
Roles for composite objects
in object-oriented analysis and design

France Civello

Computing Depattment,University of Brighton

Watts Building, Lewes Road, Brighton BN2 4GJ, UK

frc@brighton.ac.uk

Abstract

A method is presented for using composite objects

which separates their role and meaning as models of

relations between problem-domain concepts from their

role and meaning as models of hierarchical sof’twarc

structures. The meaning of composite objects is

analysed in terms of connections bctwccn real-world

concepts in object-oriented analysis and bctwccn

software objects in object-oriented design. By

capturing the designer’s rationale for model

transformation, the resulting models arc casicr to

understand and maintain. An embedded systems

example illustrates the approach.

1 Introduction

‘4 composite object has a complex internal structure

defined in terms of other objects.

A whole-part association (WPA) exists bctwccn the

class of the composite object and the classes ot‘ each of‘

its composing objects.

The purpose of a WPA is to describe the common

properties of the whole-part links that instantiate it,

just as a class describes the propcrtics common to all

its instances [Rumbaugh, Blaha, Premerlani. Eddy,

Lorensen 911 .

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

. .

@ 1993 ACM O-89791 -587-9/93/0009/0376...$1.50

Howcvcr, classes have a well-established semantics

and can be described in object-oriented programming

languages, whereas there is no standardization of

meaning and USC for WPAs between classes ([Rubin

and Goldberg 921. [Monarchi and Puhr 921).

This paper presents a method for the definition and

USC of WP.4s (and hcncc composite objects) in object-

oriented analysis (OOA) and object-oriented design

(OOD). The method is based on the view that WPAs

are used for dif’fercnt purposes in OOA and OOD. In

OOA, WPAs capture semantic properties of the

problem-domain, whereas in OOD they capture

semantic properties of the software. The nature and

range of’ these properties and the method used for

separating them is illustrated with an example of an

cmbcddcd control system.

Section 2 introduces a notation and terminology for

whole-part associations and composite objects. In

section 3 the method is presented in outline and the

motivation behind it is discussed. In section 4 the

rcquiremcnts of the example application are presented.

Section 5 discusses the USC and meaning of WPAs in

OOA. Section 6 discusses the semantic properties and

the USC of WPAs in OOD. Finally the benefits and

limitations of’ the method are discussed and ideas for

further work arc prescntcd.

2 Notation and terminology

A whole-part association (WPA) is an association

bctwccn two classes, the composite or wlzole class

and the part class. To distinguish WPAs from other

associations, the OMT convention of drawing a

OOPSLA’93, pp. 376-393

376

diamond shape on the association link, next to the

whole class box, is adopted (Figure 1). A WPA is

instantiated by a link between a composite (or whole)

object and a part object.

A whole-part structure [Coad and Yourdon 911

includes a composite class, all of its part classes and

all the WPAs between the composite and its parts. The

classes Car and Engine and their WPA form a whole-

part structure.

The Car-Engine WPA is mandatory in both

directions, i.e., each Car must have an Engine and

each Engine must be part of a Car. Other WPAs may

be optional in one or both directions.

I Car

Figure I : a whole-part association

2.1 Aggregates and Collections

Two patterns of whole-part associations recur

frequently in object-oriented models. Aggregates

[Coad and Yourdon 901 are patterns where a class has

several named part classes, each with multiplicity 1

(Figure 2). The name of a part class can be omitted

from the diagram if no ambiguities can arise (c.g.,

Text in TextBox).

TextBox

I
+i-++,

Figure 2 : un aggregate

By default, a WPA is tiken to be a (1) to 1

association: i.c., an instance of the whole class needs a

link to one instance of the part class, whereas an

instance of the part class can exist without a link to an

instance of the whole class. (Each TextBox needs a

Text and two Buttons, but Text and Button objects do

not exist just as parts of a TextBox).

The second recurrent pattern of association is the

collection, in which a composite object is linked to

many part objects of the same class.

Figure 3: a collection

For cxamplc, in a graphical editor for geometrical

drawings, we can model the association between the

class Drawing and the class Shape, of which elements

of’ the drawing are instances, as a collection (Figure

3).

R
I I

00

Introduction

Figu.rc 4: Q. multi-level composite

377

2.2 Composition hierarchies

To model complex hierarchies of objects, it is often

necessary for a part class in a WPA lo be the

composite class in another. So whole-part associations

can induce multi-level object composition hierarchies

(part-of hierarchies) (Figure 4).

3 Rationale and outline of the method

WPAs can be used to model “part of” relationships

between entities in a domain (e.g., OMT [Rumbaugh

et al. 911, OOA [Coad and Yourdon 911) and to

control design complexity by encapsulating the parts

of composite objects (e.g., OOAD [Booth 91 1, HOOD

[Robinson 921, [dechampeaux 91)‘). Thcsc two

goals are difficult to separate by looking at it Linishcd

model, as this not only attempts to rellcct the structure

of a problem domain, but is also “dcsigncd” to be

understandable, manageable, rcusablc, resilient to

change and to result in software with dcsircd

computational features, such as pcrformancc and

physical distribution. This situation arises from the

twofold purpose of object-oriented models: to describe

the structure and behaviour of entities in the problem

domain (analysis), and to describe the structure and

behaviour of the software components of the system

(design). During OOD an object model is relined and

transformed to address design issues that arc not

considered in analysis [dechampeaux, Lea and Faurc

921. New WPAs can bc created. Existing ones arc

viewed from a new, software pcrspcctivc and can

therefore change their propel-tics or acquire new ones.

When a model undergoes substantial transtbrmation

during design, it is vital that the analysis model.

reflecting the client’s and analyst’s understanding of

the problem domain and system requircmcnts, is

preserved. The transformation steps musl also be

recorded. This way, when the requirements change ot

are extended, the analysis model can bc modified and

the transformations chcckcd for consistency with the

new requircmcnts. If’ the design model is modified

directly, problem and solution domain issues cannot

bc distinguished and considered scparatcly. This

makes system cvolulion harder to control and more

error-prone

It follows that WPAs must be documented so that

their analysis and design properties, and the different

constraints and decisions they reflect, can be

separately identified.

Furthcrmorc, within their analysis and/or design

roles, WPAs can be used for multiple and different

purposes which affect their semantics. This view is

supported by rcscarch in cognitive psychology

[Winston et al X7], which has shown that there arc

diffcrcnt types of part-whole relations (mcronymic

relations) bctwccn concepts, with different semantic

connotations. For cxamplc, the whole-part relations

Person-Ann and Company-Person arc semantically

diffcrcnr2.

This variety of purposes and semantics is not

supported by the notations of current object-oriented

methods, which tend to bury it under a single

notational construct, ending up with a concept too

broad in scope to have a prccisc meaning or a useful

role within the development process. Table 1

summarizes the terminology and approach of a

rcprcscntativc sample of current object-oricntcd

methods.

A striking feature is that those methods that use

WPAs in the analysis stage (e.g., OMT, OOA) do not

distinguish berwcen WPAs and other class

associations in design and implcmcntation, whcrcas

those methods that USC them for software design

purposes (c.g., Boo&, HOOD) do not cxtcnd into the

analysis stage. Thus no existing method gives rules or

guidclincs for using WPAs throughout analysis,

design and ilnplcrncntation. In fact, the difference

bctwecn WPAs and other associations is often only

cosmclic and diagrammatic. While it is generally

acknowlcdgcd lhat whole-part associations bind

ldeChampeaux (91) uses the term cnscmblc to rcfcr to
special kinds of composite objects that encapsulate their
components. This concept is subsumed by the
categorisation of composite objects given in this paper,
where encapsulation is only one of’ the design roles of a
composite.

2Thc transitivity properly (i.e., if A is part of B and B is
part of C, then A is part of C) is lost when relations with
different semantic propcrtics arc involved (my Arm is nol
part of my Company).

378

classes more strongly than other associations, there are

no further rules or constraints to guide design and

implementation decisions. For example, the duties of a

composite object as owner and manager of its parts are

not sufficiently elaborated by any existing method,

although the TROLL language [Hartmann, Jungclaus

and Saake 921 allows the representation of structural

and behavioural connections between a composite and

its parts.

This paper proposes a method L‘or using and

documenting whole-part associations throughout

model development, that addresses the problems

mentioned above:

l In OOA, WPAs arc shown individually alongside

other associations and are named explicitly in prccisc

domain-specific terms, rather than in gcncric tcnns

such as ‘is part of’ or ‘includes’. In addition, each

aggrcgatc and collection is classified as belonging to

one of’thrcc semantic patterns and textually annotated

accordingly. This requires the dcvcloper to invest

more resources in understanding the domain better,

but it pays dividends in later stages by making the

model easier to comprehend and providing more

precise guidance f’or the designer.

l In OOD, more emphasis is placed on the object

composition hierarchy rather than individual

associations. The design properties of’each whole-part

structure arc captured using annotations. A rationale is

given for each composite object in the object

composition hierarchy by cross-referencing

corresponding WPAs in the analysis model and/or by

stating its design purpose within the model. This gives

tractability 01‘ WPAs by documenting the rationale for

the transl‘ormation bctwccn the analysis and the design

model.

HOOD

[Robinson 921

OMT

[Rumbaugh

et al. 911

Yes

CRC Objectory

[Wirfs-Brock [Jacobson 921

ct al. 901

No No

OOA

[Coad and

Yourdon 91 I

OOAD

[Booth 911 Source

Notation

support for

WPAs

Terminology

Yes

whole-part ‘has’

structures relationship

Problem- strong

domain (pervasive

modelling organising

semantics principle)

Variations container

collection

Definable

properties

Software

design

semantics

Relevance

in method

Main

purpose

i
assembly

optionality optionality

multiplicitv multiplicitv

none ownership/

encapsulatiori

YW

‘consists-of’

relationship

‘include’

relationship

aggrcga tion ‘part of’

(whole-part relationship

association)

strong

(parts’

common

Drouerties)

weak none weak

by-value 11011~ IlOIlC none con taincr

composite

optionality IWIl~ none

multit7licitv

1 bv-rcfcrencc

none encapsulation

/delegation

major

decomposi-

tion/

design/

distribution

modclling

379

4 The example system

The system specification is derived from a published

example of real-time structured design techniques

[Ward and h4ellor 851. The system consists of a

number of bottle-filling lines fed by a single vat

containing the liquid to be bottled. Figure 5 shows

some of the details of the vat apparatus and of a

representative bottling line. Because of the single vat,

the composition of the liquid being placed in the

bottles is the same for all lines at a given time.

However, the bottle size may differ from line to lint.

The tasks of the control system arc to control the

level and the pH of the liquid in the vat, to manage the

movement and filling of bottles on the various lines,

and to exchange information with human operators

working the individual lines and with a supervisor

monitoring the entire system.

The vat level control is accomplished by monitoring

the level with a sensor and adjusting a liquid input

valve accordingly. The requirement for controlling pH

arises because the liquid to be bottled reacts with its

surroundings, causing the pH to “creep” over time. A

constant pH is maintained by introducing, through the

pH control valve, small quantities of a chemical that

revcrscs the pH “creep”.

pH control

valve

vat ”

level

r

sensor

valve . . il. ,.,.
i::.:.: . ../ :.:....,:.,..............,....,........... :.::.:i:I:,,Ii..i.:::::,:: : : : ,: .j’.:.‘;: j:;j?j!:i:::. i::: i.>:: :. : ::: .:y ‘Y::.::. .:: ..:. ::. .: . .,.: :: >:: : .j .:..:.::>:.:::.::::y:,::. :
:z:;:::.:::::::: : :-:: : ; :.,..... . . .: :::.y::.:: :. :: +:.:: .: :::i, ‘: bottle

:. : .A.. . . .\.. .A.. :.: : . . : . . : :.,::.; :. :;
. . :i.::i-I;ilLiif!d;:~-];:,~j-i-:j::j:-I:::i:jl :.. .: : -: :..: ::..,:.,,,:.‘.(.):.:...:.:..: ; .,.,. ::., : ,.:: .,:.. :.,: .:.;;.:::;; ;:‘i ‘jl:j ,: j::..: : .:::. .:. :.--:.-.:-.-::-..~:-:. :.:; release :.’

PH
(.:i:::::::‘:‘::::::?::: : :.. :.:: ..: : / :...:.. :.::::::.::. ” .: .:: :...:..::::::::,:::,: I,:: :::: ::.: y,: p:.:;:: : .: .: .:: ::::.: .: .,.,. ::,. : . : :.:.,. .:.:...:.:...:.j:: .y$:;:;::;:;:;:,::::: .j: :.:::::A: :. ga tc

contact

scales

Figure 5: the physical structure of the bottle,fi’lling plant, excluding the .~upervi,wr and the operator interfaces.

Only one bottle filling line is shown.

380

Bottles to be filled on a particular lint arc drawn

one by one from a supply of bottles, as follows:

. A bottle is released from a gate and drops

down a chute onto a scale platform, at the same time

depressing a bottle contact sensor. The bottle is

weighed empty.

. The bottle-filling valve is opened, and a

measured amount of liquid is let into the bottle. The

weight of the bottle plus its contents is used to

determine when the bottle is full and to shut off the

valve.

. The filled bottle is labcllcd to show the actual

pH when filled, and the nominal pH. The lint operator

caps and removes the filled bottle, and signals the

systems that the bottle has been removed. Removing

the bottle releases the boulc contact sensor, rcmovcs

the weight on the scale and allows the next bottle 10 bc

released from the gate.

The line operators can signal ~hc system to start and

stop individual lines, and the supervisor can signal the

system to enable or disable the opcralion of all the

lines. The line operators arc given displays of the lint

status and are able LO change bottle size for Ihc lint.

The area supervisor is given a display of the current

status of the system pH, vat liquid lcvcl and statuses

of the individual lines, and is able to control Lhc pH of’

the bottled liquid by entering a new dcsircd pH to bc

maintained.

If, during operation of the system, Ihc pH goes out

of limits (>0.3 from the setpoint) all control actions arc

suspended. The vat pH is then srabiliscd manually.

When the pH is back within limits. the system restarts

automatically

5 Whole-part associations in the

analysis model

Class associations identified during analysis model

connections between objects in the problem domain

(Figure 6). The key class attribulcs in the model arc

shown inside their class symbol.

The associations provide a basis from which to

derive the dynamic communication links amongsl

software objects, although they do not prcscribc the

directions of the links, nor their implementation

mechanisms-‘.

The WPAs arc dcscribcd with domain-specific

terms (c.g., Gate re1ccr.se.s bottles OIZ BottlingLine)

rather than generic ones (e.g., Gate is purr oj

BottlingLine), to convey more precisely the role of the

links.

5.1 Semantic patterns of object

composition

WPAs can be divided into two categories: jbzctionaf

and non~jiunctional. In a functional WPA the part is

conceptually included in Lhc whole because of

slruclural and functional connections that make it

possible for it to contribute to the funclion of the

whole [Winston ct al. X71. For example, the devices

which make up it Boltlinglinc arc structurally situated

and conncctcd in such a way LO support the function of

the BottlingLinc (c.g., Lhc gate is connected via the

chute LO the platl’orm LO which Lhc contact sensor is

attached). Each part object has a function to fulfil that

conlributcs to the function of the whole object. We call

thc parts in a functional WPA components to

cmphasizc their csscntial role in the association. We

call the whole object an a.s.sembl\~, although no

physical cxistcncc is implied. Essential parts of

physical systems (c.g., the cnginc in a car),

organisations (c.g., the headteachcr of a school), or

conceptual cntilics (c.g., the activities in a project plan)

fall within this dclinition.

Non-functional WPAs modct looser connections

bctwccn wl~olc and part. Such WPAs can be divided

in two catcgorics: tuplc-element, and group-member,

corresponding to the notions of aggregation and

trssociution rctations in Semantic Data Modelling

3Additional textual constraints are required to capture the
full semantics 01‘ the associations. For example, it should
bc stated that the SCI of BottlingLine objects linked to the
Vat’s Supervisor, found following the path ‘Vat-
>Supcrvisor->BottlinSLinc’, is the same set of
BottlingLinc objects found following the path ‘Vat-
>Valve->BottlingLinc’. In other words the Supervisor
supcrviscs all the bottling lines which arc fed by the filling
v;~Ivcs, and no others.

381

Valve
1 lets liquid in

*

measures

Analogue
level of

Sensor 1 liquid&
Vat 1

supervises
- la S”pcrvisor

lets PH system status

Valve
chemical in ICVCI

I___) desired pH

measures
desired level

pH of 1

Analoguc
liquid in

Sensor 1 O t

ICLS

liquid

out of
n

1

I I 1
supcwiscs

Gate

/

rcleascs

Labcllcr
-1

boulc on

Analogue

Sensor

weighs

boulc on

scnscs

prcscnce of‘

boulc on

Operator

Button

signals

rcmo\~al 01

1 boulc on

Figure 6: Class associc~tions in the Bottle Filling S~~.stm

[Hull and King 871. A tuple models a rclntion bctwcen its clcmcnts model the cntitics parlicipaling in the

two or more entities.The two entities normally cxisl CVCIll.

independently from each other. Tuplcs arc aggrcgatcs Groups arc sets of’ objects brought together by

where the names of the elements convey the roles they virtue 01‘ sharing some property or by some other

play in the relation (e.g., Marriagc(Husband, Wife), looser connection. Examples of’ group-member

Sale(Purchaser, Vendor, Property), Rcgistration(Car, associations arc: Hotel-Room, Committe-Member,

Owner)). Often the tuple object models an cvcnt and Document-Page. In the bottle filling plant, should we

382

require to keep track of each bottle lillcd, the set of

filled bottles would be modellcd as a group object with

no functional relation bctwecn whole and parts and no

structural connections between the mcmbcr objects

(FilledBottles-Bottle).

Just as aggregates and collections provide syntactic

patterns of object composition, so asscmbly-

component, tuple-element and group-mcmbcr provide

semantic patterns, since they capture the purpose for

which WPAs are being used.

Components in an assembly normally appear as the

named parts in an aggregate pattern, as each has the

ability to fulfil a different function, described by its

name, within the composite. Members in a group, on

the other hand, tend to be parts of a collection. They

are not individually named because they all play a

similar role from the viewpoint of Lhcir composilc and

none of them individually is essential to the function of

the composite object.

So funclional WPAs describe srrongcr: usually

non-optional, links than non-~unclionat ones. Each

composition pattern should bc annotated lo rcflccl this

distinction and to justify it. In particular. I‘or each

group object the analyst needs to slate the common

properties that brings together all member objccls. For

each assembly, the function of the composite and the

contribution of each component must also bc

described.

In the Bottle Filling System (BFS) all WPAs arc

functional and non-oplional. An example 01‘ ;1 model

annotation is given below:

Whole:

Parts:

Kind:

Function:

BottlingLine

ValvefUingValvc, Gate, Labeller,

AnalogueScnsor sculc.s.

Bu.tton removeSignal.

OnOjjTensor contactSensor.

Assembly

Manages the movement undfi’llingof

bottles on n single line. It controls the

actions und monitors the stC/tc of’ each

.component device.

In summary, WPAs arc useful to highlight strong

associations in a problem-domain, but come in

different flavours and need to bc dcscribcd

accordingly. A dcsigncr would be entitled to ignore the

difference between WPAs and other associations if

their meaning was no1 made clear.

5.2 Other (non-WP) associations

This method of classifying WPAs helps to tell them

apart from other associations, which are sometimes

confused with WPAs :

Spatial or temporal inclusion (e.g., Room-

Desk, Process-Phase). Spatial (temporal) inclusion or

proximity is a good heuristic clue to identify a WPA.

However it dots nol jusliI‘y a WPA in the absence of

slructural or funclional connections relevant to the

system responsibility. The filling Valves, for example,

may by physically closer LO the Vat than to the

BottlingLincs, but they are funclionally closer to the

latter, as Lhcir’ operation depends on events happening

within them.

Spalial (temporal) inclusion justilies the sharing of

some spatial (temporal) propet1ics bctwecn objects, so

it might I‘oIm the basis for a group-member WPA, but

it is semantically wcakcr than a L‘unctional WPA. Thus

the spatial I’calurcs of the Pilot-Aircraft association

ICoad & Yourdon 91 I do not justify a WPA. Pilots

and Aircrafts are independent entities. One just

happens 10 be inside Lhc other for a time period. Their

association is semantically similar to that between a

tcmotcty-controltcd aircr-al’t and its human controller.

Artrihution (c.g., Building-Height). Height is

not pars 01‘ ;I building, but one ol its attributes.

Attribution is of’tcn conlused with whole-part because

the distinction bclwccn an attribute and a part of an

object is of‘tcn lost in an objecl-oriented

implcmcnlalion. For cxamplc the height of’ the building

and ~hc heating-system in the building would both be

implcmcntcd as instance variables or class Building in

Smalllalk. Furthermore, in object-oriented modelling

the choice bctwccn attribution or WPA can be

subjcctivc as wctt as purpose and context dependent.

Arc Ihc start-point and end-point attributes or parts of a

tint scgmcnt’! The mswcr depends on the conlexl: are

the delimiting points used just as inlbnnation holders,

to store and provide access to their coordinates, or do

they have bchaviour that can bc invoked by their

LineSegmcnt or other objects? In the latter case the

383

two points should be modclled as part objects. Since

such behavioural decisions are often taken during

OOD, an attribute in an analysis model can bccomc a

part object during design.

Class nzetnbership (e.g., John Smith - Person).

This is a relation between an instance and its class, not

between two instances. Semantically it cxprcsscs the

fact that the properties of John Smith are dcfincd by

the class Person. However if one takes an cxtcnsive

view of meaning for classes (a class is a set), it is

tempting to treat a class as a collcclion of all its

instances. Although possible, this is bad practice at

both the conceptual and the practical Icvcl. At the

conceptual level, it confuses the mcmbcr-collection

relation, based on the connections between or the

extrinsic properties of a group of objects, with the

class membership relation which is based on the

intrinsic propcrtics of Lhc class mcmbcrs. At the

practical level it crcatcs a computational abstraction

with two distinct responsibilities: dclining and creating

instances of a class, and keeping and managing the

instances of the class. The latter is usually application

and context dependent whereas the first is fixed. In

addition, there is often a need for distinct collections ol‘

objects of the same class in an application. The

extensive approach creates a displeasing asymmetry

between how different collections of objects of’ the

same class are handled.

6 Whole-part associations in the design

model

The WPAs in the design model arc shown as an object

composition hierarchy (Figure 7) to emphasize that

their main role is in structuring the software system as

opposed to modelling the problem domain.

Whereas a problem-domain association captures, in

application-related terms, the purpose I’or which

objects are linked, composite objects place objects

(and hence their classes) in a logical hierarchy, so that

software can bc designed in layers of abstraction. with

functional responsibilities suitably distributed among

the layers.

Some WPAs in the objecl composition hierarchy do

correspond to problem-domain class associalions, in

which case the relevant links arc rcplicatcd ;~cross (17~

two diagrams (c.g., BottlingLinc - Gate). Others do

not have such semantic support in the class association

model, but arc introduced to make the model more

suitable to a sol’twarc rcalisation (have a design role

only).

6.1 Semantic properties of WPAs in a

design model

In OOD, a WPA models a part-of relation between

software objects, not bctwccn real-world entities or

concepts. Thcrcforc, its semantics should be based on

properties oI’ sof’twarc links.

However it is counter-productive to give necessary

and sufficient conditions for calling a software link a

whole-pan link. The rcsulling conditions are either too

prcscriptivc or too broad, and thcrclorc unhelpful. The

reason is thill the concept of whole-part association in

software has too many I’accts and shades and so defies

cxccssivc simplilicalion.

It is more I‘ruitl’ul to consider the primitive

propertics of each WPA and annotate the model

accordingly. This way the dcsigncr is I’rce to use

WPAs as hc or she sccs appropriate, provided some

minimal ncccss;u-y conditions are satisfied, but is also

Ibrccd LO dcfinc whirt is meant by each WPA.

The list below is an attempt LO establish the

primitive sctnantic propcrtics of software links on

which WPAs arc based.

Visibility. A ncccssary (but not sufficient)

condition for an object to bc part of another is that the

whole object has the ability to send messages to the

part. Thus the composite class is a client of the part

class. The converse may also be true if the application

requires it. In MacApp and other GUIs, for example,

CilCh View holds il rcfcrcncc LO its enclosing View in

order to propagalc cvcnts.

Etzcapsulatiutz. An cncapsulatcd (or nested)

object is only visible within the scope of its

encapsulating object. A composite object may

cncapsulalc its parts, making its intcmal structure

invisible to its clients. Current programming languages

do not I‘uI ly support ~llCilpSUl~ltiOll, as a private

inslancc viiriablc can be assigned to a method

argumcnl, making the part object visible outside ti

whole objcc[. Component objccls should bc

384

encapsulated by their assembly to separate the external

functionality of the assembly from its internal structure

and functions, just as in real lift complex armfacts

present a simple extcmal intcrfacc that shields the user

from their internal workings. Elements of a tuple arc

not usually encapsulated by the tuple, as thci r function

within a system is not just subsidiary to the tuplc.

Encapsulation can be further constrained or rclaxcd

by limiting or extending the visibility within and

across the composite object:

Inward Visihilitv. A client of the encapsulating

object can use the encapsulated object, but only by

obtaining a dynamic (i.c., released after method

completion) reference to the laucr, from the former,

during execution of one of the client’s methods. This

is similar to Hogg’s (91) islurzds, with the whole

object playing the role of bridge. Islands limit the

scope in which an object can be statically aliascd,

making a design more amenable to proofs 01

correctness [Hogg 9 11.

Outward visibilit\;. The cncapsulalcd object may bc

granted static or dynamic visibility to objects outside

the scope of the encapsulating object. In the Bottle

Filling System, for example, a BottlingLinc has

visibility to the Vat, to obtain pH data.

Inward and/or outward visibility arise from

associations between a part class and classes outside

its composite (e.g. through its Valve, BottlingLinc has

an association with Vat (Figure 6)).

Whole-indenendence. A whole-independent part

has no visibility to its whole.

Peer-indenendence. A peer-independent part has no

visibility to other parts of the same whole.

Seaarate vart. A part that is both peer- and wholc-

independent. Such an object dcpcnds only on its own

parts, if any. An object composition hierarchy whcrc

all parts are separate induces a strictly hicrachical

interaction scheme, in which every sub-tree of the

object composition hierarchy is totally self-contained.

Strict hierarchies cnhancc robusrncss ol‘dcsigns at the

expense of flexibility.

Sharing. An object is shared if two or more

objects hold refcrcnccs to it. A part object can bc

shared by multiple composites (c.g., a programmer

can bc a mcmbcr of a dcvclopmcnt team and of a

quality rcvicw group).

A shared part object cannot be encapsulated, as it

must be visible to mom than one composite.

Part-Whole Inseparability. A separable part

can be disconncctcd from its whole. An inseparable

part cannot: its cxistcncc depends on the existence of a

connected whole. For example each filling Valve is

inscparablc from its FillingStation (Figure 7). A

scparablc part can bc crcatcd by some other object and

subscqucntly acquired I,,\: the whole; or released from

its whole and passed on to another object. For

cxamplc the mcssagcs in a mailbox are produced

somcwhcrc clsc and inserted into (acquired by) the

mailbox. Later they will bc released to be used and

kept or dclctcd by some consumer object.

Whole-Part Inseparability. The existence of

the whole object may dcpcnd on the existence of the

part object. An inscparablc whole will create or import

its part at creation time. The part object cannot bc

dclctcd without causing the deletion of the whole. For

example, an OpcratcdLinc depends on the existence of

a BottlingLinc and an Operator (Figure 7).

1nsepar:rbility is thercfore about the relation

bctwccn the objects’ lil’etimc. If a part is inseparable

from its whole, then its lil’ctimc is included in that of

the whole object (Figure 8). Conversely, if a whole is

inscparablc from its part, then the lifetime of the whole

is included within that of its part (Figure 9). Mutual

inseparability (part-whole and whole-part) means that

the two lifctimcs coincide (Figure 10). It is usual for

asscmblics and their components to be mutually

inseparable, for tuplc objects to be inseparable from

their clcmcnts, and for members in a group to bc

scparablc from their whole.

Together, the propcrtics of inseparability and

encapsulation correspond to ownership, or has-by-

value relationship in Booth (91). Keeping the two

propcrtics scparatc provides greater modelling

385

I

Vat Supervisor Opcr,ltcdLincs

A

I

LiquidLcvelControl

A

AnalogueScnsor

IevclSensor

PHControl

A

I

Valve inputValve

Ill

OpcratcdLinc

BottlingLinc Operator

Labellcr FillingStation
rcmovcSignal

A

I
Valve fillingValvc AnalogucScnsor OnOlEcnsor

scalcPlalfonn conUctScnsor

Figure 7: Cotnpositc ohjcct hicrmdzy in tlzc Bottle Filling System

flexibility (e.g., inseparability with no encapsulation). objccl would bc involved. Thus the cntily modclled by

Immutability. In an immutable WPA the identity kc whole object would no longer bc the same entity if

of the part object cannot chsngc [Odctl 921. For one of its parts changed. In an immurablc WPA, the

example, in a Marriage, the identity of the husband 01 part is scparablc from the whole, but the whole is not

wife cannot be changed. If it did, ;I dil’l’crcnt Xl~r-iagc scparabtc from the part. ,411 inseparable pan cannot bc

386

mutable, but an inseparable whole may have a mutable

part. A sailing boat, for example, needs a sail

(inseparability), but the sail can be changed l’or an

equivalent sail without affecting the l’unction of the

boat. Thus it is the role of the part that is csscntial, but

not its identity.

Ownership. Ownership and encapsulation of’ a

software object are treated as synonyms by some

(e.g., Booth (91), Atkinson (92)). Instead, WC dclinc

ownership in terms of the way that the destiny of’ UK

whole and part objects are interlinked. Marc precisely,

ownership is a pragmatic one: it allows us to represent

situations where an object is owned but not

cncapsulatcd by another object and where creation and

dclction 01‘ the same object arc carried out by different

objects (this is quite common with objects that

rcprcscnt dynamic real-world objects that undergo a

series of proccsscs bcl’orc coming to the end of thei

lil‘c). Also note that ownership is weaker than

inseparability: for cxamplc a member object owned by

a group may be owned by the group but also separable

from it (it can be released and continue its existence

an object owns another if dclction of the whole object outside the group).

implies deletion of the part object. This dclinition 01

Crcatc Delete

BottlingLlnc
Whole object’s lifctirnc -b 1 1 ..- -....

Creak Co-cxislcnce period Dcletc

1
Part object’s lifc‘climc d 7

Boulc

Figure 8: An exatnple of at1 itzseparohle sofn~ure part: a BottlingLine creates a Bottle, tracks it

and demvys it when it leaves the line. ltz real 1@ the bottle is not inseparable frotn the line.

I

Whole object’s lifetirnc

Part object’s lifetime __)

I I

Whole object’s lifetime

Z~lj-:

Part object’s lifetime __)
Gate

I I

Figure 10: An example of a tnutuall~* itlseparahle WPA: the l~f~titnes of’ a BnttlingLitle atzd a
Gate coincide.

387

Collaborations. Although in some composite

objects (called containers by Wirfs-Brock et al. (90))

the whole objects do not call operations on their part

objects nor viceversa, normally, strong collaborations

exist between a whole and its parts. The nature of such

collaborations is application dependent, but a few

general categories can be identified.

Constraint Maintenance: where a constraint must

hold that involves all or some of the parts, the

composite object can take charge of ensuring that the

constraint is satisfied. A special cast of collaboration

arising from the need to maintain a constraint is

propagation [Rumbaugh et al 911, which occurs when

the value of an attribute or link is shared bctwcen the

whole and its parts. Changes to the value must bc

propagated or broudcust to each part object.

Configuration. A composite object can bc

responsible for configuring its part objects. WC

distinguish internal from external configuration. The

former involves binding an object to other objects in

the system; the latter sets up a link between an object

and an interacting entity in the system environment.

Internal Configuration. Part objects of’ten

collaborate with their peers, and, sometimes, with

clients or servers of their whole. A whole object is

ideally placed to set up such links, as it provides lhc

context within which its parts operate. Internal

configuration of part objects by their composite objects

makes the part objects context independent and

therefore more reusable [Kramer, Magec, Sloman and

Dulay 921.

External Configuration. Interface objects modclling

entities in the physical system environment that interact

directly with the system need to bc externally

configured. If the physical interfaces arc arranged into

structures or sets corresponding to the whole-part

structures in the object model, then it is convenient for

composite objects to set up the links between their

parts and their physical counterparts.

Delemtion of active behaviour. Objects can IX

passive or active. An active object has its own

execution thread. Active objects are denoted by an “A”

in the lower right comer of their icon (Figure 7). FOI

the sake of conceptual simplicity, an object can have at

most one execution thread [Kramer ct al. 921.

However, composite objects, whether passive or

active, may include active parts. So complex dynamic

behaviour within an object can be decomposed by

delegating part of it to the object’s parts.

A simple and easily verifiable cast of algorithmic

decomposition arises where a complex state in the state

chart of an object (i.e., a stale with an internal activity

that can itself be represented as a state chart) is

transformed into a component object.

The dynamic behavior of an object can be Control.

modcllcd as a finite stale machine. States arc

abstractions of the values and links held by an object,

and rcprcscnt its dispositional behaviours: in different

states an object reacts dil’l’crently to the same event.

Transitions bctwecn states are caused by events

gcncratcd by other objects or by events external to the

model. See Coleman (91) for how to use object

charts, an cxlcnsion to state charts [Harcl 871, to

model dynamic object bchaviour.

An object controls another if it generates events fol

it (i.c. sends it mcssagcs that fire transitions between

states). In principle cvcnts can be generated across any

object link. Howcvcr the complexity of object

interactions, and with it the potential for data

corruption, race conditions or deadlock, is reduced if

objects do not mutually control each other and if

control links are kept to a mimimum and explicitly

documented in a model.

The object composition hierarchy can be used fat

the purpose OF reducing behavioral complexity by

giving composilc objects the role ol’solc controllers ot

their active parts. This should not bc considered a rigid

rule but only a flcxiblc guideline to bc applied as long

as it dots not distort the correspondence between the

model and the problem-domain.

In the Bottle Filling System, for example, each

composite object is the sole controller of its active

parts (thcrc arc no shared active parts), except in two

casts whcrc the control relationships are already clear

in the problem domain: Supervisor controls Vat and

Operator controls BottlingLinc.

Most of the semantic properties discussed above are

not directly supported by current object-oriented

programming languages; however, as they impost

388

important constraints on the implcmcntation, they

should be explicitly captured in an object-oricntcd

model.

6.2 Design rationale for composite

objects

Just as the properties of each whole-part structure

must be documented to guide the implemcntalion

process, so the purpose of each composite object must

be documented to help understand the design model

and its derivation from the analysis model. To

illustrate the approach, the rationale for each wholc-

part structure in the BottlcFillingSystcm is discussed,

and the semantic propcrtics of each arc documcntcd.

We proceed top-down, depth-first down the object

composition hierarchy in Figure 7.

Whole: Bottle Filling System

(models entire system)

Parts: Vut, Supervisor, 0peratedLine.s

Kind: Assembly

Rationale: Top-down Decomposition:

System Partitioning into .separate,

cohesive parts

Properties: Mutual insepurubility. Confi’xuration,

Behuviour delegation

The whole system is modellcd as an assembly,

whose components are subsystems with scparatc

functional responsibilities. This structure is dcrivcd

from the analysis model in three slcps:

1. Partition the classes into a small number of

groups, so as to minimize the number and strength of

the inter-group links (Figure 1 I). WPAs bind more

strongly than other associations - this is why filling

Valves end up in the same partition iIs the

BottlingLines. If shared WPAs arc involved, then

assemblies are considered stronger than groups and

groups stronger than tuples. Thcsc guidclincs help lo

minimise interactions amongst di ffcrcnt branches 01

the hierarchy.

2. Select a key class in each group and model the

whole system as a composite formed by objects 01

these classes (Figure 12). BottlingLine has been

rcnamcd OpcrutcdLine to better convey its role.

3. Introduce a new object to manage the collection

of OpcratcdLinc objects (Figure 7).

\

Bottling Line

1 I

1

n

/

Figure I I: Partitioning the model to ident@ top-level

al,.straction.s

BottlcFillingSystcm

I

Figure 12: The system modelled as u composite object

whole:

Pam

Kind.

Ra tiorzalc :

Properties:

OperatedLines

OperatcdLinc

Group

Simpl(fj, top-level deu~mposition

Ownership, Constraint maintenance,

~Me.ssa~c broadcasting, Configuration

This composite object does not model a specific entity

in the problem domain. It is used to collect together all

the BottlingLincs (and their Operators), in order to

simplify the top-lcvcl system structure by taking

charge o 1’ the mimagcmcnt of the OperatedLine objects.

It cnsurcs that all its mcmbcr objects have the same

value I‘0 r their status attribute

389

(disabled/enabled/suspended). To maintain this

constraint, OperatedLines is responsible for

broadcastins supervisor messages to its members.

OperatedLines does not encapsulate its members, so

the Supervisor can share a rcferencc to a single

OperatedLine if necessary. Also no internal links

between OperatedLine objects are required, as the lines

in the plant operate independently from each other.

However, each BottlingLine within each OpcratedLine

needs a link to the Vat to find out the liquid’s pH to

print on the label. Such a link is established as

follows: BottleFillingSystem passes a reference to the

Vat to its OperatedLines component, which in turn

broadcasts it to each OperatedLine, and so on. So the

composition hierarchy is used recursively to configure

objects that need links to others in different branches

of the hierarchy.

As a result 0 f this 1 r a n s I’0 r m a t i on ,

BottleFillingSystem is no longer a combination of an

assembly and a group, but just an assembly: the

grouping responsibility having been dclcgatcd down to

the new object. This reflects more accurately the

meaning of the top-level decomposition: cvcn though

individual lines are dispensable and not functional

components of the system as a whole, the set of lines

is a functional component of the system. Objects

modelling entire systems can often conveniently bc

modelled as assemblies of functional components.

Any grouping composites can bc pushed one lcvcl

down in the part-of hierarchy by introducing new

abstractions.

Whole: OperatedLine

Pam: BottlingLine, Operutor

Kind: ASSembly

Rationale: Encapsulation c!f‘us.rol:itrtiolz

Properties: Mutual insepurubility, Corlfigurcltion,

Proj3agation

This aggregate does not correspond to an entity in

the problem domain. Its main purpose is to

encapsulate its two part objects and their association,

to decouple them from the OperatcdLincs collection. It

propagates messages coming from the OpcratcdLines

collection to the Operator object, which communicates

them to the human operator and starts/stops the

BottlingLine as appropriate. An OperatcdLine object

conceals and manages a BottlingLinc-Operator link.

Whole:

Pam.

Kind,

Rutionule:

Prt3pertie.s:

BottlingLine

Laheller. Filling Station, Gute, Button

removeSignal

Assembly

A.s.sembly,from problem-domain model

E~zcapsulation,

External co~fipration of all parts;

Mutual inseparnbility,

Corzfiguration,

Behaviour delegation and control of

FillingStation

Bottlinglinc is dcrivcd from the analysis model.

The three dcviccs directly involved in the filling

process have been grouped into a new assembly, the

Filling Station.

Bottlinglinc manages its components. In particular,

BottlingLinc is the only object that can generate events

(c.g., slop-lilling, start-lilling) for the FillingStation.

All the part objects (cxccpl the FillingStation, set

below) arc dcvicc intcrfricc objects, i.c., they interface

to a concrete dcvicc. In this system, all such objects

arc passive and have no knowlcdgc of their function

within the problem domain, whereas functional

aggrcgatcs arc olicn active and embody crucial domain

knowledge (c.g., the BottlingLine knows that when a

bottle is removed the gate should bc opened). This

approach enhances the reusability of the interface

objects and dccrcases design complexity by limiting

the number of objects with control responsibilities.

As another cxamplc of the allocation of problem-

domain knowlcdgc, the Labellcr dots not know what

values it is printing on the Iabcls nor whcrc they come

from. This knowlcdgc pertains to the BottlingLine,

which has a link to the Vat 10 find out the values to bc

printed.

wi101e:

Parts..

Kind

Filling Stution

OnOfl’Sensor contactSensor.

Ana.lo~ueSensor Scales,

Vcrlvc,fllingVulve

A.s.scrnbl~~

390

Rutionale:

Properties:

Algorithmic cieL,ornl,o.sitiotl: ,simpl~fies

dynamic behuviour oj’ BottlinxLine

Encapsulation, Mmal insepurubilty,

External conjiguration of all parts

The FillingStation is a conceptual abstraction with

no corresponding tangible entity in the problem

domain. It manages the passive objects interfacing to

the real devices directly involved in filling bottles with

liquid. The FillingStation exhibits behaviourul

cohesion. In other words, there exists a process in the

system - “fill one bottle” - that calls at frcqucnt

intervals the services of its three parts. This process is

encapsulated by the Filling Station object. Its

existence simplifies, by decomposition, the dynamic

behaviour of the BottlingLinc object. This dclcgatcs

responsibility for bottle filling to the active

FillingStation, while retaining responsibility 1’01

starting and stopping the filling process and interacting

with the operator and the other dcviccs in the bottle

filling line.

Whole: Vat

Par&: PHControl. LiquidLevelControl

Rationale: Models a tangible object in the problem

domain and its &tributes

Breaks the vat control into two

concurrent activities

Kind: Assembly

Properties. Encapsulation

(Supervisor visible to PHControl)

OwnershiI1.

Dynamic bchaviour delegution

The Vat is a problem-domain object. Its parts arc

derived from what were attributes in the analysis

model: the liquid pH and the liquid level. The reason

for promoting these to the rank ol’ part objects is that

each is associated with a scparatc system activity.

Furthermore the two activilics can bc dcscribcd and

implemented as concurrent processes.

Whole:

Parts:

PHControl (LiquidLevelControl) A useful spin-off of capturing the design properties

PHSensor, PHValve (LevelSensor, of composite objects explicitly in a model is to enable

InputValve) checking of a model for semantic consistency between

Kind.

Rutionale:

Properties:

A.ssembl;\~

Models a property @‘the Vat associated

with u control process

Separates essential function from

implementation mechanism

Encapsulation,

Mutual Inseparability,

Externul conjiguration

Thcsc two composite objects do not model tangible

objects but concurrent system functions. Their parts

model the dcviccs used in each control function.

Encapsulating the dcviccs within each control object

separates essential system functions from their

implementation, an approach consistent with the

separation of essential and implementation modelling

of Real-Time Structured Analysis and Design [Ward

and Mcllor X5 1. Objects clearly related to system goals

arc more stable than objects modelling physical

dcviccs that arc part of‘ the solution space. FOG

example, if it was rcquircd to measure the pH via

multiple sensors to increase accuracy, the change

would bc limited to the implementation of pHContro1

and would not al‘l‘cct its cx~.cmal interface to the Vat.

7 Conclusions

Current object-oricntcd methods and languages arc

not cxprcssivc enough to represent the richness in

semantic propcrtics and development roles of

composite objects.

WC have argued that treating composite objects

scparatcly from problem-domain class associations

and explicitly capturing their design role, as well as

their problem-domain semantics, helps to separate

analysis and design concerns and to document the

rationale for important modelling and design decisions

that might othcrwisc bc lcl’t unrecorded.

WC have illustrated how whole-part associations

can model difl‘crcnt types of problem-domain

relationships, and how object composition can be used

to cvcnly distribute structural, functional and control

complexity in a model.

391

the bchavioural and structural view. For example,

scenarios of object interactions can be checked for

consistency with the stated structural properties

(whether the visibility properties are complied with,

whether creation and deletion of objects is compatible

with the separability, ownership and immutability

properties, etc.). CASE tools for OOD should

automate as much of this as possible.

The example used in this paper has illustrated the

analysis and design roles of composite objects

particularly applicable to the domain of embedded

monitoring and control systems with a fairly static

configuration. We believe more research is required to

analyse and streamline the use of composite objects in

more dynamic environments, where objects and links

are frequently created and deleted at run-time. The

concepts of encapsulation and separability, in

particular, must be refined to account for their

temporal dimension. It must be possible, fbr example,

to model the migration of’ objects I‘rom one composite

to another.

We also believe that many of the propcrtics that we

have classed as design properties, such as separability

and immutability, can apply to real-world entities as

well as software objects. Thus they can bc investigated

before software concerns are addressed. However,

since software objects often do not exhibit the same

properties as their real-world counterparts, WC bclicvc

that a better than currently available understanding 01

the model transformation process that takes place

during design is required, in order to account l‘ol

differences between the analysis and design model.

The method presented here does not address such

issues, although it provides a framework in which

they can be explored.

Acknowledgements

I am grateful to Richard Mitchell for his collaboration

in the original design of the Bolllc Filling System and

for his tireless support and useful comments.

References

Atkinson C. 199 1. Object-Oriented Reuse

Concurrency and Distribution. An Ada-based

approach. ACM Press. Addison-Wcslcy.

Booth G. 199 1. Object oriented design with

applications. Benjamin Cummings.

Coad P. and Yourdon E. 1990. Object-oriented

analysis, 1st ed., Yourdon Press/Prentice-Hall.

Coad P. and Yourdon E. 1991. Object-oriented

analysis, 2nd ed., Yourdon Press/Prentice-Hall.

Coleman D., Hayes F. and Bear S. 1992. Introducing
ObjectCharts or how to use Statecharts in Object-
Oriented Design. IEEE Transactions in Software

Engineering, 18(l), 9- 18

de Champeaux D. 1991. Object-Oriented Analysis and
Top-Down Sof’twarc Dcvclopmcnt. Proceedings ofthe

I99 I Europeun Cotzfercnce on Ob,ject-Oriented
Programming, Springer-Verlag, X50-376.

de Champcaux D., Lea D. and Faurc P. 1992. The
Process of Objccl-Oriented Design. Proceedings ~1

OOPSLA ‘92, ACM, 45-6 1.

Hare1 D. 19X7. Statccharts: a Visual Formalism fof
Complex Systems. Science of Computer

Programminx, S(3), 23 l-274.

Hartmann T., Jungclaus R. and Saake G. 1992.
Aggregation in ;I Bchaviour Oriented Object Model,
Proceedings of the 1992 European Conference on

Ol?ject-Oriented Programming, Springer-Verlag, 57-
77.

Hogg J. 1991. Islands: Aliasing Protection In Object-
Oricntcd Languages, Proceedings of OOPSLA ‘91,

ACM, pp. 271-285.

Hull R. and King R. 1987. Semantic Database
Modclling: Survey, Applications and Research Issues.
ACM Computing Surveys, lY(3), September 1987.
Jacobson 1. 1992. Object-Oriented Software

Engineering. A Use Ca.ve Driven Approach. Addison-
Wcslcy.

Jungclaus R., Saakc G. 1991. Formal Specification 01‘
Object Systems, in TAPSOFT ‘91, Proceedings of the

International Joint Conference on Theory and Practice

of’SofnYurc Development, Goos G. & Hartmanis J.
eds., Springer-Vcrlag, 60-82.

392

Kramer J., Magee J., Sloman M. and Dulay N. 1992.
Configuring object-based distributed programs in
REX. Sqftwure Engineering Jowxal March 1992,
139-149.

Monarchi D.E. and Puhr G.I. 1992. A Rcscarch
Typology for Object-Oriented Analysis and Design.
Communications qf the ACM, Scptcmbcr 1992,
35(9), 35-47.

Ode11 J. 1992. Managing object complexity, part II:
composition. Journal of Object-Oriented

Programming,, j(6), October 1992, 17-20.

Robinson P. ed. 1992. Ol?ject-oriented Design

Chapman & Hall.

Rubin K. and Goldberg A., 1992. Object Bchaviour
Analysis. Communications of’ the ACM, Scptcmbcr
1992, 35(9), 48-62.

Rumbaugh J., Blaha M., Premerlani W., Eddy F. and
Lorcnsen W. 199 1. Object-oriented ModclinK clmi

Design. Prentice-Hall.

Ward P.T. and Mellor S.J. 1985. Stru(:tured

Development for Real-Time Systems. Vol. I-.?.

Yourdon Press.

Winston M.E., ChafJin R. and Hcrrmann D. 1987. A
Taxonomy of Part-Whole Relations. Cognitive

Science, 11, 417-444.

Wirfs-Brock R., Wilkerson L. and Wicncr L.1990.
Designing Object Oriented S~ft~urE.Prcnticc-Hall.

393

