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Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) evades the host

immunesystemthroughavarietyof regulatorymechanisms. Thegenomeof SARS-

CoV-2encodes 16non-structural proteins (NSPs), four structural proteins, andnine

accessory proteins that play indispensable roles to suppress the production and

signalingof type I and III interferons (IFNs). In this review,wediscussed the functions

and theunderlyingmechanismsof different proteins of SARS-CoV-2 that evade the

host immunesystembysuppressingthe IFN-bproductionandTANK-bindingkinase
1 (TBK1)/interferon regulatory factor 3 (IRF3)/signal transducer and activator of

transcription (STAT)1 and STAT2 phosphorylation. We also described different viral

proteins inhibiting the nuclear translocation of IRF3, nuclear factor-kB (NF-kB), and
STATs. Todate, the followingproteins of SARS-CoV-2 includingNSP1, NSP6,NSP8,

NSP12, NSP13, NSP14, NSP15, open reading frame (ORF)3a, ORF6, ORF8, ORF9b,

ORF10, and Membrane (M) protein have been well studied. However, the detailed

mechanisms of immune evasion by NSP5, ORF3b, ORF9c, and Nucleocapsid (N)

proteins arenotwell elucidated. Additionally,wealsoelaborated theperspectivesof

SARS-CoV-2 proteins.

KEYWORDS

SARS-CoV-2, immune evasion, structural proteins, non-structural proteins,
accessory proteins
Introduction

Coronaviruses (CoVs) are a diverse family of enveloped positive-sense single-

stranded RNA viruses (1–3), infecting humans, avian species, and livestock animals,

posing a serious threat to public health and economy (4). CoVs are classified under the

order Nidovirales, family Coronaviridae, and subfamily Orthocoronavirinae. The
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subfamily Orthocoronavirinae is further divided into four

genera, i.e., alphacoronavirus (a-CoV), betacoronavirus

(b-CoV), gammacoronavirus (g-CoV), and deltacoronavirus

(d-CoV). The a- and b-CoVs infect only mammals, while the

g- and d-CoV have a broader host range including avian species

(4). Severe acute respiratory syndrome coronavirus 2 (SARS-

CoV-2) has been placed in the subgenus Sarbecovirus under the

genus b-CoVs (4, 5). Human CoVs, such as HCoV-229E (a-
CoV) and HCoV-OC43 (b-CoV), HCoV- NL63 (a-CoV) and
HCoV- HKU1 (b-CoV), usually cause mild respiratory tract

infections associated with symptoms of the “common cold”. In

contrast, SARS-CoV-2, Middle East respiratory syndrome

coronavirus (MERS-CoV), and SARS-CoV have been

recognized as highly pathogenic (4).

The genome of SARS-CoV-2 consists of about 30,000 bases

(6, 7) (Figure 1). It contains a 5’ cap structure and a 3’ poly-A

tail. It has a 5’ open reading frame (ORF) and a 3’ ORF that

comprises 2/3 and 1/3 of the complete genome, respectively.

After entering the host cell, RNA-dependent RNA polymerase

(RdRp) replicates and transcribes the SARS-CoV-2 genome (8).

The 5’ ORF (ORF1a/b) is translated into pp1a and pp1ab

proteins in the rough endoplasmic reticulum (rER) of the host

cell (9). Proteases cleave these proteins and produce 16 NSPs,

ranging from NSP1 to NSP16. The 3’ ORF of SARS-CoV-2 has

both structural and accessory proteins. There are four structural

proteins, i.e., Spike (S), Envelop (E), Nucleocapsid (N), and

Membrane (M) proteins (Figure 1). The structural proteins

assemble and help in the budding of new virions at the ER to

Golgi compartment that are suggested to exit the infected cells

by exocytosis. S protein recognizes and binds to the receptor,

angiotensin-converting enzyme 2 (ACE2) of the host cell,

mediating the penetration of the virus into the host cell (7,

10). N protein is multifunctional; its main function is to
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assemble genomic RNA of the virus into a ribonucleoprotein

complex and regulate viral replication (9). E protein regulates

the replication, pathogenicity, and virus dissemination (11, 12),

while M protein is responsible for the assembly of viral particles

(13, 14). Interspersed between these structural proteins are nine

accessory proteins, i.e., ORF3a, ORF3b, ORF6, ORF7a, ORF7b,

ORF8, ORF9b, ORF9c, and ORF10 (4) (Figure 1). The accessory

proteins show high variability among CoVs; however, they are

conserved within respective viral species to some extent. The

accessory proteins do not play roles in virus replication, but they

do have important roles in host immune evasion (4).

Interferons (IFNs) are the first line of defense in hosts

against invading viruses (15). Innate viral recognition triggers a

signaling cascade leading to both nuclear factor-kB (NF-kB)-
mediated induction of pro-inflammatory cytokines [e.g.,

interleukin (IL)-1, IL-6, tumor necrosis factor-a (TNF-a)]
and interferon regulatory factor (IRF)3- and IRF7)-mediated

induction of type I and type III IFNs (IFN-I and IFN-III) (16).

After this, IFN-I and IFN-III responses are activated (17); IFN-

I includes IFN-a, IFN-b, IFN-ϵ, IFN-k, and IFN-w, while IFN-
III is IFN-l in humans. IFN-I binds to type I IFN receptor

(IFNAR) that is ubiquitously expressed in autocrine and

paracrine cells. As a result, hundreds of interferon-stimulated

genes (ISGs) are activated, which interfere with every step of

viral replication. IFN-III binds to IFN-III receptors (IFNLRs),

preferentially expressed on myeloid and epithelial cells, thereby

producing ISGs (18). IFN-I is a key element in providing

efficient protection against viral infections including SARS-

CoV-2 (19). IFN-I is produced soon after recognition of

pathogen-associated molecular patterns (PAMPs), such as

viral mRNA (20). PAMPs are recognized by retinoic acid-

inducible gene 1 [RIG-I/DExD/H-box helicase 58 (DDX58)]

and melanoma differentiation-associated gene 5 [MDA5/IFN
FIGURE 1

Genome organization of SARS-CoV-2. The genome of SARS-CoV-2 consists of 16 non-structural proteins, ranging from NSP1 to NSP16, four
structural proteins (S, E, M and N), and interspersed between these structural proteins are nine accessory proteins. (S, Spike protein; E, Envelop
protein; M, Membrane protein; N, Nucleocapsid protein).
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induced with helicase C domain 1 (IFIH1)] (21, 22). Once

activated, the RIG-I and MDA5 interact with the caspase

activation and recruitment domain (CARD) domain of

mitochondrial antiviral signaling protein (MAVS). The

activated MAVS recruits several downstream signaling

components to the mitochondria. As a result, an inhibitor of

NF-kB kinase ϵ (IKKϵ) and TANK-binding kinase 1 (TBK1)

are activated that further results in the phosphorylation of IRF3

and IRF7. The phosphorylated IRF3 and IRF7 are dimerized

and translocated to the nucleus, where they induce the

expression of IFN-I and a subset of ISGs (early ISGs) (23).

The secreted IFN-I expression leads to tyrosine kinase 2 (Tyk2)

and Janus kinase 1 (JAK1) activation. After activation, STAT1

and STAT2 are phosphorylated (24, 25). The phosphorylated

STATs form a heterodimer and associate with IRF9, a DNA-

binding protein, to form IFN-stimulated growth factor 3

(ISGF3). The ISGF3 complex translocates to the nucleus and

binds with interferon-stimulated response elements

(ISREs) at ISG promoters and transcribes its downstream

genes (Figure 2).
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Therefore, hundreds of ISG products are expressed at viral

infection sites, producing the antiviral state (25). The ISGs and

pro-inflammatory cytokines have diverse functions including

inhibition of viral replication, activation, and recruitment of

immune cells. IFN-I production is therefore required against

viral infections to trigger adaptive immune responses for a

longer duration (26, 27).

The transcriptome profiles of different cell types delineate

the infection of SARS-CoV-2. The infection triggers a low level

of IFN-I and IFN-III, and hence, limited ISG response is

produced. However, it does induce pro-inflammatory

cytokines (28, 29). Low levels of IFN-I in the serum of

coronavirus disease 2019 (COVID-19) patients were detected

in the early stages of infection and elevated levels during the

advanced stage of infection (29, 30). Thus, ISG induction

requires limited IFN-I production, or IFN-I may be produced

in specific immune cells. Compared to SARS-CoV, SARS-CoV-2

induces less IFN-I (30). IFN-I deficiency in the blood is an

indication of -19 severity, which should be taken seriously (31).

SARS-CoV-2 infection also induces the activation of TLR3 and

Toll-like receptor 7 (TLR7) RNA sensor pathways in the Clau-3/

Medical research council cell strain (MRC)-5 multicellular

spheroids (MTCSs) (32). TLR3 acts via IRF3 producing IL-1a,
IL-1b, IL-4, IL-6, IFN-a, and IFN-b. TLR3 also activates the NF-
kB transduction pathway. TLR7 acts via NF-kB pathway,

inducing IFN-I, IFN-g, and IFN-l3. Therefore, TLRs could

also be potential targets in controlling the SARS-CoV-2

infection (32). To have a successful infection, SARS-CoV-2 has

evolved several strategies to overcome the host immune system.

Since its discovery, SARS-CoV-2 has gained significant genetic

diversity in all of its genes that is continuously changing the

immune capabilities of its host (33). To date, several SARS-CoV-

2 proteins are known to have helped in immune evasion. In the

following sections, we have discussed the host immune evasion

by SARS-CoV-2 proteins and the mechanisms through which

they help the virus evade the immune system.
NSP1 antagonizes IFN-I signaling by
inhibiting STAT1 phosphorylation
Previous work on SARS-CoV has reported several roles for

NSP1 (34, 35). It suppresses the translation of host proteins by

interacting with the 40S subunit and inhibiting the 80S subunit

formation (35). It also induces endo-nucleolytic cleavage and

subsequently degrades host mRNAs, leading to an inhibition of

innate immune responses of host cells (34, 35).

The NSP1 of SARS-CoV-2 and SARS-CoV has 84% sequence

identity in amino acid residues. Such high conservation suggests

similar biological functions and properties (35). The NSP1 of
FIGURE 2

Innate immune system recognition, IFN signaling, and immune
evasion by viruses. Upon sensing of viruses by RIG-I and MDA5,
NF-kB, IRF3, and IRF7 stimulate the production of
proinflammatory cytokines, IFN-I and IFN-III. IFNs are secreted
in an autocrine and paracrine manner to induce the expression
of ISGs via the JAK/STAT signaling pathway. (RIG-1, retinoic
acid-inducible gene I; MDA5, melanoma differentiation-
associated gene 5; NF-kB, nuclear factor-kB; IRF3, interferon
regulatory factor 3; IRF7, interferon regulatory factor 7).
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SARS-CoV contains Lys164 (K164) and His165 (H165) dipeptide

motif, which is indispensable for human 40S ribosomal subunit

interaction, leading to inhibition of host translation. K164A and

H165A substitutions abolish the binding of NSP1 to 40S

ribosomal subunit (36). This dipeptide motif is conserved in

SARS-CoV-2 NSP1, and a similar function of protein

translation inhibition was observed (37, 38). When cells were

overexpressed with NSP1 followed by Sendai virus (SeV)

stimulation, which is an excellent inducer of RIG-I, the

endogenous protein levels of IFN-b, IFN-l, and IL-8 were

significantly reduced. However, the transcription of the

corresponding genes was induced by NSP1 overexpression (39).

The NSP1mutant had no inhibitory effects on the protein levels of

IFN-b, IFN-l, and IL-8. Similarly, NSP1 suppressed the luciferase

activity driven by ISRE, which is the promoter part of the ISGs

(39, 40). However, autophagy was hardly affected by NSP1
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expression, even when induced by rapamycin (38, 41). These

results delineated that NSP1 almost fully inhibits the translation of

IFNs, pro-inflammatory cytokines, and ISGs. All of the above

studies suggested that NSP1 of SARS-CoV-2 is one of the main

immune evasion proteins (35–38, 40, 41). NSP1, therefore, may be

an attractive therapeutic target against COVID-19, but further

investigation is required to determine whether NSP1 is the best

option for vaccine development (42).

Another research also determined that NSP1 can inhibit

IFN-b production and suppress 98% IFN-b promoter activity

via the proteins that are both upstream and downstream of IRF3

(43). NSP1 significantly inhibits STAT1 phosphorylation, while

STAT2 phosphorylation could be marginally inhibited.

Moreover, NSP1 also suppresses the nuclear translocation of

STAT1, suggesting the role of NSP1 in inhibiting IFN-I signaling

(Figure 3, Table 1) (43).
FIGURE 3

Host immune evasion by SARS-CoV-2 proteins. SARS-CoV-2 triggers IFN signaling pathway after being recognized by RIG-1 and MDA5.
Different SARS-CoV-2 proteins interfere with these pathways in different ways. NSP8 and NSP13 inhibit TBK1 phosphorylation. NSP6, NSP8,
NSP13, OR9b, and M inhibit IRF3 phosphorylation. NSP12, NSP14, NSP15, ORF6, and ORF9b inhibit the nuclear translocation of IRF3. NSP1,
NSP6, NSP13, ORF3a, and ORF7b inhibit STAT1 phosphorylation. ORF9b inhibits TOM70. NSP6, NSP13, ORF7a, and ORF7b inhibit STAT2
phosphorylation. NSP13 and ORF6 inhibit the nuclear translocation of STAT1 to antagonize IFN signaling. ORF6 blocks STAT1 nuclear
translocation by interacting with the Nup98-RAE1 complex and disrupts the interaction between Nup98 and importin-b1/importin-a1/PY-STAT1
complex, thus preventing the docking of this complex at the nuclear pore. ORF8 inhibits MHC-I to impair antigen-presenting cells. [NSP, non-
structural protein; ORF, open reading frame; TOM70, translocase of outer membrane 70 KDa Subunit; IFN, interferon; STAT, signal transducer
and activator of transcription; IRF3, interferon regulatory factor 3; IRF9, interferon regulatory factor 9; NF-kB, nuclear factor-kB; ISGs,
interferon-stimulated genes; MHC-I, major histocompatibility complex I; Nup98-RAE1 complex, nucleoporin 98 (Nup98)–ribonucleic acid
export 1 (RAE1)].
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NSP6 inhibits IFN-b production
by targeting IRF3 and IFN-I
signaling by inhibiting
STAT1/STAT2 phosphorylation

NSP6 inhibits IFN-b production and suppresses about 40%

luciferase activity (43, 54). The distinct components of RIG-1
Frontiers in Immunology 05
pathway were studied to identify which step of IFN-b production

was inhibited by NSP6. The results showed that luciferase activity

was suppressed when IFN-b promoter was induced by IKKϵ, TBK1,
or MAVS, suggesting that NSP6 may inhibit IFN-b production by

targeting IRF3 (before the activation of IRF3) or other component(s)

upstream of IRF3 (that is between IRF3 and TBK1/IKKϵ) (43).
Similarly, the same study showed that NSP6 could modulate

the phosphorylation of TBK1 and IRF3 (43). NSP6 overexpression
TABLE 1 SARS-CoV-2 proteins interfering with IFN induction and signaling.

Protein Mechanism Experimental approach Cellular
model

References

IFN production inhibition

NSP1 Multiple targets, may be upstream and downstream of IRF3 Luciferase assay HEK293T
cells

(43)

NSP6 Suppress IRF3 phosphorylation Western blotting HEK293T
cells

(43)

NSP8 Suppress the phosphorylation of IRF3, TBK1 Western blotting HEK293T
cells

(44)

NSP12 Inhibit nuclear translocation of IRF3 Immunofluorescence assays HEK293T
cells

(45)

NSP13 Physical binds with TBK1, Suppress the phosphorylation of IRF3, TBK1, and NF-kB,
Suppress nuclear translocation of NF-kB

Luciferase assay, Western
blotting, Immunofluorescence
assays

HEK293T,
HeLa cells

(43, 46)

NSP14 Inhibit nuclear translocation of IRF3 Luciferase assay,
Immunofluorescence assays

293 FT cells (47)

NSP15 Inhibit nuclear translocation of IRF3 Luciferase assay,
Immunofluorescence assays

293 FT cells (47)

ORF6 Inhibit nuclear translocation of IRF3 Luciferase assay, Western
blotting, Immunofluorescence
assays

HEK293T (43, 48–50)

ORF9b Interact with MDA5, MAVS, TRIF, TBK1, STING, and RIG-1, suppress the
phosphorylation of TBK1 and IRF3, suppress nuclear translocation of IRF3

Luciferase assay, Western
blotting, Immunofluorescence
assays

HEK293T,
HeLa cells

(51)

M Suppress the phosphorylation of IRF3, TBK1, IKKa/b, p65 Luciferase assay, qRT-PCR,
Western blotting

HEK293T (13)

IFN signaling inhibition

NSP1 Suppress STAT1 phosphorylation Western blotting HEK293T
cells

(43)

NSP6 Suppress STAT1 and STAT2 phosphorylation Western blotting HEK293T
cells

(43)

NSP13 Suppress STAT1 and STAT2 phosphorylation Western blotting HEK293T
cells

(43)

ORF3a Suppress STAT1 phosphorylation Western blotting HEK293T
cells

(43)

ORF6 Inhibit STAT1 nuclear translocation Immunofluorescence assays HEK293T
cells

(43, 48)

ORF7a Suppress STAT2 phosphorylation Western blotting HEK293T
cells

(43)

ORF7b Suppress STAT1 and STAT2 phosphorylation Western blotting HEK293T
cells

(43)

ORF8 Interact with MHC-I and mediate its down regulation Western blotting HEK293T
cells

(52)

ORF10 Degrade MAVS Western blotting HEK293T
cells

(53)
fro
IRF3, Interferon regulatory factor 3; TBK1, TANK binding kinase 1; MDA5, melanoma differentiation-associated gene 5; MAVS, mitochondrial antiviral signaling; TRIF, TIR‐domain‐
containing adapter‐inducing interferon‐b; STING, stimulator of IFN genes; RIG-1, retinoic acid-inducible gene I; STAT1, signal transducer and activator of transcription 1; STAT2, signal
transducer and activator of transcription 2; MHC-I, Major histocompatibility complex I; IKKa/b, inhibitor of nuclear factor-kB (IkB) kinase alpha/beta.
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followed by poly (I:C) transfection inhibited approximately 57%

of IRF3 phosphorylation. However, no effect on phosphorylation

of TBK1 was observed. Hence, it may be inferred that NSP6 binds

TBK1, which decreases IRF3 phosphorylation, leading to a

reduction of IFN-b production (Figure 3, Table 1) (43).

Moreover, NSP6 also antagonizes IFN-I signaling by inhibiting

the phosphorylation of STAT1 and STAT2 (Figure 3, Table 1).

NSP6 could inhibit STAT1 phosphorylation by about 33%–46%,

while STAT2 phosphorylation by about 33%–50% (43).
NSP8 interacts with MDA5 to
inhibit the phosphorylation of
IRF3 and TBK1

NSP8 interacts with MDA5 and antagonizes the

phosphorylation of IRF3 and TBK1. MDA5 is the most upstream

sensor in the innate immune system and is involved in the

recognition of dsRNA. NSP8 interacts with the CARD domain of

MDA5 to downregulate the antiviral immune responses (44).

Tertiary structures of NSP8, MDA5 CARD domain, and K63-Ub

were determined, and simulation results showed that at the N

terminal region of NSP8, there is a short a-helix that covers an area
that interacts with K63-Ub. It is already known that the CARD

domain of MDA5 undergoes k63-linked polyubiquitination and

recruits MAVS to form a signalosome. The structural predictions of

the interaction between NSP8 and MDA5 CARD domain showed

that NSP8 may interrupt k63-linked polyubiquitination and MAVS

recruitment, leading to the inhibition of MDA5 activation (55).

Therefore, NSP8 inhibits K63-linked polyubiquitination of MDA5

by interfering with MDA5-MAVS signalosome.

Clinical data of COVID-19 patients revealed that disease severity

is related to cytokine storm (56). NSP8 overexpression could

downregulate the expression of cytokines, including IL-1b, IL-2,
IL-5, IL-6, CCL-20, IFN-b, TNF-a, and ISGs IFIT1 and IFIT2 (44).

These results indicate that NSP8 strongly impairs the expression of

genes involved in antiviral immune and inflammatory responses.

NSP8 expression significantly inhibits the phosphorylation

of TBK1, IRF3, IKKa/b, and p65 (Figure 3, Table 1). The NF-kB
signaling was greatly inhibited, as delineated by decreased p65

phosphorylation. It also inhibits the activation of IRF3 and NF-

kB. Moreover, NSP8-downregulated innate immune responses

were dependent on MAVS, acting on either MAVS or upstream

signals (44). These results suggest that NSP8 targets the

upstream components of IFN-I signaling pathway.

NSP12 inhibits IRF3 nuclear
translocation by attenuating
IFN-b production

NSP12 inhibits poly (I:C) and SeV-induced IFN-b promoter

activation (45, 48). NSP12 overexpression inhibits IFN-b
Frontiers in Immunology 06
promoter activation triggered by MAVS, MDA5, RIG-IN, and

IRF3-5D. NSP12 does not physically interact with IRF3.

However, it decreases the nuclear translocation of IRF3

without impairing its phosphorylation (Figure 3, Table 1) (45).

However, another study found that NSP12 is not an IFN-b
antagonist (57). The induction of NSP12 does not affect the

production of IFN-b both at mRNA and protein levels. The

differences in results of these two studies may be due to different

experimental setups. Therefore, cautions are required while

interpreting SARS-CoV-2-related luciferase assays, as different

tag proteins and backbones of plasmid could influence the

results (57).
NSP13 interacts with TBK1
and antagonizes IFN-I signaling
by inhibiting STAT1 and
STAT2 phosphorylation

NSP13 inhibits SeV-mediated promoter activity of NF-kB by

about 2-fold. It also inhibits the activation and nuclear

translocation of NF-kB as it reduces the levels of p-NF-kB
when TBK1 and NSP13 co-overexpressed (46). NSP13

phys i ca l l y b inds wi th TBK1 , de te rmined by Co-

immunoprecipitation (Co-IP) experiments (14, 43, 46). In

further experiments, it was found that IFN-b and ISRE

promoter activities were downregulated after NSP13

overexpression induced by TBK1. This suggests that NSP13

antagonizes IFN response by suppressing IRF3 and TBK1

phosphorylation (Figure 3, Table 1) (46). Another study also

suggests that NSP13 inhibits IFN-b production and suppresses

about 48% luciferase activity (43). Furthermore, NSP13 targets

IRF3 to inhibit IFN-b production by targeting IRF3 (before the

activation of IRF3) or another protein upstream of IRF3

(between IRF3 and TBK1/IKKϵ) (43).
Furthermore, phosphorylation of TBK1 and IRF3 mediated

by NSP13 was investigated (43). NSP13 overexpression

followed by poly (I:C) treatment inhibited about 75%

IRF3 phosphorylation. NSP13 could also inhibit the

phosphorylation of TBK1 in a dose-dependent manner.

Hence, it may be deduced that NSP13 interacts with TBK1

and inhibits its phosphorylation, leading to suppression of

IRF3 activation and IFN-b production (Figure 3, Table 1) (43).

NSP13 significantly suppresses STAT1/2 phosphorylation,

suggesting its role in antagonizing IFN-I signaling. Moreover,

NSP13 also inhibits the nuclear translocation of STAT1 during

IFN-I signaling (Figure 3, Table 1) (43).

The recent mutations found in NSP13 make it a stronger

IFN antagonist. The different mutations are P77L, Q88H,

D260Y, E341D, and M429I, which were observed in different

variants of SARS-CoV-2. Structural and biophysical analysis

justified the stronger binding of these mutants with TBK1 and
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helped in more evasion from the host immune system (58).

Therefore, it could be deduced that with the evolution of

different variants, the capability of SARS-CoV-2 to evade the

host immune system will increase.
NSP14 inhibits IFN-b activation and
IRF3 nuclear translocation

Among CoVs, NSP14 is highly conserved and exhibits

approximately 99% amino acid similarity with its SARS-CoV

counterpart (59). NSP14 has a guanine–N7-methyltransferase

and 3’ to 5’ exoribonuclease activity (60). Mutations in the Zinc

finger motif and the active site of the exonuclease domain result

in a lethal phenotype of this virus (61).

In addition to NSP1, NSP14 also inhibits protein translation

in cells (35, 59). The role of NSP14 in IFN-b and ISG production

has been well documented (47, 48, 59). Overexpression of NSP14

suppresses the production of endogenous ISG proteins but does

not affect their mRNA levels. Instead, inhibition of translation

was shown to be responsible for the suppression of endogenous

expression of ISGs by NSP14 (59).

In another study, NSP14 was found to inhibit SeV-mediated

IFN-b activation. In addition, NSP14 was able to recapitulate

this inhibition when IFN-b promoter activity was induced upon

overexpression of RIG-I or MDA5 (48). NSP14 was also found

to inhibit IFN production upon RIG-1 activation, and it

significantly inhibited SeV-mediated nuclear translocation of

IRF3 (Figure 3, Table 1) (47).
NSP15 inhibits IFN production and
IRF3 nuclear localization

NSP15 was shown to potentially suppress the production

and signaling of IFN when the N-terminus RIG-1, an upstream

activator of IFN signaling, was used as a potent inducer of IFN

production (47). Furthermore, NSP15 significantly inhibits the

nuclear localization of IRF3 upon SeV infection (Figure 3,

Table 1) (47).
ORF3a antagonizes IFN-I signaling
by phosphorylating STAT1

Among all accessory proteins of SARS-CoV-2, ORF3a is the

largest, with 275 amino acid residues. It shares approximately

72.7% similarity with the SARS-CoV ORF3a protein (62–64).

ORF3a was shown to suppress more than 40% ISRE promoter

activity and significantly suppress IFN-I signaling (43). It also
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suppresses STAT1 phosphorylation by 33%–46%; however,

STAT2 phosphorylation was only marginally suppressed.

Moreover, ORF3a suppresses STAT1 nuclear translocation

during IFN-I signaling (Figure 3, Table 1) (43). Furthermore,

ORF3a also induces lysosomal damage, necrotic cell death, and

cytokine storms (65).

SARS-CoV-2 infection was shown to induce a pro-

inflammatory cytokine response through cGAS-STING and

NF-kB in human epithelial cells (66, 67). Inflammatory

responses were observed in patients and could be

therapeutically targeted to suppress severe disease symptoms.

ORF3a has a unique ability to inhibit STING. ORF3a interacts

with STING to inhibit NF-kB signaling by blocking the nuclear

accumulation of p65. ORF3a therefore can antagonize immune

activation induced by the cGAS-STING (67).
ORF6 inhibits IRF3 nuclear
translocation and hampers IFN-I
signaling by blocking STAT1 nuclear
translocation

SARS-CoV-2 ORF6, which contains 61 amino acid residues,

shows low similarity to SARS-CoV ORF6 (64). All

serbecoviruses, including SARS-CoV and SARS-CoV-2, encode

this protein. However, no orthologs of this protein have been

found in other b-CoVs, i.e., MERS-CoV, murine hepatitis virus

(MHV), and OC43 (49). SARS-CoV ORF6 is known to

counteract host antiviral responses at multiple steps of the

innate immune pathway (68). ORF6 of SARS-CoV-2 localizes

predominantly in the cytoplasm but can also be found in the

Golgi apparatus and ER. ORF6 inhibits IFN-b promoter

activation in a dose-dependent manner induced by either poly

(I:C) or SeV (43, 48). Moreover, ORF6 inhibits IFN promoter

activation mediated by MAVS, MDA5, RIG-I, and IRF3-5D.

ORF6 inhibits IFN-b production at IRF3 levels or downstream

of it. Furthermore, ORF6 overexpression inhibited SeV-induced

nuclear translocation of IRF3. The amino acid residues 53–61 at

the C-terminal tail of ORF6 were important for this antagonistic

activity (48).

Furthermore, ORF6 overexpression does not affect IRF3

phosphorylation but significantly blocks its nuclear

translocation (Figure 3, Table 1). Karyopherin a 1-6 (KPNA1-

6) is responsible for the nuclear translocation of IRF3, IRF7, and

STAT1 (69). ORF6 binds to KPNA2 but not to other KPNAs;

therefore, it was suggested that ORF6 inhibits IFN-b production

by interacting with KPNA2 and blocking IRF3 nuclear

translocation (43). Inhibition of IRF3 nuclear translocation

was also reported in another study, which suggests that

residues E46 and Q56 are essential in providing ORF6 the
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antagonistic activity. Moreover, it was found that the C-terminal

region of ORF6 was responsible for anti-innate immune activity

by significantly inhibiting the nuclear translocation of IRF3 (49).

ORF6 also significantly suppresses IFN-I signaling (43, 48) and

inhibits IFN-a- or IFN-b-induced ISRE and ISG56 promoter

activities, suggesting that ORF6 antagonizes the downstream IFN

signaling (43, 48). The overexpression ORF6 only marginally

suppresses the phosphorylation of STAT1 and STAT2 (43).

However, another study showed contradictory results that ORF6

does not suppress STAT1 phosphorylation (48). These observations

indicate that ORF6 might suppress a step downstream of the

STAT1/STAT2 phosphorylation (43). Moreover, ORF6 also

suppresses nuclear translocation of STAT1 via ORF6/KPNA2

interaction, thereby inhibiting IFN-I signaling (Figure 3, Table 1)

(43). ORF6 also inhibits IFN-b, ISRE, and NF-kB promoter

activities in a dose-dependent manner. ORF6 overexpression

inhibits the expression of the ISRE promoter, suggesting that

different mechanisms are involved to regulate the IFN pathway.

Furthermore, ORF6 suppresses SeV-induced mRNA levels of IFN-

b, ISG56, and ISG54 (50).

ORF6 inhibits nuclear translocation of STAT1 and inhibits IFN

signaling yet by a different mechanism as well. It interacts with

nucleoporin 98 (Nup98)–ribonucleic acid export 1 (RAE1) (Nup98-

RAE1) complex and antagonizes IFN signaling by inhibiting

nuclear translocation of STAT1 (70) (Figure 3). The C-terminal

region of ORF6 is important for this binding. The binding was

impaired and IFN antagonist activity was abolished when

Methionine (M) at position 58 was substituted with arginine (R)

in ORF6 (71). ORF6 blocks STAT1 nuclear translocation by

interacting with the Nup98-RAE1 complex and disrupts the

interaction between Nup98 and importin-b1/importin-a1/PY
STAT1 complex, thus preventing the binding of this complex at

the nuclear pore. Moreover, SARS-CoV ORF6 binds to the Nup98-

RAE1 complex, and ORF6s from both viruses share the same

binding site on this complex (10). Nup98 is identified as a critical

factor hijacked by SARS-CoV-2 to inhibit IFN signaling.

Overexpression of Nup98 successfully rescues the ORF6-mediated

inhibition of STAT1 nuclear translocation. Some other studies

confirmed the interaction of ORF6 with the Nup98-RAE1

complex, suggesting that ORF6 specifically targets Nup98 to block

STAT nuclear import (71–74).

The emergence of newvariants of SARS-CoV-2has enhanced its

virulence and human-to-human transmission. The alpha (B.1.1.7)

variant, which belongs to variants of concern (VOCs), shows

enhanced suppression of innate immune responses in airway

epithelial cells compared to first wave isolates (75). The alpha

variants exhibit markedly increased levels of subgenomic RNA and

protein levelsofORF6.Theresulting increased levelsofORF6protein

inside host cells after infection increase the capability of ORF6 to

antagonize the nuclear translocation of IRF3 and STAT1 proteins

and hence antagonize IFN signaling more efficiently (75).
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ORF7a and ORF7b inhibits IFN-I
signaling by suppressing STAT1 and/
or STAT2 phosphorylation

ORF7a and ORF7b contain 121 and 43 amino acid residues

(64). ORF7a was shown to inhibit STAT2 phosphorylation by

approximately 33%–50% but only marginally suppress STAT1

phosphorylation (Figure 3, Table 1). ORF7b, on the other hand,

suppressed STAT1 phosphorylation by 33%–46% and

suppressed STAT2 phosphorylation by 33%–50%. Both ORF7a

and ORF7b were shown to suppress ISRE promoter activity by

approximately 40% and STAT1 nuclear translocation during

IFN-I signaling (Figure 3, Table 1) (43).
ORF8 inhibits IFN-I signaling
pathway and downregulates MHC-I

ORF8 is the most puzzling gene of CoVs (76). It contains 121

amino acid residues with less than 20% sequence identity to

SARS-CoV ORF8 (77). It contains a signal sequence for ER

import. Antibodies to ORF8 are among the principal biomarkers

of SARS-CoV-2 infection (78). Moreover, several studies have

delineated the role of ORF8 in immune evasion (50, 78, 79).

Since the emergence of SARS-CoV-2, several mutations in ORF8

have been recorded. These mutations, which include L84S (80,

81), V62L, S24L (82), and W45L (79), have been observed in

different variants of SARS-CoV-2. Different mutants in ORF8

altered their binding efficiency to IRF3 such as W45L mutant

was found to bind more stringently to IRF3, indicating its more

profound role in immune evasion (79). Therefore, different

variants will have different capabilities for evading the host

immune system due to mutations in ORF8.

ORF8 has also been found to interact with major

histocompatibility complex I (MHC-I) and mediate its

downregulation (Figure 3, Table 1). Cells overexpressing

MHC-I were found to be targeted for lysosomal degradation

by autophagy. ORF8 impairs the activity of antigen-presenting

cells; therefore, blocking ORF8 could be used to improve the

immune system (52).

The role of ORF8 in IFN antagonism was also described in

another study (50). Cells were cotransfected with NF-kB, IFN-b,
or ISRE reporter plasmids and ORF8-overexpressing and

respective control plasmids followed by SeV induction. ORF8

significantly inhibited the promoter activity of all three elements

(NF-kB, IFN-b, and ISRE). In addition, it was found that ORF8

inhibits the expression of ISRE promoter, suggesting that it may

adopt several mechanisms to regulate the host interferon

pathway. Moreover, ORF8 significantly suppresses SeV-

induced mRNA expression of IFN-b, ISG54, and ISG56 (50).
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ORF9b antagonizes IFN-I and IFN-III
by targeting multiple signaling
pathways

ORF9b encodes a protein of 97 amino acid residues and

significantly inhibits the production of IFN-I by targeting

mitochondria (53, 83). Antibodies against ORF9b were

detected in convalescent sera from SARS-CoV and SARS-

CoV-2 patients (84, 85). Therefore, the role of ORF9b

concerning IFN-I production is obvious (86). To determine

which host proteins interact with ORF9b, a biotin-streptavidin

affinity purification mass spectrometry approach was used.

Translocase of outer membrane 70 KDa Subunit (TOM70)

was shown to bind most efficiently to ORF9b. Co-IP

experiments further validated these findings. TOM70 is a

mitochondrial import receptor that is important for MAVS

activation of IRF3 and TBK1 (75). Furthermore, SARS-CoV

ORF9b can also bind TOM70. Therefore, ORF9b and TOM70

binding are conserved in SARS-like CoVs. Two domains of

TOM70 protein, i.e., the core and the C-terminal are important

for this interaction. ORF9b localizes to the outer membrane of

mitochondria as TOM70 is also localized at this site. The alpha

variants have also markedly increased subgenomic RNA and

protein levels of the ORF9b (75). ORF9b expression alone

suppresses the innate immune response by binding to TOM70

(Figure 3). The binding of ORF9b and TOM70 was regulated

by phosphorylation. Mutating ser53 alone or both ser50 and

ser53 in ORF9b to phosphomimetic glutamic acid interrupted

the binding between ORF9b and TOM70. Therefore,

unphosphorylated ORF9b is highly active soon after virus

infection to allow effective innate antagonism of the host (75).

Mitochondria and TOM70 play important roles in the IFN-

I responses (87). ORF9b significantly inhibits IFN-b
production. Moreover, TOM70 overexpression was shown to

largely rescue IFN-b production from ORF9b-mediated

inhibition. Therefore, therapeutic agents that inhibit the

binding of ORF9b and TOM70 in COVID-19 patients could

be developed (86).

Type I and type III IFN responses are inhibited by ORF9b

through multiple antiviral pathways (51). Cells overexpressing

ORF9b, followed by poly (I:C) or SeV induction, downregulate

the expression of IFN-b, IFN-l1, ISG56, and CXCL10. To map

the step at which ORF9b could exert its inhibitory effects, it was

found that ORF9b could antagonize the activities of IFN-b-Luc,
IFN-l1, ISRE-Luc reporters induced by MAVS, MDA5, TBK1,

RIG-IN, but not those induced by IRF3/5D. These results

suggest that ORF9b inhibits IFN production at a step

upstream of IRF3. ORF9b appeared strongly localized in

mitochondria but weakly colocalized with ER and Golgi.

Moreover, ORF9b does not interact with IRF3 but it does

interact with MDA5, MAVS, TRIF, TBK1, STING, and RIG-1.

Therefore, ORF9b targets multiple components of the innate
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system to inhibit IFN production. Furthermore, it was found

that ORF9b suppresses the phosphorylation of TBK1. This

phosphorylation suppression is induced by all three important

antiviral pathways, i.e., cGAS-STING, TLR3-TRIF, and RIG-I/

MDA5-MAVS. ORF9b also suppresses SeV-induced IRF3

nuclear translocation and phosphorylation (51).
ORF10 suppresses IFN-I signaling by
degrading MAVS

The ORF10 protein contains 38 amino acid residues, but the

sequence of SARS-CoV-2 ORF10 is different from ORF10s of

other CoVs (64). Since the recent pandemic began, no specific

function was attributed to this protein; however, a recent study

described its role in the suppression of IFN-I signaling (53).

ORF10 significantly antagonizes IFN-I and ISG expression and

degrades MAVS via mitophagy by accumulating LC3 inside

mitochondria. ORF10 translocates to mitochondria and induces

mitophagy by interacting with Nip3-like protein X (NIX) and

LC3B. IFN-I signaling inhibition is blocked when NIX is

knocked down. Therefore, ORF10 suppresses the IFN

signaling pathway by inhibiting MAVS expression and

promoting viral replication (Figure 3, Table 1) (53, 88).
Membrane (M) protein interacts
with MAVS and inhibits the
phosphorylation of TBK1 and IRF3

Membrane (M) is a glycosylated structural protein

consisting of 222 amino acid residues. The N-terminal part of

this protein contains three membrane spanning domains that

are responsible for the assembly of viral particles (13, 14).

M protein inhibits the activation of IFN-b promoter, ISRE,

and NF-kB in a dose-dependent manner induced by SeV (13).

Furthermore, stable cell lines expressing M protein inhibit SeV-

or poly (I:C)-induced IFNB1, ISG56, CXCL10, and TNF

transcription. Stable expression of ACE2 in HEK293 cells

(HEK293-ACE2) suppressed SARS-CoV-2- induced

transcription of IFN-b1 and downstream antiviral when

overexpressed with M protein. In addition, this protein

inhibits IRF3, TBK1, IKKa/b, and p65 phosphorylation in

cells (13).

M inhibits ISRE and IFN-b promoter activities mediated by

MAVS, RIG-I-CARD, andMDA5 overexpression but not by TBK1.

M suppresses NF-kB expression, which is mediated by MDA5,

MAVS, and RIG-I-CARD but not by p65. Therefore, it could be

deduced that M inhibits innate antiviral signaling at the MAVS

level. M protein physically interacts with MAVS (at its

transmembrane domain) but not with MDA5, TBK1, or RIG-I.

Moreover, M protein disturbs the recruitment of IRF3, TRAF3, and
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TBK1 to the MAVS complex, and this impairment inhibits the

innate antiviral response (13).
Other proteins

In addition to the abovementioned proteins, the following

proteins are also found to play a role in IFN antagonism.

However, their detailed mechanisms require further investigations.

NSP5 is a protease that cleaves ORF1a and ORF1b into

peptides and blocks MAVS-induced IFN-b production. The

C145A mutant of NSP5 abrogates the proteolytic activity and

fails to inhibit the activation of IFN-b. Therefore, the proteolytic
activity is indispensable for NSP5 to suppress IFN-b
production (54).

ORF3b, which contains 22 amino acid residues, is

considerably shorter than SARS-CoV ORF3b (153 amino acid

residues). The results of a luciferase reporter assay suggested that

SeV-induced promoter activity of IFN-b was suppressed after

overexpression of ORF3b (89).

ORF9c contains 73 amino acid residues and shares 74%

sequence identity with SARS-CoV ORF14 and approximately

94% sequence identity with bat SARS-CoV ORF14. It has a

putative transmembrane domain that interacts with M protein

in various cellular compartments. This interaction disturbs the

antiviral process in lung epithelial cells. The expression of this

highly unstable protein disturbed IFN signaling, complement

signaling, and antigen presentation and induced IL-6 signaling.

ORF9c enables evasion of the immune system and coordinates

cellular changes that are important in the life cycle of SARS-

CoV-2 (90).

Nucleocapsid (N) protein inhibits the promoter activities of

IFN-b, ISRE, and NF-kB. N protein also suppresses SeV-induced

IFN-b, ISG54, and ISG56 mRNA expression levels but does not

inhibit the expression from the ISRE promoter (50). The alpha

variants have also markedly increased subgenomic RNA and

protein levels of N protein (75). Therefore, the already IFN

antagonistic activity of N against IFN could be highly enhanced

in alpha variants.
Perspectives

Innate and adaptive immune responses are considered

fundamental elements of host defense against viral infections,

but SARS-CoV-2 has devised strategies to evade the immune

system. In this article, we summarized the roles and mechanisms

of actions of different SARS-CoV-2 proteins playing important

roles in the host’s immune evasion. SARS-CoV-2 proteins

inhibit the production and signaling of IFNs by different

mechanisms. For instance, NSP12, NSP14, NSP15, ORF6, and

ORF9b inhibit IRF3 nuclear translocation (43, 45, 47, 48, 50, 51),

whereas NSP1, NSP6, NSP8, NSP13, ORF3a, ORF7a/b, ORF9b,
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and Membrane proteins are involved in the phosphorylation

inhibition of various components of the immune system (13, 43,

44, 46, 51). ORF8 downregulates MHC-I to evade the host

immune system (52). NSP8 interacts with MDA5 to impair its

K63-linked polyubiquitination and mediate immune evasion

(44). ORF9c interacts with membrane proteins and impairs

the antiviral process in lung epithelial cells (90). These

examples demonstrate that each protein of SARS-CoV-2 may

perform multiple functions and mediate immune evasion by

different mechanisms. Moreover, mutations in the viral genome

also play important roles in more aggressive infections. Different

variants of interest (VOIs) and VOCs are evolved that favor

enhanced human-to-human transmission. Therefore, it is

necessary to study host immune evasion in more variants, so

that potential therapeutic strategies can be developed. In

addition, the inhibitory potential of antagonizing proteins may

be different in different experimental setups. Further

investigations are required to gain more insights and

information about immune responses and COVID-19

interactions. Detailed mechanistic studies of NSP5, ORF3b,

ORF9c, and N proteins will further elucidate the pathogenesis

of SARS-CoV-2 and therefore need further investigations.
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