
Role Slices: A Notation for RBAC Permission

Assignment and Enforcement

J.A. Pavlich-Mariscal, T. Doan, L. Michel, S.A. Demurjian, and T.C. Ting

Department of Computer Science & Engineering, The University of Connecticut,
Unit-2155, 371 Fairfield Road, Storrs, CT 06269- 2155

jaime.pavlich@uconn.edu

{thuong, ldm, steve, ting}@engr.uconn.edu

Abstract. During the past decade, there has been an explosion in the
complexity of software applications, with an increasing emphasis on soft-
ware design via model-driven architectures, patterns, and models such as
the unified modeling language (UML). Despite this, the integration of se-
curity concerns throughout the product life cycle has lagged, resulting in
software infrastructures that are untrustworthy in terms of their ability
to authenticate users and to limit them to their authorized application
privileges. To address this issue, we present an approach to integrate
role-based access control (RBAC) into UML at design-time for permis-
sion assignment and enforcement. Specifically, we introduce a new UML
artifact, the role slice, supported via a new UML role-slice diagram, to
capture RBAC privileges at design time within UML. Once captured,
we demonstrate the utilization of aspect-oriented programming (AOP)
techniques for the automatic generation of security enforcement code.
Overall, we believe that our approach is an important step to upgrading
security to be an indispensable part of the software process.

1 Introduction

In recent years, the importance of security in software systems has risen to a high
level. The typical approach of integrating security into software applications at
latter stages of the process can lead to serious security flaws. In order to minimize
this problem, security must be considered as a first-class citizen throughout the
software process. The issues that must be considered when adding security to
a software application include: security policy definition to capture the security
requirements using tools and artifacts to define and check for consistency in the
security rules in order to minimize errors; and, secure application implementation
to automatically generate security enforcement code that realizes and integrates
the security policy with the application code.

In support of security policy definition, we have employed the unified mod-
eling language, UML [17], which is the de facto standard for software modeling.
In UML, while there are parallels between security and UML elements, direct
support for security specification is not provided. Our ongoing work [9,8,7] has
focused on the inclusion of RBAC[12] and MAC[4] by aligning the concept of role

S. Jajodia and D. Wijesekera (Eds.): Data and Applications Security 2005, LNCS 3654, pp. 40–53, 2005.

c© IFIP International Federation for Information Processing 2005

Role Slices: A Notation for RBAC Permission Assignment and Enforcement 41

with actor, and by adding security properties to use-case, class, and sequence
diagrams to capture MAC and RBAC characteristics as well as lifetimes (i.e.,
the legal time intervals of access to UML elements), and translate them into
constraints. In support of RBAC, an actor represents one organizational role as
defined by the security officer. This organizational role differs from actor-use-
case roles in UML, which are used by actors to communicate with each specific
use-case. Each security requirement constraint is characterized mainly by the
UML elements involved, and the type of the constraints (e.g., Static Mutual
Exclusion between actors and other non-actor elements). Intuitively, when the
designer creates, modifies, or deletes a design element, s/he has changed the
design to a new state with respect to the set of design elements that previously
existed. Over time, a UML design can be characterized as the set of all states
representing a specific design snapshot. Given a point of design time, a state
function returns the information of the design space (UML elements, connec-
tions and security requirements) and whether an element is validly applicable
at that design time. With the state information, we can perform security anal-
ysis to check the validity of the design, thereby providing a degree of security
assurance.

Our work to date distributes security definition across use cases, class and
sequence diagrams. While this has the advantage of closely associating security
with the involved UML elements, it has the disadvantage of having the com-
bination of the security permissions (security policy) not easily understood by
designers and programmers. To complement this effort, and to provide a more
seamless transition from design to code, we introduce a new artifact, the role
slice, to visually represent permissions among roles in RBAC. In addition, our
role-slice approach can separate the security aspect from the non-security as-
pects of code, by defining mappings to aspect-oriented programming (AOP) [15]
for enforcing the access control policies that have been defined. The role-slice
notation uses specialized class diagrams that define permissions and roles, in the
form of UML classes and stereotyped packages, respectively, and employs UML
stereotyped dependency relationships for representing role hierarchies, relying
on model composition [5] for defining the permissions for each role, according
to its position in the hierarchy. Since the role-slice diagram utilizes a structure
akin to a class diagram, in concept, this security extension to UML occurs at the
design level rather than analysis; however, MAC and RBAC defined for actors,
use-cases, etc., can all be leveraged as part of the process of defining role slices.

In support of secure application implementation, once the policy has been
defined and checked for consistency, the integration of security into an appli-
cation’s code can be greatly improved by an adequate modularization of the
security-enforcement code. Using AOP, our intent is to separate application’s
security and non-security code, providing the means to more easily identify and
locate security definitions when changes are required, thereby lessening the im-
pact of these changes on the application. Object-oriented design/programming
is centered around the ability to decompose a problem into a solution that cap-
tures only one concern (perspective) of an application. AOP addresses this limit
by providing the ability to independently specify multiple orthogonal concerns.

42 J.A. Pavlich-Mariscal et al.

To support this, AOP provides abstractions to define concerns with aspects, and
a compilation technique, aspect weaving, that integrates aspects with the main
application code via an AOP compiler. In this paper, we present the role-slice
artifact and its mapping to access-control enforcement code via aspects.

The remainder of this paper is organized into four sections. Section 2 explains
background concepts on RBAC, model composition, and AOP. Using this as a
basis, our presentation on a model for secure design is divided into two parts:
Section 3 details the definition of role slices; and, Section 4 describes techniques
for mapping these definitions to AOP enforcement code. Section 5 reviews other
related research efforts efforts, highlighting the influence to our work, and de-
tailing the commonalities and differences. Section 6 contains the conclusions and
reviews ongoing research.

2 Background Concepts

In this section, we review background concepts on role-based access control,
model composition, and aspect-oriented programming. Our objective is to pro-
vide the necessary material to set the context of our work for subsequent sections.

2.1 Role-Based Access Control (RBAC)

Role-based access control, RBAC [12], is a security policy schema that assumes
that the owner of the information in a software system is not the users, but the
organization to which they belong. Moreover, RBAC states that the access to
that information must be constrained according to the role that each user has
been authorized and activated to interact with the system. User-role authoriza-
tion is based on a set of tasks that the user performs inside the organization [11].
Users are authorized to access the system via a specific role, which holds the set
of privileges that the user will have when interacting with the system.

There are several different interpretations for privileges or permissions, (we
use both terms interchangeably). Depending on the specific application in which
privileges/permissions are used, they can represent different concepts, such as:
file access permissions in filesystems; query executions, table access, column or
tuple access in database systems; or, instance access, class access, method access
or attribute access in object-oriented systems. When using the object-oriented
paradigm, there is a class model that represents the main structure and function-
ality of an application. Our assumption for incorporating RBAC into these kinds
of applications, is that permissions are defined over the set of public methods
present in the class model. For the purposes of the work on role slices presented
herein, we define a permission as the ability to invoke the method of a class. We
also consider negative permissions, which explicitly deny the right to invoke a
method.

2.2 Aspect-Oriented Programming (AOP)

Software systems are inherently complex, and as information technologies evolve
(e.g., faster CPUs, more memory, etc.), their complexity continues to increase.

Role Slices: A Notation for RBAC Permission Assignment and Enforcement 43

Software developers faced challenges in the past when trying to manage that
complexity, which they solved via abstraction and modularization mechanisms
in programming languages, which has evolved into object-oriented design (UML)
and programming (Java, C++, etc). As complexity of software applications con-
tinues to increase, there has been an emphasis on providing techniques that
reduce complexity while still promoting the ability to construct large-scale ap-
plications. One classic technique is separation of concerns that focuses on dis-
tinguishing all of the important concerns of an application in modular units,
allowing them to be managed independently. According to Tarr et al. [19], in
order to achieve this goal, software formalisms may be required to provide: de-
composition mechanisms that can partition the software into simpler pieces that
are easier to manage; and, composition mechanisms to join all of the component
elements into a complete system.

In the object-oriented paradigm, the main composition and decomposition
mechanism is the class, which while offering a degree of separation of concerns,
is limited in its ability to support crosscutting concerns, which are requirements
of an application that have two common problems:

Scattering: Many concerns, which are specified in the requirements, tend to
be implemented by using different classes both in the design specification
and in the source code. For instance, the code for implementing persistence
(e.g., connecting to a database via ODBC/JDBC and issuing queries) in a
banking application can be scattered among multiple classes.

Tangling: One class can implement several different requirements simultane-
ously. Using the example above, each class that has code to access the
database may also have code which is related to business requirements, such
as cash flow calculations, mortage rates, etc.

There are several approaches that address crosscutting concerns [15,19,13]. The
key idea for most of them consists of a new form of modularization that decom-
poses a model into pieces that, if defined and chosen carefully, can be mapped
easily from requirements specification into design artifacts and code. Each piece
may represent a particular view of the system (the crosscutting concern) con-
sisting of sets of code that (ideally) are designable and implementable separately
by independent developers.

One such alternative is aspect-oriented programming (AOP). AOP defines
a unit of decomposition, called an aspect, in order to isolate each crosscutting
concern code into one location, and a weaving mechanism, to compose the aspect
code with the rest of the application as part of the compilation process. Each
aspect specifies the way to integrate its code with the rest of the application by
using:

Join Points, which are points in the execution of the program where the oc-
curence of events of interest to the crosscutting concerns can be observed,
and where an aspect advice that reacts to such events is inserted.

Pointcuts, which are sets of join points that are defined through static syntactic
and semantic conditions on the context surrounding the joint point. For

44 J.A. Pavlich-Mariscal et al.

example, in AspectJ, pointcuts can be defined as all of the call sites to a
polymorphic method within a class hierarchy.

Advices, which contain the code that is intended to be woven at specific join
points specified within a pointcut.

Another approach to separation of concerns that complements AOP is model
composition [5], which has its roots in subject-oriented programming, SOP, [13]
and multidimensional separation of concerns [19]. Model composition is an ex-
tension to UML that decomposes a class model into pieces, called subjects, that
represent a particular view of the system. Subjects are essentially class models
that can be used to represent crosscutting concerns. Later, they are composed
into larger class models until the system is finished and has all of the required
functionality.

3 Role Slices and Secure Design

Role slices are intended to allow a software designer to capture security infor-
mation in parallel with class design. The role slice provides an abstraction to
collect information on the security of a role that cuts across all of the classes in
an application, and to organize this information into a role-slice diagram, simi-
lar in concept to a UML class diagram. In this section, we introduce role slices,
and their placement within the security design process. Specifically, Section 3.1,
presents an example used throughout this paper. Next, Section 3.2 explores the
role-slice artifact, including both positive and negative permissions. Lastly, Sec-
tion 3.3 considers other issues related to the usage of role slices for real-world
applications.

3.1 A Survey Institution Example

To serve as a basis for illustrating the concepts related to role slices and the
generation of aspect-oriented enforcement code, we define an example application
based on the following scenario:

A Survey Institution performs and manages public surveys. After the
raw data of the survey is collected, the senior staff person adds a survey
header into the database. Then, a senior or junior staff adds questions
into that survey, may categorize questions, or add a new question cat-
egory. Special questions with sensitive content are restricted to senior
staff, who are the only ones who can modify them. Every staff person
can search for surveys in the system, and, according to their privileges,
access them for modification. Some survey results are public, so they can
be accessed by anybody who is intersted in viewing the results.

For simplicity and space limits, we utilize a simple design model that is better
suited to explaining the concepts rather than a real-world design.

Role Slices: A Notation for RBAC Permission Assignment and Enforcement 45

Given this scenario, Fig. 1 shows the class diagram where: Public Survey
Results holds public data about statistics and questions; Survey List and Sur-
vey Header provide an interface to access and modify the information about
surveys. Since the class Public Survey Results holds only public data, we decide
to control access only to the subsystem defined by the classes Survey List and
Survey Header. We call this set of classes a secure subsystem.

Survey_List

+Add_Survey_Header()

+Survey_Title_Search()

+Update_Survey_List()

+Delete_Survey_Header()

Survey_Header

+Create_Survey_Header()

+Add_Question()

+Add_Special_Question()

+Categorize_Question()

+Add_Question_Category()

Public_Survey_Results

+Get_General_Statistics()

+Get_Questions()

Fig. 1. Class Model of a Survey Management Application

3.2 Role Slices

A role slice is a structure that denotes the set of class methods that a given
role can access in an application. Since we may not want to apply security to
every class in the class model of the application, we define role-slice permission
assignment with respect to a secure subsystem; the classes Survey List and Sur-
vey Header in Fig. 1. Visually, we represent a role slice as a UML stereotyped
package containing a specialized class diagram, which is a subset of the class
model of the application. Fig. 2 contains a diagram with roles slices for: Staff
that contains common privileges; Senior Staff for users that have the ability to
add a survey header and survey questions; and, Junior Staff with more limited
access. Each class present in the role slice will have only methods that are as-
signed to the corresponding role as positive or negative permissions. An abstract
role slice, Staff in Fig. 2, is tagged with the value abstract, cannot be assigned to
a user, and is intended to be used as a mean to classify roles that have common
permissions.

To represent role hierarchies, we define the role-slice composition relationship,
which represents a hierarchical relationship between a child role slice and a
parent role slice. The child role slice inherits the permissions from the parent
role slice. Visually, we represent this relationship as a stereotyped dependency
arrow that starts in the child and points to the parent. This relationship is shown
in Fig. 2 with Senior Staff and Junior Staff as children of Staff. To obtain the
complete set of permissions for a role in a hierarchy, we utilize the composition
with override integration defined in [5], which composes two class diagrams by
unifying their classes and methods into one diagram. For role slices, we match

46 J.A. Pavlich-Mariscal et al.

<<RoleSlice>>

Senior Staff

Survey_List

+<<pos>> Add_Survey_Header()

Survey_Header

+<<pos>> Create_Survey_Header()
+<<pos>> Add_Special_Question()

<<RoleSlice>>

Junior Staff

Survey_List

+<<neg>> Update_Survey_List()

<<RoleSliceComposition>>
<<RoleSliceComposition>>

Survey_List

+<<pos>> Survey_Title_Search()
+<<pos>> Update_Survey_List()

Survey_Header

+<<pos>> Add_Question()
+<<pos>> Categorize_Question()
+<<pos>> Add_Question_Category()

<<RoleSlice>>

Staff

{abstract}

Fig. 2. Role-Slice Diagram

<<RoleSlice>>

Junior Staff

Survey_List

+<<pos>> Survey_Title_Search()
+<<neg>> Update_Survey_List()

Survey_Header

+<<pos>> Add_Question()
+<<pos>> Categorize_Question()
+<<pos>> Add_Question_Category()

<<RoleSlice>>

Senior Staff

Survey_List

+<<pos>> Add_Survey_Header()
+<<pos>> Survey_Title_Search()
+<<pos>> Update_Survey_List()

Survey_Header

+<<pos>> Create_Survey_Header()
+<<pos>> Add_Question()
+<<pos>> Add_Special_Question()
+<<pos>> Categorize_Question()
+<<pos>> Add_Question_Category()

Fig. 3. Composed Role-Slice Diagram

the names of the classes (i.e., classes with the same name in both role slices
compose into one class in the final diagram), and make the child override any
permission definition in the parent.

We define permissions for the roles in Fig. 2 as follows: Staff is abstract and
cannot be assigned to a user; and, Senior Staff and Junior Staff, which are non-
abstract roles and assignable to users. The Staff role defines a set of common
permissions: Survey Title Search, Update Survey List, Add Question, Catego-
rize Question and Add Question Category. For Senior Staff, the assigned meth-
ods are: Add Survey Header, Create Survey Header, and Add Special Question.
For Junior Staff, no permissions are directly assigned, but the permission to
call Update Survey List is explicitly denied. Note that the method stereotypes
� pos � and � neg � are used in the UML role-slice diagram for representing
positive and negative permissions, respectively. The final set of permissions for
each non-abstract role is defined through the composition of every non-abstract
role slice with their ancestors, as shown in Fig. 3. Each final role slice has the
union of all of the permissions from the ancestors (in this case, the parent Staff)
and the respective child (Senior Staff or Junior Staff), with the exception of Up-
date Survey List, which was overriden and restricted (negative) by Junior Staff.

Role Slices: A Notation for RBAC Permission Assignment and Enforcement 47

3.3 Considerations for Real-World Scenarios

The main objective of the role-slice model is to represent a complex access control
policy in a diagram that is easy to modify by security officers, and easy to
understand by software designers and developers. From a practical standpoint,
some issues must be taken into account:

– Any reasonably-sized application contains hundreds of classes, and the first
critical decision in the security-policy definition process is to determine the
subset of these classes to be included in the secure subsystem. A good ap-
proach is to only include the classes in the domain model that require access
control and to exclude classes related to other concerns (e.g., I/O libraries,
GUI components, etc.), since their presence would clutter the definition of
role slices.

– The conceptualization of permissions during software development must be
both be comprehensive and easy to understand by security officers and de-
signers. To facilitate this, the composition relationship can be used to not
only generate the final set of permissions for a security policy, but also to
represent the permissions of each role at any point during the software pro-
cess. This is especially useful when designing large role hierarchies, since the
permissions of a concrete role can be difficult to visualize when spread across
a significant portion of the role hierarchy.

Overall, issues related to the definition of security policies, their realization
via role-slice diagrams, and the interplay of role-slice diagrams and application
classes, are all critical to fully integrate the approach into the software process.

4 Mapping Role Slices to an Aspect-Oriented Application

This section details the transformation of role-slice definitions (as given in Sec-
tion 3) into the application’s code using aspect-oriented programming (AOP).
Recall that the main purpose of a role slice is to define the access-control policy
of an application regarding the authorized or prohibited methods (permissions)
for each user (playing that role) interacting with the application. To map this
information to aspect-oriented code and control the access to a method, it is
necessary to check whether that method is denied for the active role (the role
that the current user has when logged in) and raise an exception if that occurrs;
otherwise, the method is allowed to execute. This process is achievable with a set
of AOP advices. All of the information for security permissions (role slices) are
stored in a database. When a user logs into the system, an access-control aspect
obtains its role-slice permissions by intercepting the login method in the class
model and retrieves from the database the pertinent role slice for the user based
on his/her credentials. For method permissions, an advice intercepts every call
to methods in the secure subsystem (the classes Survey List and Survey Header
in Fig. 1), made from methods external to the subsystem (every call that orig-
inates from Public Survey Results in Fig. 1), and allow their execution if and
only if they are defined as a positive permission in the corresponding role slice.

48 J.A. Pavlich-Mariscal et al.

The process of mapping from a role-slice diagram to aspect-oriented enforce-
ment code will ultimately be automated with a code generator as shown in Fig. 4.
This tool, currently under development at UConn, takes a role-slice specification
(diagram and composed slices) as input, and outputs:

– A policy database that contains all of the information on roles and permis-
sions (as defined in the composed role slices), and an authorization schema
to store user instances and their assigned roles. We assume that a user is
only permitted to play a single role at any given time (but can switch roles).

– An access-control aspect with the following characteristics:
• The role-slice specification, particularly the secure subsystem definition,

identifies the method invocations subject to access control. From this
information, pointcut definitions for the access-control aspect are ob-
tained.

• The advice code that is woven at the pointcuts defined previously, must
have access to the policy database, and be able to grant or deny access
to a user invoking access controlled methods, based on his/her active
role, and the call site.

Code
Generator

Policy Database

Access-Control
Aspect

Role Slice
Specification

Fig. 4. Code Generator Scheme

We now explore an example aspect code, generated by our prototype, that en-
forces access control for the survey management application. Different portions
of this aspect, implemented in AspectJ, are shown in Figs. 5, and 6.

Fig. 5 illustrates the portion of the access-control aspect that obtains the
current active user. The login pointcut references a call to a method in the
class SecurityAdmin, which returns the authenticated user. In this example,
assume a multi-threading environment where each thread serves only one user.
The advice using the pointcut stores the active user identification in a thread’s
local storage area.

Fig. 6 illustrates the code of the aspect that controls the access to methods
from call sites outside the secure subsystem. The externalCall pointcut iden-
tifies all of the calls made to classes in the secure subsystem (i.e., Survey List
and Survey Header), that originate from exogenous call sites. The advice code
associated to this pointcut definition obtains the user’s active role, and checks
if s/he has a positive permission for to the intercepted method call. If not, an

Role Slices: A Notation for RBAC Permission Assignment and Enforcement 49

public aspect AccessControl {
...
pointcut login() : call(User SecurityAdmin.logIn(..));

User around():login() {
User u = proceed();
activeUser.set(u);
return u;

}

private ThreadLocal activeUser = new ThreadLocal() {
protected Object initialValue() {

return null;
}

};

private User getActiveUser() {
return (User)activeUser.get();

}
...

}

Fig. 5. Obtaining Active User

exception is raised. Due to Java’s semantics for exception handling, only runtime
exceptions can be raised from this aspect. In summary, this example as given
in Figs. 5 and 6, clearly illustrates the basic elements of the mapping from role
slices to AOP enforcement code. Note that we are currently in the process of
formalizing and implementing the role-slice code generator, as part of our overall
prototyping work using Borland’s UML tool Together Control Center [9,8,7].

public aspect AccessControl {
...
pointcut externalCall() : (call(* Survey_List.*(..)) || call(* Survey_Header.*(..)))

&& !within(Survey_List) && !within(Survey_Header);
before() : externalCall() {

Role r = getActiveUser().getActiveRole();
if (!r.hasPosPermission(thisJoinPointStaticPart)) {

throw new org.aspectj.lang.SoftException(new PermissionDeniedException());
}

}
...

}

Fig. 6. Checking of Permissions from Outside Calls

5 Related Work

In terms of related research, role slices are based on [10], which proposes a
Network Enterprise Framework using UML to represent RBAC requirements for
a specific framework given in [20]. Permissions are represented as methods of an
interface-like artifact called object handle. Object handles are grouped in keys,
which are stereotyped UML packages; role hierarchies are achieved by interface
inheritance. In our approach, permissions are also represented as methods but, in
contrast, they are grouped in role slices, which define specific rules of composition

50 J.A. Pavlich-Mariscal et al.

for them. Role slices also add negative permissions and permission overriding by
descendent role slices. Our approach aims to be implementation-independent for
object-oriented systems.

Another effort that relates to role slices is [3], which defines a metamodel
to generate security definition languages. SecureUML [3,16] is an instance de-
fined by this approach; a platform-independent security definition language for
RBAC. The syntax of SecureUML has two parts: an abstract syntax indepen-
dent from the modeling notation; and, a concrete syntax which can be used as
an extension to a modeling language, such as UML. The abstract syntax de-
fines basic elements to represent RBAC: roles, which can be assigned to users
or groups of users; permissions, which are assigned to roles based on specific as-
sociated constraints; and, actions, which are associated with permissions, where
a role can have a permission to execute one or more actions. Actions can be
atomic, which means that they can be mapped directly to an action in the tar-
get platform, or composite actions, which are higher-level actions that may not
be mapped directly to the target platform, and may contain lower-level actions
within them. SecureUML’s concrete syntax is defined by mapping elements in
the abstract syntax to concrete UML elements [3]. We note that our role-slice
diagram and associated concepts can be an instance of the concrete-syntax of
the SecureUML notation, and that our syntax and associated mappings to UML
elements differ from their approach. We also note that the role-slice diagram is
only one component of our overall research. Specifically, our usage of compo-
sition in the role-slice diagram and the subsequent transition of the composed
diagram into AOP enforcement code, is significantly different than the approach
in SecureUML.

Another related approach, AuthUML [1,2] focuses on a process and a mod-
eling language to express RBAC policies using only use cases. Permissions are
defined by allowing or denying to actors the execution of use cases, and at a
lower level, the execution of finer-grained conceptual operations that describe
use-case behavior. Prolog-like predicates are used to represent the information
and to check its consistency. In contrast, our approach uses classes to group
permissions (methods), and role slices to group the entire set of permissions for
a role. We do not define a specific process to develop software, so the decision
of the way to utilize role slices to represent security information depends on the
designers and developers. If the design of a particular application mapped each
use case to a class, and each conceptual operation of a use case to a method,
then both approaches would represent the same information about permissions.

The UMLsec approach [14] is another effort in security modeling related to
our research. UMLsec is an extension to UML that defines several new stereo-
types towards formal security verification of elements such as: fair exchange to
avoid cheating for any party in a 2-party transaction; secrecy/confidentiality of
information (accessible only to the intended people); secure information flow to
avoid partial leaking of sensitive information; and, secure communication links
like encryption. As currently structured, the UMLSec model is not tightly tied
to RBAC, but the information it represents can be used to outline access control
policies.

Role Slices: A Notation for RBAC Permission Assignment and Enforcement 51

Regarding the aspect-oriented paradigm, [18] contains an example of com-
position of access-control behavior into an application by using aspect-oriented
modeling techniques, with the aim of integrating security into a class model that
allows designers to verify its access-control properties. Their approach takes a
generic security design and instantiates it in a model tied to the domain of the
application. In contrast, our code generation also requires the instantiation of
the design, but only the access control aspect has dependencies with the domain
class model. In addition, the role-slice notation provides a language to represent
the policy that can be implemented using the aspect-oriented paradigm.

Another similar effort [6], provides a general framework to incorporate secu-
rity into software using AOP. Similarities to our work include: the management of
authentication; and, the interception of method invocations to constrain them
based on permissions. The main difference is related to permissions. In their
work, each permission is represented as a specific method tied to a framework of
server objects that define them, and a set of client objects that invoke them. In
contrast, in our role-slice approach, permissions are definable over any method
in the class diagram, regardless of its structure.

6 Conclusions and Future Work

This paper has presented our efforts to define a new UML artifact to capture
RBAC, the role slice and an associated diagram, and has detailed the transition
from a role-slice diagram to security enforcement code, based on aspect-oriented
programming (AOP). We believe that the role-slice notation, as presented in this
paper, can assist designers and developers in the conceptualization of security
policy, and facilitate its evolution throughout the design process. In addition, the
automated mapping from a role-slice diagram (composed) to AOP enforcement
code can provide a seamless transition from a security specification to code, and
greatly facilitate the separation of concerns at the implementation level.

Ongoing and future research is focusing on achieving security policy com-
position via AOP, with the potential to also consider other, similar paradigms.
We are interested in enhancing our model with additional security concerns, in-
cluding: mandatory access control for security of methods based on classification
and clearance; and, delegation for the ability to pass on authority (role) from
one user to another. With three separate concerns (RBAC, MAC, and delega-
tion), we must have the ability to compose any combination, which may require
dynamic weaving of more than one set of constraints for access control, and the
definition of different policies for separated secure subsystems. To facilitate this
work on analysis and security extensions, we are formalizing role slices and their
mapping to access-control aspects.

Another planned topic of research is to refine the definition of permissions, so
they can support a wider-range of requirements. Specifically, we are interested in
defining instance-based permissions, where roles would be authorized to invoke
a method based on the instance of its class, and the value of their parameters.
For example, different Senior Staff members in our example might be in charge

52 J.A. Pavlich-Mariscal et al.

of different surveys; even if their roles are the same, we would want the role
parameterizable by instance so that they are restricted to particular survey in-
stances. This research is related to aspect compilers, since it needs an aspect
language that could support dynamic (runtime) join points that can be selected
according to instance data (class instances, parameters), so that access control
can be implemented seamlessly.

Lastly, we continue our joint implementation effort, focusing on integrating
the work described herein with our other UML research [9,8,7]. Our objective
is to provide a complete modeling framework from analysis and design through
coding, which will also include the implementation of a role-slice diagramming
tool, and the mapping from role slices to AOP security enforcement code. We are
utilizing Borland’s UML tool Together Control Center in support of this effort.

References

1. K. Alghathbar and D. Wijesekera. authUML: a three-phased framework to analyze
access control specifications in use cases. In FMSE ’03: Proceedings of the 2003
ACM workshop on Formal methods in security engineering, pages 77–86. ACM
Press, 2003.

2. K. Alghathbar and D. Wijeskera. Consistent and complete access control policies
in use cases. In Perdita Stevens, Jon Whittle, and Grady Booch, editors, UML
2003 - The Unified Modeling Language. Model Languages and Applications. 6th
International Conference, San Francisco, CA, USA, October 2003, Proceedings,
volume 2863 of LNCS, pages 373–387. Springer, 2003.

3. D. Basin, J. Doser, and T. Lodderstedt. Model driven security, Engineering The-
ories of Software Intensive Systems. 2004.

4. D. Bell and L. LaPadula. Secure computer systems: Mathematical foundations
model. Technical report, Mitre Corporation, 1975.

5. S. Clarke. Composition of object-oriented software design models. PhD thesis,
Dublin City University, January 2001.

6. B. De Win, B. Vanhaute, and B. De Decker. Security through aspect-oriented
programming. In Proceedings of the IFIP TC11 WG11.4 First Annual Working
Conference on Network Security, pages 125–138. Kluwer, B.V., 2001.

7. T. Doan, S. Demurjian, R. Ammar, and T.C. Ting. UML design with security
integration as a first class citizen. In Proc. of 3rd Intl. Conf. on Computer Sci-
ence, Software Engineering, Information Technology, e-Business, and Applications
(CSITeA’04), Cairo, December 2004.

8. T. Doan, S. Demurjian, T.C. Ting, and A. Ketterl. MAC and UML for secure
software design. In Proc. of 2nd ACM Wksp. on Formal Methods in Security
Engineering, Washington D.C., October 2004.

9. T. Doan, S. Demurjian, T.C. Ting, and C. Phillips. RBAC/MAC security for
UML. In C. Farkas and P. Samarati, editors, Research Directions in Data and
Applications Security XVIII, July 2004.

10. P. Epstein and R. Sandhu. Towards a UML based approach to role engineering.
In Proceedings of the fourth ACM workshop on Role-based access control, pages
135–143, 1999.

11. D. Ferraiolo and R. Kuhn. Role-based access controls. In 15th NIST-NCSC Na-
tional Computer Security Conference, pages 554–563, 1992.

Role Slices: A Notation for RBAC Permission Assignment and Enforcement 53

12. D. Ferraiolo, R. Sandhu, S. Gavrila, R. Kuhn, and R. Chandramouli. Proposed
NIST standard for role-based access control. ACM Trans. Inf. Syst. Secur.,
4(3):224–274, 2001.

13. W. Harrison and H. Ossher. Subject-oriented programming: a critique of pure
objects. In Proceedings of the eighth annual conference on Object-oriented pro-
gramming systems, languages, and applications, pages 411–428, 1993.

14. J. Jürjens. UMLsec: Extending UML for secure systems development. In Proceed-
ings of the 5th International Conference on The Unified Modeling Language, pages
412–425. Springer-Verlag, 2002.

15. G. Kiczales. Aspect-oriented programming. ACM Comput. Surv., 28(4es):154,
1996.

16. T. Lodderstedt, D.A. Basin, and J. Doser. SecureUML: A UML-based modeling
language for model-driven security. In Proceedings of the 5th International Con-
ference on The Unified Modeling Language, pages 426–441. Springer-Verlag, 2002.

17. OMG. OMG-unified modeling language, v.1.5. UML Resource Page
http://www.omg.org/uml, March 2003.

18. E. Song, R. Reddy, R. France, I. Ray, G. Georg, and R. Alexander. Verifiable
composition of access control features and applications. In Proceedings of 10th
ACM Symposium on Access Control Models and Technologies (SACMAT 2005),
2005.

19. P. Tarr, H. Ossher, W. Harrison, and M. Sutton, Jr. Stanley. N degrees of separa-
tion: multi-dimensional separation of concerns. In Proceedings of the 21st interna-
tional conference on Software engineering, pages 107–119. IEEE Computer Society
Press, 1999.

20. D. Thomsen, D. O’Brien, and J. Bogle. Role based access control framework for
network enterprises. In Proceedings of 14th Annual Computer Security Application
Conference, pages 50–58, Phoenix, AZ, December 7-11 1998.

http://www.omg.org/uml

	Introduction
	Background Concepts
	Role-Based Access Control (RBAC)
	Aspect-Oriented Programming (AOP)

	Role Slices and Secure Design
	A Survey Institution Example
	Role Slices
	 Considerations for Real-World Scenarios

	Mapping Role Slices to an Aspect-Oriented Application
	Related Work
	Conclusions and Future Work

