injury or absence
of receptor interaction [62], microgliocytes assume a pro-inflammatory phenotype that
could lead to profound neuronal damage if uncontrolled or dysregulated [61,63]. Therefore,
maintaining homeostasis at the microglial level is important. The orexin system also con-
tributes to this, in fact, recent studies affirm that they act by modulating microglia, playing
a fundamental role in neuroprotection [64,65]. Therefore, a reduction in the quantity of
orexins could lead to an increase in microglial dysfunction with a consequent increase in
the probability of developing neurodegenerative diseases [66]. As mentioned, the orexin
systems play a pivotal role in neuroprotection and neuroinflammation [67,68]. OXA and
OXB regulate the homeostatic mechanisms of energy balance and metabolism [64] through
the activation of two G proteins (OX1, OX2) coupled to receptors, OX1R and OX2R, respec-
tively [68]. Recent studies in neuronal cell cultures have shown that orexin plays a role in
neuroprotection [64,65] by reducing lipid peroxidation, apoptosis and neuronal inflamma-
tion [39,69–71]. The data suggest that the neuroprotective effects of orexin might be based
on modulation of microglia, the brain’s resident immune cells. OX2, also known as CD200,
is a protein found in the first line of immune defense that belongs to the immunoglobulin
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superfamily of cell surface proteins [72], which is mainly expressed by neurons [73], and
interacts with a receptor, OX2R (CD200R), found mainly in microglia in the CNS [74,75].
Previous studies have indicated that OX2R activation reduces the activity of myeloid cells
such as microglia and macrophages [76,77]. The interaction of OX2 with its receptor acts to
suppress inflammatory responses [76,78–80]. OX2-deficient mice have been shown to ex-
hibit a greater microglia response [73,81] and it has also been shown that CNS inflammation
and neuronal degeneration are significantly exacerbated by OX2-OX2R-mediated silencing
of macrophages [82]. Hence, OX2-OX2R signaling is crucial in the regulation of peripheral
inflammation-induced neuroinflammation and neurodegeneration [73]. Furthermore, OX2
has been shown to play an important role not only in the control of autoimmunity and
inflammation, but also in the development and spread of cancer, hypersensitivity and
spontaneous fetal loss [83]. OX2-OX2R significantly inhibited the excessive activation
of microglia and profoundly affected the microenvironment, including the decrease in
the mRNA levels of proinflammatory factors (Il-1β, Il-6 and TNF-α) and the increase in
levels mRNA of anti-inflammatory regulators (Il-4) [84]. Recent studies show that the
reduction in the inflammatory response is given by the ability of the OX2/OX2R pathway
to modulate the inflammatory response by controlling the activation of MAPK in vitro and
in vivo [85,86]. A lack of OX2R activation in inflammatory situations produces an exagger-
ated microglia response, a phenomenon that has also been termed microglia priming [87].
In inflammatory situations, the absence or near absence of OX2-OX2R interaction will pro-
duce microglia priming mediated by an increase in microglial LPS/IFNγ receptors or other
microglial PAMP/DAMP receptors such as Toll-like receptors (TLRs). This would also
result in increased IFNγ-induced IL-6 production, increased iNOS-positive macrophages,
and increased macrophage-mediated neuronal death [82]. Furthermore, according to some
studies, orexin A exerts its anti-inflammatory actions with a direct effect on the signaling on
hypothalamic cell line (designated mHypoA-1/2) [88]. Under normal circumstances, the
pro-inflammatory agonist LPS increases the production of TNF-α in the BV-2 microglia cell
line. In a study by Xiong et al. [71], the pretreatment of the BV-2 cell line with OXA before
LPS stimulation led to a TNF-α reduction [89]. Alterations between OX2 and its OX2R
receptor were found in both PD and AD. Precisely in this regard, studies have been carried
out to study how the OX2-OX2R system determines a greater probability of the appearance
of neurodegenerative diseases [67,90]. The well-established PD model that leads to the
neurodegeneration of dopaminergic neurons is induced by intragastrically administered
rotenone [91] or 6-hydroxydopamine (6-OHDA). It has been seen that in cases of enhanced
OX2R blocking antibody neurotoxicity, causing an increase in some species of free radicals
such as superoxide [92]. In addition to Parkinson’s-like symptoms, a 6-OHDA injection
also induced a marked activation of microglia [93]. These findings and observations from
other groups over many years [94–98] have provided a significant support for the statement
that activated microglia play an important role in the onset and/or progression of PD. AD
is morphologically distinguished by the presence of senile plaques in the brain, mainly
composed of several species of Aβ [99,100]. OX2 levels were found to be decreased in the
AD brain mainly in the hippocampus and inferior temporal gyrus [90,101]. Data obtained
from the brain tissues of AD patients showed that there is not only an OX2 deficiency but
also an OX2R deficiency [90]. These results in several animal studies suggest that, therefore,
in the brain, the enhancement of the OX2-OX2R system in AD, PD and also against other
neurodegenerative diseases could be therapeutic.

4. Vitamin E and Microglia Mediated Neuroprotection

Vitamin E is a fat-soluble vitamin that plays the role of antioxidant against oxidative
stress. As summarized in Table 1, the following eight isoforms of vitamin E have been
identified: α-, β-, γ- and δ-tocopherol (αTOC, βTOC, γTOC and δTOC) and α-, β-, γ- and
δ-tocotrienol (αT3, βT3, γT3 and δT3) [102,103]. The most studied isoform of vitamin E
is α-Tocopherol (αTOC). The difference between the two major groups is the presence
of an unsaturated side chain with three double bonds in the farnesyl isoprenoid tail of
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TOCs and an isoprenoid tail with three double bonds in T3s [104,105]; moreover, α-, β-, γ-
and δ- are differentiated by the number and position of methyl groups on the chromanol
ring. Vitamin E is known for its antioxidant properties and for its role in neuroplasticity,
which could explain its neuroprotective effects. An “antioxidant” is any substance that can
protect against oxidative stress damage caused by free radicals. Older cells decrease their
ability to prevent and reduce oxidative damage. Thus, cellular senescence is associated
with increased levels of oxidants, decreased body defenses against ROS and decreased
effectiveness of repair mechanisms; factors that result in increased end products of ox-
idative damage [104]. The neuroprotective role of vitamin E in the brain, therefore, has
been linked to neurogenesis, neuronal differentiation, hippocampal synaptic function and
cell signaling pathways [105]. Antioxidants act in the following two ways: they prevent
neuronal death due to oxidative stress (scavenging free radicals and, thus, preventing lipid
peroxidation) and reduce the activation of transcription factors [106]. Transcription factors
(themselves activated by oxidative stress) [107] are involved in the control of nerve cell
survival and antioxidant-induced neuroprotection, although, to date, this mechanism is not
fully understood [108]. Tocopherol is the most effective fat-soluble antioxidant, breaking
chain reactions initiated by free radicals between Polyunsaturated fatty acids (PUFAs) in
biological membranes, i.e., counteracting free radical reactivity by donating a hydrogen
atom from an intact hydroxyl group to the free radical, thus stabilizing it [109]. Each toco-
pherol molecule can donate two electrons [110] before being “consumed”; the tocopherol
molecule is then reduced to its previous state and can then be reused. Importantly, this
reduction process is most likely carried out by ascorbic acid [110], which is why there are
many studies reporting the antioxidant capacity of vitamin E linked to vitamin C [111]. A
combination of different antioxidants, therefore, may offer additional benefit [112] because
antioxidants may together have different protective effects. The long-term treatment with
vitamin E tends to increase the concentration of tocopherol in the brain over time, thus,
increasing its effectiveness as an antioxidant [113]. Clinical studies suggest that vitamin E
would play an important role in the prevention of neurodegenerative diseases [114] thanks
to its ability to act at the level of the microglia, causing a reduction in its activation, reducing
inflammation [115–117]. This review aims to explore the pivotal role that tocopherol and
the orexin system may play in the prevention and treatment of microglia inflammation
and, consequently, in neuro-degenerative diseases.

Table 1. Biological activities of each type of vitamin E.

Type of Vitamin E Biological Activity Study Model References

α-tocopherol Reduces astrocytosis and
microglia activation Cell rat hippocampus Ambrogini et al. [108]

α-tocopherol Inhibits Microglia Activation Pheochromocytoma cell line:
PC12 cells Li et al. [118]

α-tocopheryl acetate Increases microglial activation
and RAGE expression Astroglial cell of mice Bialowas-McGoey et al. 2008 [119]

α-tocopherol Blocks glutamate release Sprague Dawley rats Barger et al. 2007 [120]

α-tocopherol
Attenuates expression of COX-2

and the production of
proinflammatory cytokines

Cell rat hippocampus Annàhazi et al. 2007 [121]

α-tocopherol Reduces proinflammatory
cytokines and production of ROS Primary glial cultures Stolzing et al. [122]

α-tocopherol Decreases lipid peroxidation and
IL-6 secretion BALB/c mice Godbout et al., 2004 [123]

Tocotrienols Prevents death of HT4 cells
treated with glutamate HT4 hippocampal neuronal cells Sen et al., 2000 [124]
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Table 1. Cont.

Type of Vitamin E Biological Activity Study Model References

δ-tocotrienol
Reduces NO production and

IL-1β expression, inhibits PGE2
expression

BV2 microglia cells Tan et al., 2020 [125]

α-, γ- and
δ-tocotrienol Reduce NO release BV2 microglia cells Tan et al., 2011 [126]

α-tocopherol Attenuates COX-2 protein
synthesis BV2 microglia cells Egger et al. [127]

γ-Tocopherol Inhibits cyclooxygenase activity
and nitrite accumulation Murine RAW264.7 macrophages Jiang Q et al., 2000 [128]

The neuroprotective roles of vitamin E have been well documented in both in vivo
and in vitro studies [113,116–118]. As antioxidants, tocopherols and tocotrienols protect
tissue lipids from free radicals by reducing chemical species such as peroxyl, hydroxyl and
superoxide radicals and singlet oxygen. Vitamin E has often been referred to as nature’s
best chain antioxidant. Typically, one molecule of the vitamin protects about 100 membrane
phospholipids [129]. In vivo, vitamin E and other endogenous antioxidants work in concert
or synergistically by maintaining a reduced environment [130]. The effects of vitamin E on
microglial cells have been studied in the short term, most studies, in line with the idea that
microglial activation is a harmful process, have shown that vitamin E suppresses inflamma-
tory activation of microglia, thus providing some neuroprotection [115,131]. Recent studies
highlight how vitamin E is able to improve the various vital functions of N9 microglial
cells; this includes the enhancement of protein turnover, the regulation of oxidative activity,
the amount of proinflammatory agents and the absorption and degradation of extracellular
protein material [132–134]. These effects could be explained not only by pure antioxidant
effects [135], but also by the role of vitamin E as a hormone-like substrate, as proposed
by Azzi et al. [136]. As regards the various isoforms at the level of the central nervous
system, alpha tocopherol is the most biologically active form; in fact, a-tocopherol reduces
the radicals of intracellular peroxide induced by stimulation with LPS at the level of the
microglia [137]. As far as other isoforms are concerned, for example, tocotrienols may
offer a greater bioavailability than tocopherols because their unsaturated hydrocarbon tails
allow for better penetration into fatty tissue such as the brain [138]. A drastic decrease
in ROS production by α-tocopherol has already been demonstrated in macrophages and
is related to the inhibition of protein kinase C (PKC) [139]. The inhibition of PKC leads
to the inhibition of NADPH-oxidase assembly [140] and, thus, reduces the production
of superoxide. α-tocotrienol protects neurons from a glutamate-induced death better
than γ-tocotrienol [141]. Interestingly, this effect is not related to the differential uptake
of δ-tocotrienols in cells: γ-tocotrienols are absorbed more efficiently by neurons than α-
tocotrienol [142]. To directly show the involvement of vitamin E in neuroprotection through
the modulation of microglial responses, several papers have treated microglia cells with
vitamin E alone, or with LPS alone, or pre-treated with vitamin E and then stimulated with
LPS [115], the most commonly used pro-inflammatory stimulus for microglia, both in vitro
and in vivo. Various studies show that vitamin E significantly suppressed LPS-induced
microglia activation by decreasing the associated NO production and induction of IL-1α,
TNF-α and iNOS expression. Indeed, Li et al. showed that incubating cells with 50 µM of
vitamin E for 24 h significantly inhibited LPS-induced NO production (68%) and also re-
duced the expression of IL-1α (89%), TNF -α (32%) and iNOS (55%) [118]. More specifically,
it was seen that the δ-tocotrienol taken up by BV2 microglia was 71% retained in BV2 cells
even 24 h after its removal. The inhibitory effects of δ-tocotrienol on NO production by BV2
microglia could be partly attributable to δ-tocotrienol retention, as inhibition continued
48 h after stimulation with LPS [143]. Indeed, it showed that although various isoforms
of tocotrienol at various concentrations were able to reduce the NO produced by BV2, δ
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-tocotrienol has the most potent effect, reducing NO levels by approximately 50%, even
after 48 h [138]. Some studies have reported that vitamin E reduces the expression of iNOS,
on human monocytic cells [144]. Indeed, vitamin E inhibits the phosphorylation of p38
MAPK and the activity of NFκB [115]. The vitamin E-induced inhibition of microglial
responses after stimulation with LPS is, therefore, linked to the suppression of activation
of p38 MAPK and NFκB, both of which regulate cytokine and iNOS expression [115]. In
addition, vitamin E has also been reported to interact with the cyclooxygenase-2 (COX-2)
signaling pathway, which is linked to pro-inflammatory signals [145] in BV2 cells. In this
regard, several studies, including seminal observations from the Ames laboratory [146,147],
suggest that c-tocopherol possesses significant anti-inflammatory activities that are distinct
from its classical free radical defense action. Both c-tocopherol and δ-tocotrienol are more
potent than a-tocopherol in inhibiting the catalytic function of Cyclooxygenase (COX) in
BV2 cells [146]. COX, particularly inducible COX-2, are key inflammatory enzymes that me-
diate the conversion of arachidonic acid to prostaglandin E2 (PGE2) [148]. Finally, among
the protective effects, a recent publication demonstrated that δ-tocotrienol is able to inhibit
inflammation activation and subsequent IL-1β production in iJ774 macrophages [117]. The
production of IL-1b, a key cytokine that mediates the inflammatory response, was found
to be significantly reduced in vitamin E-treated microglia after 7 days in vitro, confirming
the results of previous studies [115,131]. These findings indicate that antioxidants can
be used to mitigate cytokine expression in the brain and protect against damage due to
microglia activation. Regarding the ability of tocopherol to modulate the cell signaling
pathways, in vitro and in vivo models have shown that vitamin E lowers the inflammatory
responses that induce activation of microglia [115,149]. The chronic activation of microglia
probably plays an important role in neurodegenerative disorders related to oxidative
stress such as PD, AD [150,151] and ALS [115,152]. Vitamin E would, thus, suppress the
harmful activation of microglia, thus offering possible neuroprotection [131]. Despite this,
there are some studies that claim that antioxidants and their radicals often undergo other
side reactions that can be classified as pro-oxidants [153,154]. One of the mechanisms
hypothesized by Miller et al. [150] is that vitamin E supplementation has a pro-oxidant
effect. There is a potential for vitamin E compounds to act as pro-oxidants, particularly
the tocopheroxyl radical [155]. When the concentration of the tocopheroxyl radical is high
enough, several undesirable side reactions can occur, which, in turn, can initiate a chain
reaction that increases lipid peroxidation. In suspensions of the low-density lipoproteins
isolated from blood, vitamin E can accelerate the peroxidation of polyunsaturated fatty
acids [156]. The pro-oxidant radicals of vitamin E analogues caused intracellular LPO, GSH
oxidation and cytotoxicity, which were prevented by an antioxidant [157]. A pro-oxidant
effect of high-dose vitamin E may explain the increased mortality observed in adults taking
high-dose vitamin E supplements for more than one year [150]. This suggests that the
current recommendations for the maximum vitamin E dosage of 1000 mg/day of any form
of α-tocopherol supplement (corresponding to synthetic vitamin E 1100 IU/day or natural
vitamin E 1500 IU/day) should be revised in light of the new data [158].

5. Vitamin E in the Orexin System

There is still little evidence for this concept, but several studies correlate vitamin
E with the hypocretin system. For example, a work conducted by Sanita Masoudi et al.
studies the effect of an AS03 adjuvanted influenza vaccine (Pandemrix) against H1N1 swine
flu. ASO3, a squalene-based immunological adjuvant used in various vaccine products,
also contains α-tocopherol [155]. It has been hypothesized that α-tocopherol, through
Nrf2 activation in neuronal cells, affects hypocretin expression and turnover. Factor 2,
related to nuclear erythroid factor 2 (NRF2), is a transcription factor [159]. Nrf2 triggers
the expression of cytoprotective genes, i.e., the active catalytic subunits of the constitutive
proteasome, by binding to the antioxidant response element (ARE) [160]. Activating
this pathway protects cells from oxidative stress-induced cell death. Increased oxidative
stress leads to the death of neuronal cells during the pathogenesis of various chronic
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neurodegenerative diseases, such as AD, PD, HD and amyotrophic lateral sclerosis [161].
It was found that hypocretin also has an ARE site in its promoter region and could,
therefore, be activated in a Nrf2-dependent manner [162]. It has been observed that the
α-tocopherol AS03 component activates Nrf2 in neuronal cells that leads, on the one hand,
to a greater expression of hypocretin with the consequent turnover of hypocretin and the
formation of many hypocretin-specific peptides in the cells [162]. This could be achieved
in two ways. On the other hand, α-tocopherol can freely cross the blood–brain barrier
by increasing the amount of hypocretin with a consequent increase in the level of the
educt. Moreover, α-tocopherol could influence the turnover of hypocretin resulting in
high hypocretin fragments (the product). This underlines the potential of α-tocopherol to
impart the increased formation of hypocretin fragments. This indicates that α-tocopherol
has the potential to increase the amount of specific hypocretin fragments by increasing the
expression of hypocretin and, in parallel, increasing the turnover of de novo synthesized
hypocretin. However, in cases of a particular genetic predisposition, the use of vitamin E
could be associated with an increase in narcolepsy [162]. Narcolepsy is closely associated
with a specific human leukocyte antigen (HLA) allele. Of patients with narcolepsy, 90–100%
carry HLA-DQ0602, a heterodimer encoded by DQA1 * 0102 (α chain) and DQB1 * 0602 (β
chain) [159,160]. Due to this high association with HLA-DQ0602, narcolepsy is thought
to be caused by an autoimmune-mediated process [161,162]. However, it is assumed that
T cell mediated autoimmunity affects hypocretin neurons and could lead to the loss of
hypocretin and, thus, to the development of narcolepsy [163,164]. In cases of genetic
predisposition (DQB1 * 602), the hypocretin specific peptides/fragments are presented
with greater affinity to the HLA subtype DQB1 * 602 on the cell surface and recognized by
the immune system as foreign, which ultimately leads to the destruction of the respective
cells. However, tocopherol by itself is not considered inductive to narcolepsy. It must
be considered as an important factor in a multifactorial process, such as the interaction
between genetic predisposition (DQB1 * 602), and the abrupt increase in the concentration
of tocopherol [155].

As summarized in Figure 1, orexins act, at the neuronal level, on OX2, a G protein
coupled to the OX2R receptor, located at the level of the microglia. A possible imbalance
of the hypocretin system can be associated with the absence of the interaction between
OX2 and its OX2R receptor, which causes the microglia to trigger a proinflammatory M1
phenotype, with the consequent formation of interleukins, cytokines and ROS typical of
an inflammatory response, which could lead to an increased likelihood of developing
neuro-degenerative diseases. However, a correct interaction between the G protein and its
receptor, mediated by orexins, determines an anti-inflammatory response of the microglia
towards an M2 state and the production of secondary typical metabolites, providing
neuroprotection. We have seen how the use of vitamin E can act directly both at the
microglia level, causing a shift from the M1 state to the M2 state, but also at the level of the
orexinergic system [160–165]. Despite the few studies published to date, it is hypothesized
that vitamin E is involved in the activation of the NRF2/ARE pathway, which appears
to be linked to the orexin system, causing an increase in its turnover and formation, thus
providing greater neuroprotection.

6. Conclusions and Future Scenarios

This mini review provides further support for the potential protective effects of vita-
min E on neuroinflammation, the orexin system and its correlation with neurodegenerative
diseases. Therefore, vitamin E could help reduce the chances of developing neurodegen-
erative diseases thanks to its fundamental role on microglia and its correlation with the
orexin system. Further studies need to be conducted to better understand the mechanisms
involved in the neuroprotective role of vitamin E and the benefit of its integration in our
diet.
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