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Abstract 

A method is presented for using composite objects 

which separates their role and meaning as models of 

relations between problem-domain concepts from their 

role and meaning as models of hierarchical sof’twarc 

structures. The meaning of composite objects is 

analysed in terms of connections bctwccn real-world 

concepts in object-oriented analysis and bctwccn 

software objects in object-oriented design. By 

capturing the designer’s rationale for model 

transformation, the resulting models arc casicr to 

understand and maintain. An embedded systems 

example illustrates the approach. 

1 Introduction 

‘4 composite object has a complex internal structure 

defined in terms of other objects. 

A whole-part association (WPA) exists bctwccn the 

class of the composite object and the classes ot‘ each of‘ 

its composing objects. 

The purpose of a WPA is to describe the common 

properties of the whole-part links that instantiate it, 

just as a class describes the propcrtics common to all 

its instances [Rumbaugh, Blaha, Premerlani. Eddy, 

Lorensen 911 . 
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Howcvcr, classes have a well-established semantics 

and can be described in object-oriented programming 

languages, whereas there is no standardization of 

meaning and USC for WPAs between classes ([Rubin 

and Goldberg 921. [Monarchi and Puhr 921). 

This paper presents a method for the definition and 

USC of WP.4s (and hcncc composite objects) in object- 

oriented analysis (OOA) and object-oriented design 

(OOD). The method is based on the view that WPAs 

are used for dif’fercnt purposes in OOA and OOD. In 

OOA, WPAs capture semantic properties of the 

problem-domain, whereas in OOD they capture 

semantic properties of the software. The nature and 

range of’ these properties and the method used for 

separating them is illustrated with an example of an 

cmbcddcd control system. 

Section 2 introduces a notation and terminology for 

whole-part associations and composite objects. In 

section 3 the method is presented in outline and the 

motivation behind it is discussed. In section 4 the 

rcquiremcnts of the example application are presented. 

Section 5 discusses the USC and meaning of WPAs in 

OOA. Section 6 discusses the semantic properties and 

the USC of WPAs in OOD. Finally the benefits and 

limitations of’ the method are discussed and ideas for 

further work arc prescntcd. 

2 Notation and terminology 

A whole-part association (WPA) is an association 

bctwccn two classes, the composite or wlzole class 

and the part class. To distinguish WPAs from other 

associations, the OMT convention of drawing a 

OOPSLA’93, pp. 376-393 
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diamond shape on the association link, next to the 

whole class box, is adopted (Figure 1). A WPA is 

instantiated by a link between a composite (or whole) 

object and a part object. 

A whole-part structure [Coad and Yourdon 911 

includes a composite class, all of its part classes and 

all the WPAs between the composite and its parts. The 

classes Car and Engine and their WPA form a whole- 

part structure. 

The Car-Engine WPA is mandatory in both 

directions, i.e., each Car must have an Engine and 

each Engine must be part of a Car. Other WPAs may 

be optional in one or both directions. 

I Car 

Figure I : a whole-part association 

2.1 Aggregates and Collections 

Two patterns of whole-part associations recur 

frequently in object-oriented models. Aggregates 

[ Coad and Yourdon 901 are patterns where a class has 

several named part classes, each with multiplicity 1 

(Figure 2). The name of a part class can be omitted 

from the diagram if no ambiguities can arise (c.g., 

Text in TextBox). 

TextBox 

I 
+i-++, 

Figure 2 : un aggregate 

By default, a WPA is tiken to be a (1) to 1 

association: i.c., an instance of the whole class needs a 

link to one instance of the part class, whereas an 

instance of the part class can exist without a link to an 

instance of the whole class. (Each TextBox needs a 

Text and two Buttons, but Text and Button objects do 

not exist just as parts of a TextBox). 

The second recurrent pattern of association is the 

collection, in which a composite object is linked to 

many part objects of the same class. 

Figure 3: a collection 

For cxamplc, in a graphical editor for geometrical 

drawings, we can model the association between the 

class Drawing and the class Shape, of which elements 

of’ the drawing are instances, as a collection (Figure 

3). 

R 
I I 

00 

Introduction 

Figu.rc 4: Q. multi-level composite 
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2.2 Composition hierarchies 

To model complex hierarchies of objects, it is often 

necessary for a part class in a WPA lo be the 

composite class in another. So whole-part associations 

can induce multi-level object composition hierarchies 

(part-of hierarchies) (Figure 4). 

3 Rationale and outline of the method 

WPAs can be used to model “part of” relationships 

between entities in a domain (e.g., OMT [Rumbaugh 

et al. 911, OOA [Coad and Yourdon 911) and to 

control design complexity by encapsulating the parts 

of composite objects (e.g., OOAD [Booth 91 1, HOOD 

[Robinson 921, [dechampeaux 91)‘). Thcsc two 

goals are difficult to separate by looking at it Linishcd 

model, as this not only attempts to rellcct the structure 

of a problem domain, but is also “dcsigncd” to be 

understandable, manageable, rcusablc, resilient to 

change and to result in software with dcsircd 

computational features, such as pcrformancc and 

physical distribution. This situation arises from the 

twofold purpose of object-oriented models: to describe 

the structure and behaviour of entities in the problem 

domain (analysis), and to describe the structure and 

behaviour of the software components of the system 

(design). During OOD an object model is relined and 

transformed to address design issues that arc not 

considered in analysis [dechampeaux, Lea and Faurc 

921. New WPAs can bc created. Existing ones arc 

viewed from a new, software pcrspcctivc and can 

therefore change their propel-tics or acquire new ones. 

When a model undergoes substantial transtbrmation 

during design, it is vital that the analysis model. 

reflecting the client’s and analyst’s understanding of 

the problem domain and system requircmcnts, is 

preserved. The transformation steps musl also be 

recorded. This way, when the requirements change ot 

are extended, the analysis model can bc modified and 

the transformations chcckcd for consistency with the 

new requircmcnts. If’ the design model is modified 

directly, problem and solution domain issues cannot 

bc distinguished and considered scparatcly. This 

makes system cvolulion harder to control and more 

error-prone 

It follows that WPAs must be documented so that 

their analysis and design properties, and the different 

constraints and decisions they reflect, can be 

separately identified. 

Furthcrmorc, within their analysis and/or design 

roles, WPAs can be used for multiple and different 

purposes which affect their semantics. This view is 

supported by rcscarch in cognitive psychology 

[Winston et al X7], which has shown that there arc 

diffcrcnt types of part-whole relations (mcronymic 

relations) bctwccn concepts, with different semantic 

connotations. For cxamplc, the whole-part relations 

Person-Ann and Company-Person arc semantically 

diffcrcnr2. 

This variety of purposes and semantics is not 

supported by the notations of current object-oriented 

methods, which tend to bury it under a single 

notational construct, ending up with a concept too 

broad in scope to have a prccisc meaning or a useful 

role within the development process. Table 1 

summarizes the terminology and approach of a 

rcprcscntativc sample of current object-oricntcd 

methods. 

A striking feature is that those methods that use 

WPAs in the analysis stage (e.g., OMT, OOA) do not 

distinguish berwcen WPAs and other class 

associations in design and implcmcntation, whcrcas 

those methods that USC them for software design 

purposes (c.g., Boo&, HOOD) do not cxtcnd into the 

analysis stage. Thus no existing method gives rules or 

guidclincs for using WPAs throughout analysis, 

design and ilnplcrncntation. In fact, the difference 

bctwecn WPAs and other associations is often only 

cosmclic and diagrammatic. While it is generally 

acknowlcdgcd lhat whole-part associations bind 

ldeChampeaux (91) uses the term cnscmblc to rcfcr to 
special kinds of composite objects that encapsulate their 
components. This concept is subsumed by the 
categorisation of composite objects given in this paper, 
where encapsulation is only one of’ the design roles of a 
composite. 

2Thc transitivity properly (i.e., if A is part of B and B is 
part of C, then A is part of C) is lost when relations with 
different semantic propcrtics arc involved ( my Arm is nol 
part of my Company). 
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classes more strongly than other associations, there are 

no further rules or constraints to guide design and 

implementation decisions. For example, the duties of a 

composite object as owner and manager of its parts are 

not sufficiently elaborated by any existing method, 

although the TROLL language [Hartmann, Jungclaus 

and Saake 921 allows the representation of structural 

and behavioural connections between a composite and 

its parts. 

This paper proposes a method L‘or using and 

documenting whole-part associations throughout 

model development, that addresses the problems 

mentioned above: 

l In OOA, WPAs arc shown individually alongside 

other associations and are named explicitly in prccisc 

domain-specific terms, rather than in gcncric tcnns 

such as ‘is part of’ or ‘includes’. In addition, each 

aggrcgatc and collection is classified as belonging to 

one of’thrcc semantic patterns and textually annotated 

accordingly. This requires the dcvcloper to invest 

more resources in understanding the domain better, 

but it pays dividends in later stages by making the 

model easier to comprehend and providing more 

precise guidance f’or the designer. 

l In OOD, more emphasis is placed on the object 

composition hierarchy rather than individual 

associations. The design properties of’each whole-part 

structure arc captured using annotations. A rationale is 

given for each composite object in the object 

composition hierarchy by cross-referencing 

corresponding WPAs in the analysis model and/or by 

stating its design purpose within the model. This gives 

tractability 01‘ WPAs by documenting the rationale for 

the transl‘ormation bctwccn the analysis and the design 

model. 

HOOD 

[Robinson 921 

OMT 

[Rumbaugh 

et al. 911 

Yes 

CRC Objectory 

[Wirfs-Brock [Jacobson 921 

ct al. 901 

No No 

OOA 

[Coad and 

Yourdon 91 I 

OOAD 

[Booth 911 Source 

Notation 

support for 

WPAs 

Terminology 

Yes 

whole-part ‘has’ 

structures relationship 

Problem- strong 

domain (pervasive 

modelling organising 

semantics principle) 

Variations container 

collection 

Definable 

properties 

Software 

design 

semantics 

Relevance 

in method 

Main 

purpose 

i 
assembly 

optionality optionality 

multiplicitv multiplicitv 

none ownership/ 

encapsulatiori 

YW 

‘consists-of’ 

relationship 

‘include’ 

relationship 

aggrcga tion ‘part of’ 

(whole-part relationship 

association) 

strong 

(parts’ 

common 

Drouerties) 

weak none weak 

by-value 11011~ IlOIlC none con taincr 

composite 

optionality IWIl~ none 

multit7licitv 

1 bv-rcfcrencc 

none encapsulation 

/delegation 

major 

decomposi- 
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design/ 

distribution 

modclling 
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4 The example system 

The system specification is derived from a published 

example of real-time structured design techniques 

[Ward and h4ellor 851. The system consists of a 

number of bottle-filling lines fed by a single vat 

containing the liquid to be bottled. Figure 5 shows 

some of the details of the vat apparatus and of a 

representative bottling line. Because of the single vat, 

the composition of the liquid being placed in the 

bottles is the same for all lines at a given time. 

However, the bottle size may differ from line to lint. 

The tasks of the control system arc to control the 

level and the pH of the liquid in the vat, to manage the 

movement and filling of bottles on the various lines, 

and to exchange information with human operators 

working the individual lines and with a supervisor 

monitoring the entire system. 

The vat level control is accomplished by monitoring 

the level with a sensor and adjusting a liquid input 

valve accordingly. The requirement for controlling pH 

arises because the liquid to be bottled reacts with its 

surroundings, causing the pH to “creep” over time. A 

constant pH is maintained by introducing, through the 

pH control valve, small quantities of a chemical that 

revcrscs the pH “creep”. 

pH control 

valve 

vat ” 

level 

r 

sensor 

valve . . il. . . . . . ,. . . . . . . . . . . . . .,. 
i::.:.: . ../ :.:....,:. . . . . . . . . . . . . . ..,..............,....,........... :.::.:i:I:,,Ii..i.:::::,:: : : : ,: .j’.:.‘;: j:;j?j!:i:::. i::: i.>:: :. : ::: .:y ‘Y::.::. .:: ..:. ::. .: . .,.: :: >:: : .j .:..:.::>:.:::.::::y:,::. : 
:z:;:::.:::::::: : :-:: : ; :. . . ..,..... . . .: :::.y::.:: :. :: +:.:: .: :::i, ‘: bottle 

:. : .A.. . . .\.. .A.. . . . . . . . . . . . . :.: : . . : . . : :.,::.; :. :; 
. . :i.::i-I;ilLiif!d;:~-];:,~j-i-:j::j:-I:::i:jl :.. .: : -: :..: ::..,:.,,,:.‘.(.) . . . . . .:.:...:.:..: ; .,.,. ::., : ,.:: .,:.. :.,: .:.;;.:::;; ;:‘i ‘jl:j ,: j::..: : .:::. .:. . . . . . . :.--:.-.:-.-::-..~:-:. :.:; release :.’ 

PH 
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contact 

scales 

Figure 5: the physical structure of the bottle,fi’lling plant, excluding the .~upervi,wr and the operator interfaces. 

Only one bottle filling line is shown. 
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Bottles to be filled on a particular lint arc drawn 

one by one from a supply of bottles, as follows: 

. A bottle is released from a gate and drops 

down a chute onto a scale platform, at the same time 

depressing a bottle contact sensor. The bottle is 

weighed empty. 

. The bottle-filling valve is opened, and a 

measured amount of liquid is let into the bottle. The 

weight of the bottle plus its contents is used to 

determine when the bottle is full and to shut off the 

valve. 

. The filled bottle is labcllcd to show the actual 

pH when filled, and the nominal pH. The lint operator 

caps and removes the filled bottle, and signals the 

systems that the bottle has been removed. Removing 

the bottle releases the boulc contact sensor, rcmovcs 

the weight on the scale and allows the next bottle 10 bc 

released from the gate. 

The line operators can signal ~hc system to start and 

stop individual lines, and the supervisor can signal the 

system to enable or disable the opcralion of all the 

lines. The line operators arc given displays of the lint 

status and are able LO change bottle size for Ihc lint. 

The area supervisor is given a display of the current 

status of the system pH, vat liquid lcvcl and statuses 

of the individual lines, and is able to control Lhc pH of’ 

the bottled liquid by entering a new dcsircd pH to bc 

maintained. 

If, during operation of the system, Ihc pH goes out 

of limits (>0.3 from the setpoint) all control actions arc 

suspended. The vat pH is then srabiliscd manually. 

When the pH is back within limits. the system restarts 

automatically 

5 Whole-part associations in the 

analysis model 

Class associations identified during analysis model 

connections between objects in the problem domain 

(Figure 6). The key class attribulcs in the model arc 

shown inside their class symbol. 

The associations provide a basis from which to 

derive the dynamic communication links amongsl 

software objects, although they do not prcscribc the 

directions of the links, nor their implementation 

mechanisms-‘. 

The WPAs arc dcscribcd with domain-specific 

terms (c.g., Gate re1ccr.se.s bottles OIZ BottlingLine) 

rather than generic ones (e.g., Gate is purr oj 

BottlingLine), to convey more precisely the role of the 

links. 

5.1 Semantic patterns of object 

composition 

WPAs can be divided into two categories: jbzctionaf 

and non~jiunctional. In a functional WPA the part is 

conceptually included in Lhc whole because of 

slruclural and functional connections that make it 

possible for it to contribute to the funclion of the 

whole [Winston ct al. X71. For example, the devices 

which make up it Boltlinglinc arc structurally situated 

and conncctcd in such a way LO support the function of 

the BottlingLinc (c.g., Lhc gate is connected via the 

chute LO the platl’orm LO which Lhc contact sensor is 

attached). Each part object has a function to fulfil that 

conlributcs to the function of the whole object. We call 

thc parts in a functional WPA components to 

cmphasizc their csscntial role in the association. We 

call the whole object an a.s.sembl\~, although no 

physical cxistcncc is implied. Essential parts of 

physical systems (c.g., the cnginc in a car), 

organisations (c.g., the headteachcr of a school), or 

conceptual cntilics (c.g., the activities in a project plan) 

fall within this dclinition. 

Non-functional WPAs modct looser connections 

bctwccn wl~olc and part. Such WPAs can be divided 

in two catcgorics: tuplc-element, and group-member, 

corresponding to the notions of aggregation and 

trssociution rctations in Semantic Data Modelling 

3Additional textual constraints are required to capture the 
full semantics 01‘ the associations. For example, it should 
bc stated that the SCI of BottlingLine objects linked to the 
Vat’s Supervisor, found following the path ‘Vat- 
>Supcrvisor->BottlinSLinc’, is the same set of 
BottlingLinc objects found following the path ‘Vat- 
>Valve->BottlingLinc’. In other words the Supervisor 
supcrviscs all the bottling lines which arc fed by the filling 
v;~Ivcs, and no others. 
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Figure 6: Class associc~tions in the Bottle Filling S~~.stm 

[Hull and King 871. A tuple models a rclntion bctwcen its clcmcnts model the cntitics parlicipaling in the 

two or more entities.The two entities normally cxisl CVCIll. 

independently from each other. Tuplcs arc aggrcgatcs Groups arc sets of’ objects brought together by 

where the names of the elements convey the roles they virtue 01‘ sharing some property or by some other 

play in the relation (e.g., Marriagc(Husband, Wife), looser connection. Examples of’ group-member 

Sale(Purchaser, Vendor, Property), Rcgistration(Car, associations arc: Hotel-Room, Committe-Member, 

Owner) ). Often the tuple object models an cvcnt and Document-Page. In the bottle filling plant, should we 
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require to keep track of each bottle lillcd, the set of 

filled bottles would be modellcd as a group object with 

no functional relation bctwecn whole and parts and no 

structural connections between the mcmbcr objects 

(FilledBottles-Bottle). 

Just as aggregates and collections provide syntactic 

patterns of object composition, so asscmbly- 

component, tuple-element and group-mcmbcr provide 

semantic patterns, since they capture the purpose for 

which WPAs are being used. 

Components in an assembly normally appear as the 

named parts in an aggregate pattern, as each has the 

ability to fulfil a different function, described by its 

name, within the composite. Members in a group, on 

the other hand, tend to be parts of a collection. They 

are not individually named because they all play a 

similar role from the viewpoint of Lhcir composilc and 

none of them individually is essential to the function of 

the composite object. 

So funclional WPAs describe srrongcr: usually 

non-optional, links than non-~unclionat ones. Each 

composition pattern should bc annotated lo rcflccl this 

distinction and to justify it. In particular. I‘or each 

group object the analyst needs to slate the common 

properties that brings together all member objccls. For 

each assembly, the function of the composite and the 

contribution of each component must also bc 

described. 

In the Bottle Filling System (BFS) all WPAs arc 

functional and non-oplional. An example 01‘ ;1 model 

annotation is given below: 

Whole: 

Parts: 

Kind: 

Function: 

BottlingLine 

ValvefUingValvc, Gate, Labeller, 

AnalogueScnsor sculc.s. 

Bu.tton removeSignal. 

OnOjjTensor contactSensor. 

Assembly 

Manages the movement undfi’llingof 

bottles on n single line. It controls the 

actions und monitors the stC/tc of’ each 

.component device. 

In summary, WPAs arc useful to highlight strong 

associations in a problem-domain, but come in 

different flavours and need to bc dcscribcd 

accordingly. A dcsigncr would be entitled to ignore the 

difference between WPAs and other associations if 

their meaning was no1 made clear. 

5.2 Other (non-WP) associations 

This method of classifying WPAs helps to tell them 

apart from other associations, which are sometimes 

confused with WPAs : 

Spatial or temporal inclusion (e.g., Room- 

Desk, Process-Phase). Spatial (temporal) inclusion or 

proximity is a good heuristic clue to identify a WPA. 

However it dots nol jusliI‘y a WPA in the absence of 

slructural or funclional connections relevant to the 

system responsibility. The filling Valves, for example, 

may by physically closer LO the Vat than to the 

BottlingLincs, but they are funclionally closer to the 

latter, as Lhcir’ operation depends on events happening 

within them. 

Spalial (temporal) inclusion justilies the sharing of 

some spatial (temporal) propet1ics bctwecn objects, so 

it might I‘oIm the basis for a group-member WPA, but 

it is semantically wcakcr than a L‘unctional WPA. Thus 

the spatial I’calurcs of the Pilot-Aircraft association 

ICoad & Yourdon 91 I do not justify a WPA. Pilots 

and Aircrafts are independent entities. One just 

happens 10 be inside Lhc other for a time period. Their 

association is semantically similar to that between a 

tcmotcty-controltcd aircr-al’t and its human controller. 

Artrihution (c.g., Building-Height). Height is 

not pars 01‘ ;I building, but one ol its attributes. 

Attribution is of’tcn conlused with whole-part because 

the distinction bclwccn an attribute and a part of an 

object is of‘tcn lost in an objecl-oriented 

implcmcnlalion. For cxamplc the height of’ the building 

and ~hc heating-system in the building would both be 

implcmcntcd as instance variables or class Building in 

Smalllalk. Furthermore, in object-oriented modelling 

the choice bctwccn attribution or WPA can be 

subjcctivc as wctt as purpose and context dependent. 

Arc Ihc start-point and end-point attributes or parts of a 

tint scgmcnt’! The mswcr depends on the conlexl: are 

the delimiting points used just as inlbnnation holders, 

to store and provide access to their coordinates, or do 

they have bchaviour that can bc invoked by their 

LineSegmcnt or other objects? In the latter case the 
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two points should be modclled as part objects. Since 

such behavioural decisions are often taken during 

OOD, an attribute in an analysis model can bccomc a 

part object during design. 

Class nzetnbership (e.g., John Smith - Person). 

This is a relation between an instance and its class, not 

between two instances. Semantically it cxprcsscs the 

fact that the properties of John Smith are dcfincd by 

the class Person. However if one takes an cxtcnsive 

view of meaning for classes (a class is a set), it is 

tempting to treat a class as a collcclion of all its 

instances. Although possible, this is bad practice at 

both the conceptual and the practical Icvcl. At the 

conceptual level, it confuses the mcmbcr-collection 

relation, based on the connections between or the 

extrinsic properties of a group of objects, with the 

class membership relation which is based on the 

intrinsic propcrtics of Lhc class mcmbcrs. At the 

practical level it crcatcs a computational abstraction 

with two distinct responsibilities: dclining and creating 

instances of a class, and keeping and managing the 

instances of the class. The latter is usually application 

and context dependent whereas the first is fixed. In 

addition, there is often a need for distinct collections ol‘ 

objects of the same class in an application. The 

extensive approach creates a displeasing asymmetry 

between how different collections of objects of’ the 

same class are handled. 

6 Whole-part associations in the design 

model 

The WPAs in the design model arc shown as an object 

composition hierarchy (Figure 7) to emphasize that 

their main role is in structuring the software system as 

opposed to modelling the problem domain. 

Whereas a problem-domain association captures, in 

application-related terms, the purpose I’or which 

objects are linked, composite objects place objects 

(and hence their classes) in a logical hierarchy, so that 

software can bc designed in layers of abstraction. with 

functional responsibilities suitably distributed among 

the layers. 

Some WPAs in the objecl composition hierarchy do 

correspond to problem-domain class associalions, in 

which case the relevant links arc rcplicatcd ;~cross (17~ 

two diagrams (c.g., BottlingLinc - Gate). Others do 

not have such semantic support in the class association 

model, but arc introduced to make the model more 

suitable to a sol’twarc rcalisation (have a design role 

only). 

6.1 Semantic properties of WPAs in a 

design model 

In OOD, a WPA models a part-of relation between 

software objects, not bctwccn real-world entities or 

concepts. Thcrcforc, its semantics should be based on 

properties oI’ sof’twarc links. 

However it is counter-productive to give necessary 

and sufficient conditions for calling a software link a 

whole-pan link. The rcsulling conditions are either too 

prcscriptivc or too broad, and thcrclorc unhelpful. The 

reason is thill the concept of whole-part association in 

software has too many I’accts and shades and so defies 

cxccssivc simplilicalion. 

It is more I‘ruitl’ul to consider the primitive 

propertics of each WPA and annotate the model 

accordingly. This way the dcsigncr is I’rce to use 

WPAs as hc or she sccs appropriate, provided some 

minimal ncccss;u-y conditions are satisfied, but is also 

Ibrccd LO dcfinc whirt is meant by each WPA. 

The list below is an attempt LO establish the 

primitive sctnantic propcrtics of software links on 

which WPAs arc based. 

Visibility. A ncccssary (but not sufficient) 

condition for an object to bc part of another is that the 

whole object has the ability to send messages to the 

part. Thus the composite class is a client of the part 

class. The converse may also be true if the application 

requires it. In MacApp and other GUIs, for example, 

CilCh View holds il rcfcrcncc LO its enclosing View in 

order to propagalc cvcnts. 

Etzcapsulatiutz. An cncapsulatcd (or nested) 

object is only visible within the scope of its 

encapsulating object. A composite object may 

cncapsulalc its parts, making its intcmal structure 

invisible to its clients. Current programming languages 

do not I‘uI ly support ~llCilpSUl~ltiOll, as a private 

inslancc viiriablc can be assigned to a method 

argumcnl, making the part object visible outside ti 

whole objcc[. Component objccls should bc 
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encapsulated by their assembly to separate the external 

functionality of the assembly from its internal structure 

and functions, just as in real lift complex armfacts 

present a simple extcmal intcrfacc that shields the user 

from their internal workings. Elements of a tuple arc 

not usually encapsulated by the tuple, as thci r function 

within a system is not just subsidiary to the tuplc. 

Encapsulation can be further constrained or rclaxcd 

by limiting or extending the visibility within and 

across the composite object: 

Inward Visihilitv. A client of the encapsulating 

object can use the encapsulated object, but only by 

obtaining a dynamic (i.c., released after method 

completion) reference to the laucr, from the former, 

during execution of one of the client’s methods. This 

is similar to Hogg’s (91) islurzds, with the whole 

object playing the role of bridge. Islands limit the 

scope in which an object can be statically aliascd, 

making a design more amenable to proofs 01 

correctness [ Hogg 9 11. 

Outward visibilit\;. The cncapsulalcd object may bc 

granted static or dynamic visibility to objects outside 

the scope of the encapsulating object. In the Bottle 

Filling System, for example, a BottlingLinc has 

visibility to the Vat, to obtain pH data. 

Inward and/or outward visibility arise from 

associations between a part class and classes outside 

its composite (e.g. through its Valve, BottlingLinc has 

an association with Vat (Figure 6) ). 

Whole-indenendence. A whole-independent part 

has no visibility to its whole. 

Peer-indenendence. A peer-independent part has no 

visibility to other parts of the same whole. 

Seaarate vart. A part that is both peer- and wholc- 

independent. Such an object dcpcnds only on its own 

parts, if any. An object composition hierarchy whcrc 

all parts are separate induces a strictly hicrachical 

interaction scheme, in which every sub-tree of the 

object composition hierarchy is totally self-contained. 

Strict hierarchies cnhancc robusrncss ol‘dcsigns at the 

expense of flexibility. 

Sharing. An object is shared if two or more 

objects hold refcrcnccs to it. A part object can bc 

shared by multiple composites (c.g., a programmer 

can bc a mcmbcr of a dcvclopmcnt team and of a 

quality rcvicw group). 

A shared part object cannot be encapsulated, as it 

must be visible to mom than one composite. 

Part-Whole Inseparability. A separable part 

can be disconncctcd from its whole. An inseparable 

part cannot: its cxistcncc depends on the existence of a 

connected whole. For example each filling Valve is 

inscparablc from its FillingStation (Figure 7). A 

scparablc part can bc crcatcd by some other object and 

subscqucntly acquired I,,\: the whole; or released from 

its whole and passed on to another object. For 

cxamplc the mcssagcs in a mailbox are produced 

somcwhcrc clsc and inserted into (acquired by) the 

mailbox. Later they will bc released to be used and 

kept or dclctcd by some consumer object. 

Whole-Part Inseparability. The existence of 

the whole object may dcpcnd on the existence of the 

part object. An inscparablc whole will create or import 

its part at creation time. The part object cannot bc 

dclctcd without causing the deletion of the whole. For 

example, an OpcratcdLinc depends on the existence of 

a BottlingLinc and an Operator (Figure 7). 

1nsepar:rbility is thercfore about the relation 

bctwccn the objects’ lil’etimc. If a part is inseparable 

from its whole, then its lil’ctimc is included in that of 

the whole object (Figure 8). Conversely, if a whole is 

inscparablc from its part, then the lifetime of the whole 

is included within that of its part (Figure 9). Mutual 

inseparability (part-whole and whole-part) means that 

the two lifctimcs coincide (Figure 10). It is usual for 

asscmblics and their components to be mutually 

inseparable, for tuplc objects to be inseparable from 

their clcmcnts, and for members in a group to bc 

scparablc from their whole. 

Together, the propcrtics of inseparability and 

encapsulation correspond to ownership, or has-by- 

value relationship in Booth (91). Keeping the two 

propcrtics scparatc provides greater modelling 
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Vat Supervisor Opcr,ltcdLincs 

A 

I 

LiquidLcvelControl 

A 

AnalogueScnsor 

IevclSensor 

PHControl 

A 

I 

Valve inputValve 

Ill 

OpcratcdLinc 

BottlingLinc Operator 

Labellcr FillingStation 
rcmovcSignal 

A 

I 
Valve fillingValvc AnalogucScnsor OnOlEcnsor 

scalcPlalfonn conUctScnsor 

Figure 7: Cotnpositc ohjcct hicrmdzy in tlzc Bottle Filling System 

flexibility (e.g., inseparability with no encapsulation). objccl would bc involved. Thus the cntily modclled by 

Immutability. In an immutable WPA the identity kc whole object would no longer bc the same entity if 

of the part object cannot chsngc [Odctl 921. For one of its parts changed. In an immurablc WPA, the 

example, in a Marriage, the identity of the husband 01 part is scparablc from the whole, but the whole is not 

wife cannot be changed. If it did, ;I dil’l’crcnt Xl~r-iagc scparabtc from the part. ,411 inseparable pan cannot bc 
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mutable, but an inseparable whole may have a mutable 

part. A sailing boat, for example, needs a sail 

(inseparability), but the sail can be changed l’or an 

equivalent sail without affecting the l’unction of the 

boat. Thus it is the role of the part that is csscntial, but 

not its identity. 

Ownership. Ownership and encapsulation of’ a 

software object are treated as synonyms by some 

(e.g., Booth (91), Atkinson (92) ). Instead, WC dclinc 

ownership in terms of the way that the destiny of’ UK 

whole and part objects are interlinked. Marc precisely, 

ownership is a pragmatic one: it allows us to represent 

situations where an object is owned but not 

cncapsulatcd by another object and where creation and 

dclction 01‘ the same object arc carried out by different 

objects (this is quite common with objects that 

rcprcscnt dynamic real-world objects that undergo a 

series of proccsscs bcl’orc coming to the end of thei 

lil‘c). Also note that ownership is weaker than 

inseparability: for cxamplc a member object owned by 

a group may be owned by the group but also separable 

from it (it can be released and continue its existence 

an object owns another if dclction of the whole object outside the group). 

implies deletion of the part object. This dclinition 01 

Crcatc Delete 

BottlingLlnc 
Whole object’s lifctirnc -b 1 1 ..- -.... 

Creak Co-cxislcnce period Dcletc 

1 
Part object’s lifc‘climc d 7 

Boulc 

Figure 8: An exatnple of at1 itzseparohle sofn~ure part: a BottlingLine creates a Bottle, tracks it 

and demvys it when it leaves the line. ltz real 1@ the bottle is not inseparable frotn the line. 

I 

Whole object’s lifetirnc 

Part object’s lifetime __) 

I I 

Whole object’s lifetime 

Z~lj-: 

Part object’s lifetime __) 
Gate 

I I 

Figure 10: An example of a tnutuall~* itlseparahle WPA: the l~f~titnes of’ a BnttlingLitle atzd a 
Gate coincide. 
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Collaborations. Although in some composite 

objects ( called containers by Wirfs-Brock et al. (90) ) 

the whole objects do not call operations on their part 

objects nor viceversa, normally, strong collaborations 

exist between a whole and its parts. The nature of such 

collaborations is application dependent, but a few 

general categories can be identified. 

Constraint Maintenance: where a constraint must 

hold that involves all or some of the parts, the 

composite object can take charge of ensuring that the 

constraint is satisfied. A special cast of collaboration 

arising from the need to maintain a constraint is 

propagation [Rumbaugh et al 911, which occurs when 

the value of an attribute or link is shared bctwcen the 

whole and its parts. Changes to the value must bc 

propagated or broudcust to each part object. 

Configuration. A composite object can bc 

responsible for configuring its part objects. WC 

distinguish internal from external configuration. The 

former involves binding an object to other objects in 

the system; the latter sets up a link between an object 

and an interacting entity in the system environment. 

Internal Configuration. Part objects of’ten 

collaborate with their peers, and, sometimes, with 

clients or servers of their whole. A whole object is 

ideally placed to set up such links, as it provides lhc 

context within which its parts operate. Internal 

configuration of part objects by their composite objects 

makes the part objects context independent and 

therefore more reusable [Kramer, Magec, Sloman and 

Dulay 921. 

External Configuration. Interface objects modclling 

entities in the physical system environment that interact 

directly with the system need to bc externally 

configured. If the physical interfaces arc arranged into 

structures or sets corresponding to the whole-part 

structures in the object model, then it is convenient for 

composite objects to set up the links between their 

parts and their physical counterparts. 

Delemtion of active behaviour. Objects can IX 

passive or active. An active object has its own 

execution thread. Active objects are denoted by an “A” 

in the lower right comer of their icon (Figure 7). FOI 

the sake of conceptual simplicity, an object can have at 

most one execution thread [Kramer ct al. 921. 

However, composite objects, whether passive or 

active, may include active parts. So complex dynamic 

behaviour within an object can be decomposed by 

delegating part of it to the object’s parts. 

A simple and easily verifiable cast of algorithmic 

decomposition arises where a complex state in the state 

chart of an object (i.e., a stale with an internal activity 

that can itself be represented as a state chart) is 

transformed into a component object. 

The dynamic behavior of an object can be Control. 

modcllcd as a finite stale machine. States arc 

abstractions of the values and links held by an object, 

and rcprcscnt its dispositional behaviours: in different 

states an object reacts dil’l’crently to the same event. 

Transitions bctwecn states are caused by events 

gcncratcd by other objects or by events external to the 

model. See Coleman (91) for how to use object 

charts, an cxlcnsion to state charts [Harcl 871, to 

model dynamic object bchaviour. 

An object controls another if it generates events fol 

it (i.c. sends it mcssagcs that fire transitions between 

states). In principle cvcnts can be generated across any 

object link. Howcvcr the complexity of object 

interactions, and with it the potential for data 

corruption, race conditions or deadlock, is reduced if 

objects do not mutually control each other and if 

control links are kept to a mimimum and explicitly 

documented in a model. 

The object composition hierarchy can be used fat 

the purpose OF reducing behavioral complexity by 

giving composilc objects the role ol’solc controllers ot 

their active parts. This should not bc considered a rigid 

rule but only a flcxiblc guideline to bc applied as long 

as it dots not distort the correspondence between the 

model and the problem-domain. 

In the Bottle Filling System, for example, each 

composite object is the sole controller of its active 

parts (thcrc arc no shared active parts), except in two 

casts whcrc the control relationships are already clear 

in the problem domain: Supervisor controls Vat and 

Operator controls BottlingLinc. 

Most of the semantic properties discussed above are 

not directly supported by current object-oriented 

programming languages; however, as they impost 
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important constraints on the implcmcntation, they 

should be explicitly captured in an object-oricntcd 

model. 

6.2 Design rationale for composite 

objects 

Just as the properties of each whole-part structure 

must be documented to guide the implemcntalion 

process, so the purpose of each composite object must 

be documented to help understand the design model 

and its derivation from the analysis model. To 

illustrate the approach, the rationale for each wholc- 

part structure in the BottlcFillingSystcm is discussed, 

and the semantic propcrtics of each arc documcntcd. 

We proceed top-down, depth-first down the object 

composition hierarchy in Figure 7. 

Whole: Bottle Filling System 

(models entire system) 

Parts: Vut, Supervisor, 0peratedLine.s 

Kind: Assembly 

Rationale: Top-down Decomposition: 

System Partitioning into .separate, 

cohesive parts 

Properties: Mutual insepurubility. Confi’xuration, 

Behuviour delegation 

The whole system is modellcd as an assembly, 

whose components are subsystems with scparatc 

functional responsibilities. This structure is dcrivcd 

from the analysis model in three slcps: 

1. Partition the classes into a small number of 

groups, so as to minimize the number and strength of 

the inter-group links (Figure 1 I). WPAs bind more 

strongly than other associations - this is why filling 

Valves end up in the same partition iIs the 

BottlingLines. If shared WPAs arc involved, then 

assemblies are considered stronger than groups and 

groups stronger than tuples. Thcsc guidclincs help lo 

minimise interactions amongst di ffcrcnt branches 01 

the hierarchy. 

2. Select a key class in each group and model the 

whole system as a composite formed by objects 01 

these classes (Figure 12). BottlingLine has been 

rcnamcd OpcrutcdLine to better convey its role. 

3. Introduce a new object to manage the collection 

of OpcratcdLinc objects (Figure 7). 

\ 

Bottling Line 

1 I 

1 

n 

/ 

Figure I I: Partitioning the model to ident@ top-level 

al,.straction.s 

BottlcFillingSystcm 

I 

Figure 12: The system modelled as u composite object 

whole: 

Pam 

Kind. 

Ra tiorzalc : 

Properties: 

OperatedLines 

OperatcdLinc 

Group 

Simpl(fj, top-level deu~mposition 

Ownership, Constraint maintenance, 

~Me.ssa~c broadcasting, Configuration 

This composite object does not model a specific entity 

in the problem domain. It is used to collect together all 

the BottlingLincs (and their Operators), in order to 

simplify the top-lcvcl system structure by taking 

charge o 1’ the mimagcmcnt of the OperatedLine objects. 

It cnsurcs that all its mcmbcr objects have the same 

value I‘0 r their status attribute 
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(disabled/enabled/suspended). To maintain this 

constraint, OperatedLines is responsible for 

broadcastins supervisor messages to its members. 

OperatedLines does not encapsulate its members, so 

the Supervisor can share a rcferencc to a single 

OperatedLine if necessary. Also no internal links 

between OperatedLine objects are required, as the lines 

in the plant operate independently from each other. 

However, each BottlingLine within each OpcratedLine 

needs a link to the Vat to find out the liquid’s pH to 

print on the label. Such a link is established as 

follows: BottleFillingSystem passes a reference to the 

Vat to its OperatedLines component, which in turn 

broadcasts it to each OperatedLine, and so on. So the 

composition hierarchy is used recursively to configure 

objects that need links to others in different branches 

of the hierarchy. 

As a result 0 f this 1 r a n s I’0 r m a t i on , 

BottleFillingSystem is no longer a combination of an 

assembly and a group, but just an assembly: the 

grouping responsibility having been dclcgatcd down to 

the new object. This reflects more accurately the 

meaning of the top-level decomposition: cvcn though 

individual lines are dispensable and not functional 

components of the system as a whole, the set of lines 

is a functional component of the system. Objects 

modelling entire systems can often conveniently bc 

modelled as assemblies of functional components. 

Any grouping composites can bc pushed one lcvcl 

down in the part-of hierarchy by introducing new 

abstractions. 

Whole: OperatedLine 

Pam: BottlingLine, Operutor 

Kind: ASSembly 

Rationale: Encapsulation c!f‘us.rol:itrtiolz 

Properties: Mutual insepurubility, Corlfigurcltion, 

Proj3agation 

This aggregate does not correspond to an entity in 

the problem domain. Its main purpose is to 

encapsulate its two part objects and their association, 

to decouple them from the OperatcdLincs collection. It 

propagates messages coming from the OpcratcdLines 

collection to the Operator object, which communicates 

them to the human operator and starts/stops the 

BottlingLine as appropriate. An OperatcdLine object 

conceals and manages a BottlingLinc-Operator link. 

Whole: 

Pam. 

Kind, 

Rutionule: 

Prt3pertie.s: 

BottlingLine 

Laheller. Filling Station, Gute, Button 

removeSignal 

Assembly 

A.s.sembly,from problem-domain model 

E~zcapsulation, 

External co~fipration of all parts; 

Mutual inseparnbility, 

Corzfiguration, 

Behaviour delegation and control of 

FillingStation 

Bottlinglinc is dcrivcd from the analysis model. 

The three dcviccs directly involved in the filling 

process have been grouped into a new assembly, the 

Filling Station. 

Bottlinglinc manages its components. In particular, 

BottlingLinc is the only object that can generate events 

(c.g., slop-lilling, start-lilling) for the FillingStation. 

All the part objects (cxccpl the FillingStation, set 

below) arc dcvicc intcrfricc objects, i.c., they interface 

to a concrete dcvicc. In this system, all such objects 

arc passive and have no knowlcdgc of their function 

within the problem domain, whereas functional 

aggrcgatcs arc olicn active and embody crucial domain 

knowledge (c.g., the BottlingLine knows that when a 

bottle is removed the gate should bc opened). This 

approach enhances the reusability of the interface 

objects and dccrcases design complexity by limiting 

the number of objects with control responsibilities. 

As another cxamplc of the allocation of problem- 

domain knowlcdgc, the Labellcr dots not know what 

values it is printing on the Iabcls nor whcrc they come 

from. This knowlcdgc pertains to the BottlingLine, 

which has a link to the Vat 10 find out the values to bc 

printed. 

wi101e: 

Parts.. 

Kind 

Filling Stution 

OnOfl’Sensor contactSensor. 

Ana.lo~ueSensor Scales, 

Vcrlvc,fllingVulve 

A.s.scrnbl~~ 
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Rutionale: 

Properties: 

Algorithmic cieL,ornl,o.sitiotl: ,simpl~fies 

dynamic behuviour oj’ BottlinxLine 

Encapsulation, Mmal insepurubilty, 

External conjiguration of all parts 

The FillingStation is a conceptual abstraction with 

no corresponding tangible entity in the problem 

domain. It manages the passive objects interfacing to 

the real devices directly involved in filling bottles with 

liquid. The FillingStation exhibits behaviourul 

cohesion. In other words, there exists a process in the 

system - “fill one bottle” - that calls at frcqucnt 

intervals the services of its three parts. This process is 

encapsulated by the Filling Station object. Its 

existence simplifies, by decomposition, the dynamic 

behaviour of the BottlingLinc object. This dclcgatcs 

responsibility for bottle filling to the active 

FillingStation, while retaining responsibility 1’01 

starting and stopping the filling process and interacting 

with the operator and the other dcviccs in the bottle 

filling line. 

Whole: Vat 

Par&: PHControl. LiquidLevelControl 

Rationale: Models a tangible object in the problem 

domain and its &tributes 

Breaks the vat control into two 

concurrent activities 

Kind: Assembly 

Properties. Encapsulation 

(Supervisor visible to PHControl) 

OwnershiI1. 

Dynamic bchaviour delegution 

The Vat is a problem-domain object. Its parts arc 

derived from what were attributes in the analysis 

model: the liquid pH and the liquid level. The reason 

for promoting these to the rank ol’ part objects is that 

each is associated with a scparatc system activity. 

Furthermore the two activilics can bc dcscribcd and 

implemented as concurrent processes. 

Whole: 

Parts: 

PHControl (LiquidLevelControl) A useful spin-off of capturing the design properties 

PHSensor, PHValve (LevelSensor, of composite objects explicitly in a model is to enable 

InputValve) checking of a model for semantic consistency between 

Kind. 

Rutionale: 

Properties: 

A.ssembl;\~ 

Models a property @‘the Vat associated 

with u control process 

Separates essential function from 

implementation mechanism 

Encapsulation, 

Mutual Inseparability, 

Externul conjiguration 

Thcsc two composite objects do not model tangible 

objects but concurrent system functions. Their parts 

model the dcviccs used in each control function. 

Encapsulating the dcviccs within each control object 

separates essential system functions from their 

implementation, an approach consistent with the 

separation of essential and implementation modelling 

of Real-Time Structured Analysis and Design [Ward 

and Mcllor X5 1. Objects clearly related to system goals 

arc more stable than objects modelling physical 

dcviccs that arc part of‘ the solution space. FOG 

example, if it was rcquircd to measure the pH via 

multiple sensors to increase accuracy, the change 

would bc limited to the implementation of pHContro1 

and would not al‘l‘cct its cx~.cmal interface to the Vat. 

7 Conclusions 

Current object-oricntcd methods and languages arc 

not cxprcssivc enough to represent the richness in 

semantic propcrtics and development roles of 

composite objects. 

WC have argued that treating composite objects 

scparatcly from problem-domain class associations 

and explicitly capturing their design role, as well as 

their problem-domain semantics, helps to separate 

analysis and design concerns and to document the 

rationale for important modelling and design decisions 

that might othcrwisc bc lcl’t unrecorded. 

WC have illustrated how whole-part associations 

can model difl‘crcnt types of problem-domain 

relationships, and how object composition can be used 

to cvcnly distribute structural, functional and control 

complexity in a model. 
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the bchavioural and structural view. For example, 

scenarios of object interactions can be checked for 

consistency with the stated structural properties 

(whether the visibility properties are complied with, 

whether creation and deletion of objects is compatible 

with the separability, ownership and immutability 

properties, etc.). CASE tools for OOD should 

automate as much of this as possible. 

The example used in this paper has illustrated the 

analysis and design roles of composite objects 

particularly applicable to the domain of embedded 

monitoring and control systems with a fairly static 

configuration. We believe more research is required to 

analyse and streamline the use of composite objects in 

more dynamic environments, where objects and links 

are frequently created and deleted at run-time. The 

concepts of encapsulation and separability, in 

particular, must be refined to account for their 

temporal dimension. It must be possible, fbr example, 

to model the migration of’ objects I‘rom one composite 

to another. 

We also believe that many of the propcrtics that we 

have classed as design properties, such as separability 

and immutability, can apply to real-world entities as 

well as software objects. Thus they can bc investigated 

before software concerns are addressed. However, 

since software objects often do not exhibit the same 

properties as their real-world counterparts, WC bclicvc 

that a better than currently available understanding 01 

the model transformation process that takes place 

during design is required, in order to account l‘ol 

differences between the analysis and design model. 

The method presented here does not address such 

issues, although it provides a framework in which 

they can be explored. 
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