
REVIEW Open Access

Roles for retrotransposon insertions in
human disease
Dustin C. Hancks1* and Haig H. Kazazian Jr.2*

Abstract

Over evolutionary time, the dynamic nature of a genome is driven, in part, by the activity of transposable elements
(TE) such as retrotransposons. On a shorter time scale it has been established that new TE insertions can result in
single-gene disease in an individual. In humans, the non-LTR retrotransposon Long INterspersed Element-1 (LINE-1
or L1) is the only active autonomous TE. In addition to mobilizing its own RNA to new genomic locations via a
“copy-and-paste” mechanism, LINE-1 is able to retrotranspose other RNAs including Alu, SVA, and occasionally
cellular RNAs. To date in humans, 124 LINE-1-mediated insertions which result in genetic diseases have been
reported. Disease causing LINE-1 insertions have provided a wealth of insight and the foundation for valuable
tools to study these genomic parasites. In this review, we provide an overview of LINE-1 biology followed by
highlights from new reports of LINE-1-mediated genetic disease in humans.
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Background

A brief history

Transposable elements (TEs) are pieces of nucleic acid that

encode the inherent ability to mobilize from one gen-

omic location to another. This ability to “jump” is me-

diated by element-encoded proteins such as DNA

transposase or reverse transcriptase. These TEs are

referred to as autonomous. In other instances, non-

coding TEs -typically referred to as non-autonomous-

contain sequence features (e.g. sequence motifs, RNA

structural elements), which are recognized by autonomous

TE proteins that ultimately result in trans-mobilization of

these sequences. Collectively, autonomous and non-

autonomous transposable elements often comprise greater

than 50 % of genomic real estate in mammals. For

humans, approximately two-thirds of our genome can be

annotated as TE-derived [1–6]; however, it is likely that

the actual percentage is greater but due to sequence decay

no sequence identity can be assigned.

Almost 70 years ago, Barbara McClintock laid the founda-

tion for TE research with her initial work and discoveries in

maize of what she termed “controlling elements [7].” Since

that time, several discoveries have been made leading to an

active research community investigating the impact of trans-

posable elements on the human genome and their role in

disease. Although work by Britten and Davidson in the

1960s provided hints that the human genome was largely re-

petitive [8, 9], it wasn’t until the Human Genome Project

[4–6] that the true origin and extent of the repeats in our

genome became evident. The initial human genome draft

sequence estimated that roughly 45 % of our genomic se-

quence is derived from TE sequence. The Human Gen-

ome and other genome projects [1, 3, 6] significantly

transformed TE biology by providing the ability to answer

questions including 1) Which TEs have been the most ac-

tive?, 2) Where are specific TEs maintained in the gen-

ome?, 3) Which elements and how many have been

recently active?

A pivotal transformation in TE biology occurred less than

10 years after the publication of the Human Genome Project.

Next-generation sequencing has empowered researchers to

interrogate longstanding and previously intractable ques-

tions regarding TE biology [7, 10, 11]. Examples include

the frequency and location of new insertions and the

contribution of TEs to gene regulation genome-wide at

an unprecedented resolution [8, 9, 12, 13]. New studies

will likely unveil novel ways by which these selfish
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genetic elements may actually be altruistic or even co-

opted by the host genome [14] along with new insights

into mechanisms by which they can cause disease. Here

we provide an update of human TE biology, with a spe-

cific emphasis on LINE-1-mediated retrotransposition

and disease-causing insertions.

Human transposable elements

TEs are historically subdivided into two major classes

defined by their mobilization intermediate. Class I TEs,

also known as retrotransposons, encompass elements

that move via a “copy-and-paste” mechanism involving

an RNA intermediate [15, 16], while Class II TEs, referred

to as DNA transposons, represent TEs that mobilize by a

“cut-and-paste” mechanism. DNA transposons are cur-

rently thought to be transpositionally inactive in most

mammals with bats being the exception [17, 18]; however,

several genes in the human genome are derived from

DNA transposons [6]. Three of these genes (recombin-

ation activating gene 1 (RAG1) [19], PiggyBac transpos-

able element-derived protein 5 (PGBD5) [20], and

THAP domain containing 9 (THAP9) [21])) are evolu-

tionarily conserved and can carry out DNA transposition

in cell culture or perform reactions reminiscent of DNA

transposition. In contrast, retrotransposons (Fig. 1) remain

quite active in humans [22–24]; any two human beings

differ on average by ~285 different LINE-1 insertions [25].

Retrotransposons can be further subdivided into two

subclasses: those with Long-Terminal Repeats (LTR) and

those without (non-LTR). LTR elements, also known as

endogenous retroviruses (ERVs), comprise ~8 % of the

human genome [6]. Many of these elements lack a ma-

jority of the viral genes and exist only as single LTRs,

often referred to as solo LTRs. Similar to DNA transpo-

sons, LTR elements are thought to be inactive in the

human lineage, although rare polymorphic ERVs in the

human population indicate that mobilization has oc-

curred following the human-chimpanzee divergence

[26–28]. Very recently, several unfixed HERV-K ele-

ments were identified across human genomes including

an intact insertion that still may be infectious [29]. In

contrast, ERVs have been active recently in the chimpan-

zee and gorilla lineages [30]. Most ERVs are speculated

to be exogenous viruses that integrated into the host

germline in the distant past [31, 32]. There is some evi-

dence that endogenous viral elements (EVEs) may have

escaped the cell by acquiring a functional envelope gene

and that these genetic elements are the ancestors of

modern-day retroviruses [33]. Certain hints already

exist, but as more genomes are analyzed one might

predict that formation of infectious viruses from en-

dogenous elements followed by re-endogenization of

exogenous elements might be more common than pre-

viously appreciated [34].

LINE-1

Long INterspersed Element-1 (LINE-1 or L1), a non-

LTR element, is the only active autonomous TE in man.

Despite the fact that the human genome contains more

than 500,000 LINE-1 sequences, most are inactive due

to rearrangements, point mutations, and 5′-truncation

[6, 35–37]. Only a small subset, 80-100 LINE-1 s, are

thought to be active in any given individual [38, 39],

with each set of active elements differing between indi-

viduals [40]. An active LINE-1 residing in the genome is

6 kb in length [41] (Fig. 1a) contains a 5′- and 3′-UTR,

encodes two proteins (i.e. bicistronic), ORF1p and

ORF2p, separated by a 63 bp inter-ORF spacer and ends

in a long polyA tail. Cell culture retrotransposition as-

says indicate that both proteins are absolutely required

for LINE-1 mobilization in cis [42]. ORF1p is a ~40 kDa

protein [43] with RNA binding [44, 45] and chaperone

activities [46]. Although structural analysis and biochem-

ical studies [47] have revealed that ORF1p forms a series

of trimers with nucleic acids [48, 49] via rapid

polymerization mediated by coiled-coiled domain inter-

actions, its precise function remains poorly understood;

however, new work indicates that phosphorylation of

ORF1p is required for retrotransposition [50]. ORF2p is

a 150 kDa protein with endonuclease (EN) [51] and re-

verse transcriptase (RT) [52] activities.

LINE-1 is transcribed from its own promoter [53] lo-

cated in the ~900 bp 5′UTR presumably by RNA Pol II.

LINE-1 RNAs are thought to be capped as evidenced by

untemplated guanosines at the 5′-end of full-length gen-

omic insertions [54]. Several transcription factors have

been implicated in LINE-1 transcription including ying

yang 1 (YY1) [55], T-cell factor/lymphoid enhancer fac-

tor (TCF/LEF) [56], p53 [57], and runt related transcrip-

tion factor 3 (RUNX3) [58]. LINE-1 also contains an

antisense promoter in the 5′-UTR [59]. Recently, a novel

ORF termed ORF0, which is 70 amino acids in length,

was identified on the antisense strand of primate LINE-1

5′UTRs [60]. As ORF0 has two splice donor sites, ORF0

has the ability to form fusion proteins with downstream

exons [60]. Interestingly, overexpression of ORF0p in

trans results in a 41 % increase in engineered LINE-1

retrotransposition in cell culture [60]. Future research

will reveal the role of ORF0p and whether functional

homologs have been independently derived in other

species.

Transcription of LINE-1 is terminated by an internal

weak polyA signal (AATAAA) [42, 61, 62] present in the

~200 bp 3′-UTR. Frequently, LINE-1 transcription will

read through its polyA signal in favor of a polyA signal lo-

cated downstream of the genomic LINE-1 [62–64]. This

downstream non-LINE-1 sequence is frequently retrotran-

sposed to new genomic locations, a phenomena referred

to as 3′-transduction (Fig. 2). 3′-transductions are an
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Fig. 1 Retrotransposons active in humans. a An autonomous active LINE-1. A full-length LINE-1 ~ 6 kb in length is shown [36, 41, 239]. LINE-1 encodes
three proteins, two of which (ORF1p and ORF2p) are absolutely required for retrotransposition in cis [42, 146]. Currently, the role for ORF0p is unclear
[60]; interestingly, it may form fusion proteins with downstream coding sequences by utilizing internal splice donor sites (SD) [60]. LINE-1 transcription
is driven from its own promoter (big black bent arrow) [53, 54] located in the 5′-UTR. The 5′-UTR also encodes a weaker antisense promoter (ASP, small
black bent arrow) [59]. It has been postulated that the LINE-1 ASP in conjunction, with splice acceptors located on the antisense strand of LINE-1, may
contribute to new gene formation via a mechanism termed “gene-breaking [240].” Termination of LINE-1 transcription is mediated by a polyA signal
(AATAAA) located in the 3′-UTR. Occasionally, transcription proceeds past the internal polyA signal and terminates at a downstream one [139, 241].
Such chimeric transcripts, if retrotransposed, may result in 3′-transductions [42, 62–64, 176]. Majority of insertions end in a polyA tail (AAAn) of variable
length [37]. In addition, most insertions are characterized by flanking target-site duplications (4-20 bp in length, black horizontal arrows) [35]. CC-coiled
coiled domain [47], RRM-RNA recognition motif [44], CTD-C-terminal domain, EN-endonuclease [51], Z domain [242], RT-reverse transcriptase [52], C-
cysteine-rich. AA-amino acid. b The Alu SINE. Alus are small Pol III transcribed RNAs derived from 7SL RNA [243]. An Alu element consists of a left and
right monomer, which are derived from an ancient duplication event, separated by an internal A-rich sequence. Alus contain their own transcriptional
signals, an A and B box located in the left monomer. Efficient Alu transcription requires a strong enhancer element in the upstream flanking sequence
[103, 104]. Transcription termination of an Alu typically occurs at a Pol III terminator (TTTT) located in the downstream flanking sequence [244]. Similar
to LINE-1, Alu insertions end in a polyA tail and are flanked by a target-site duplication. c A canonical SINE-VNTR-Alu (SVA) element consisting of its
primary domains: CCCTCT hexamer, Alu-like, VNTR, SINE-R derived from the env gene and right LTR from a HERV-K is shown [126]. SVA transcription
can initiate upstream (black bent arrow) or in the CCCTCT hexamer (black bent arrow) [126, 127]. Like LINE-1, SVA transcription typically terminates at
its own [127] or a downstream polyA signal [24, 65]. d A processed pseudogene (PP) is shown. Note the lack of introns and the presence of a target-site
duplication and a 3′-polyA tail similar to LINE-1, Alu, and SVA. e U6 chimera insertion. A U6 snRNA fused with the 3′-end of an LINE-1 sequence formed by
“template-switching” [84, 140, 144] is shown. Although the site where ORF2p switches templates varies across the U6 chimera insertions, the junction
where the two sequences are joined is typically T-rich [144]
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Fig. 2 (See legend on next page.)
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additional mechanism by which LINE-1 contributes to

genomic expansion and a means to shuffle protein-coding

exons throughout the genome [62, 65].

Following transcription from a genomic locus, the LINE-

1 RNA is transported to the cytoplasm for protein transla-

tion and LINE-1 ribonucleoprotein (RNP) assembly. Al-

though, the exact nature of LINE-1 ORF1p and ORF2p

translation is not entirely resolved, significant insight comes

from application of the cell culture retrotransposition assay.

This work suggests that ORF2p is translated via an uncon-

ventional mechanism involving translation termination of

ORF1 and reinitiation [66]. Surprisingly, this study demon-

strated that the codon for any amino acid could serve as

the +1 codon for ORF2p.

The next step in the LINE-1 lifecycle is RNP assembly

[67]. While the number of ORF1p trimers is thought to

be several, the number of ORF2p molecules in an active

LINE-1 RNP is unknown but its abundance is thought

(See figure on previous page.)
Fig. 2 Anatomy of retrotransposon insertions. A variety of structures for retrotransposon insertions (a-k) identified by genomic studies, cell culture
retrotransposition assays, and disease-causing insertions that have been reported is shown. Reported frequencies, either from genomic analysis or
cell-culture retrotransposition assays, for each structure is located in the upper right hand corner of each panel. If no frequency data has been
reported only the element’s name is shown. These structures have provided key insights into the mechanism of target-primed reverse transcription
[77], retrotransposon transcript structure [127], and the mechanism by which LINE-1-mediated retrotransposition events contribute to genome
evolution [62]. A) LINE-1 target-site. Most insertions occur at asymmetric AT-rich sequences [6, 37, 51, 86]. The first step of TPRT is cleavage of the
bottom-strand by ORF2p endonuclease activity at a motif resembling 5′-TTTT/AA-3′ [245]. The nuclease responsible for top-strand cleavage is currently
unknown. The nature of the staggered cleavage events generates a target-site duplication (TSD, sequence in bold). a TSD (black horizontal arrows) is
used to define the boundaries of an insertion and considered a hallmark of LINE-1-mediated retrotransposition events. b Full-length insertion. It is
generally accepted that in order for an element to be retrotransposition-competent it must be full-length. c 5′-truncated insertions. Most LINE-1 s in
the human genome are grossly truncated at their 5′-end [6, 36, 37]. In contrast, most Alus [243] and SVA elements are full-length [123, 127]. To date,
no consensus sequence has been identified in LINE-1 or SVA insertions regarding the mechanism of 5′-truncation. However, a new report implicates
stem-loop structures as a factor driving 5′-truncation in recent Alu insertions [114]. d 3′-transduction. Although the first report of a 3′-transduction
was an LINE-1 insertion into the dystrophin gene resulting in Duchenne’s muscular dystrophy in 1994 [176], it would be several years before the
significance of this chimeric insertion was uncovered. Several years later, as one of the first insights gained from insertions recovered from
cell-culture retrotransposition assays, it was reported that LINE-1 frequently bypassed its own polyA signal (AATAAA) in favor of a downstream
one (AATAAA) [42]. Subsequently, elegant experimental analysis revealed that utilizing a downstream polyA signal could result in LINE-1-mediated
exon-shuffling [62]. An insertion containing a 3′-transduction will typically contain two homopolymer stretches (AAAn) and contain the 3′-TSD from the
source locus (gray horizontal arrow) as part of the transduced sequence. Notably, insertions containing serial 3′-transductions have been reported and
can be used to track the evolutionary history of an element [246]. e 5′-end inversions. Another hallmark of LINE-1-mediated retrotransposition events
is the inversion of the 5′-end (gray horizontal arrow) of the retrotransposon sequence [35]. Small indels are typically identified at the inversion break-
point [88]. Inversions have only been reported for LINE-1 s, SVAs, and processed pseudogenes [196]. 5′-end inversion is presumed not to occur for Alus
due to their short length. It has been hypothesized that a phenomenon referred to as twin-priming may account for the frequent inversions associated
with LINE-1-mediated retrotransposition events [88]. f 5′-transduction. In some instances, LINE-1 [82] or SVA transcription [126, 127] may initiate up-
stream of the internal promoter generating a chimeric transcript. Retrotransposition of this sequence results in duplication of the sequence 5′- of the
source locus at a new genomic location. It has been speculated that 5′-transductions are relatively common for SVA elements due to their weaker
internal promoter compared to LINE-1, which has a very strong internal promoter, where only a handful of 5′-transductions have been reported [82].
g Internal priming. Occasionally following bottom-strand cleavage, internal A-rich sequences upstream in the retrotransposon RNA may basepair with
the T-rich overhang at the target-site instead of the 3′-polyA tail, followed by first-strand cDNA synthesis by ORF2p [247–249]. These insertions can be
deemed a type of 3′-truncation. h Exon-trapping. Retrotransposons are dispersed throughout the genome including intronic sequence. LINE-1, Alu, SVA all
have been reported to contain numerous splice sites and be incorporated into the transcriptome [105, 127, 128, 134, 250]. Interestingly, LINE-1 internal
splicing can generate a transcript lacking ORF1 but maintaining a functional ORF2 [251]. In some instances, at least for SVA, retrotransposition of chimeric
transcripts containing upstream exons may occur [127, 128, 132]. Notably, SVA itself is thought to have originated from alternative splicing from genomic
repeats [126] and SVA-related elements (e.g. LAVA, PVA) appear to have acquired distinct 3′-domains via splicing in gibbons [125, 135, 136, 138].
I) 3′-truncation. Premature polyadenylation using either canonical or non-canonical polyadenylation sites results in LINE-1 or SVA RNAs lacking
3′-sequence [127, 252]. If this RNA is retrotransposed, it will result in a 3′-truncated insertion. Consistent with the dispensability of SVA domains
[130], 3′-truncations may be more frequent for SVA compared to LINE-1. In principle, 3′-truncated LINE-1 RNAs containing ORF1 coding
sequence might be actively retrotransposed as in the case of ORF1 mNEOi in cell culture [144] and the presence of half-LINE-1 (HAL1) insertions in
mammalian genomes [253]. j Target-site deletion. Another surprise from cell culture retrotransposition assays was the discovery of large deletions
associated with new retrotransposition events [82, 83]. Genomic deletions up to 1 MB have been associated with LINE-1 mediated retrotransposition
events in vivo [153]. These insertions occur at a LINE-1 EN cleavage site, are generated by ORF2 reverse-transcriptase activity, and end in a 3-polyA tail.
Currently, the mechanism driving 5-targe-site deletions is unclear; yet, it is tempting to speculate that chromatin looping along with cleavage
by LINE-1 or another nuclease may play important roles [82, 83]. k Endonuclease-independent (ENi) insertion. Eni insertions were discovered
by the Moran lab when carrying out retrotransposition assays in different Chinese Hamster Ovary (CHO) cell lines lacking key DNA repair
factors [213]. Frequent retrotransposition was observed for an engineered LINE-1 element construct, with a catalytically inactive EN, in these
cells but not HeLa cells. Characterization of recovered insertions revealed LINE-1 integration at genomic sites not resembling the LINE-1 EN
consensus cleavage site. In addition, the insertions were typically truncated at both the 5′-and 3′-ends [213]. These data suggest that LINE-1
can serve as a “molecular band-aid” [254] at double-stranded DNA breaks [213–215] and that LINE-1 s lacking a functional EN domain may
be able to retrotranspose in certain contexts. Building on these studies it was later reported that LINE-1 s can also integrate at dysfunctional telomeres
in an endonuclease-independent manner [216]
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to be significantly less when compared to ORF1p in the

RNP [68]. In vitro analyses of non-LTR retrotransposon

integration predict that at least 2 molecules of ORF2p

are present in any given retrotranspositionally-competent

(RC) LINE-1 RNP [69]. In addition, a new study has

reported that the polyA tail of LINE-1 RNA is required in

cis for formation of a RC-RNP presumably by serving to

recruit ORF2p to the RNP [70]. Similarly, the polyA tail of

Alu is also required for reverse transcription [70, 71].

Thus, the basal LINE-1 RNP contains ORF1p trimers,

ORF2p, and the LINE-1 RNA. An active area of current

research involves determining other components of the

LINE-1 RNP, specifically which cellular RNAs [72] and

non-LINE-1 proteins [73–76] are present.

LINE-1 insertions occur via a coupled reverse-

transcription integration mechanism referred to as

target-primed reverse-transcription (TPRT) [77, 78].

TPRT has been characterized in great detail biochemically

by Eickbush and colleagues using the Bombyx mori non-

LTR R2 element as a model. Although R2 differs from

LINE-1 in that it only encodes one ORF, this ORF con-

tains endonuclease [79] and reverse transcriptase activities

[77]. How LINE-1 identifies a genomic neighborhood for

integration remains of great interest. It is highly prob-

able that chromatin states [80] and perhaps protein-

protein interactions with nuclear factors dictate

target-site preference.

The LINE-1 integration target-site (Fig. 2a) is deter-

mined by the ORF2p-encoded endonuclease [51, 81].

Biochemical [51], cell culture retrotransposition assays

[42, 82–84], and genomic analysis [6] have revealed the

LINE-1 EN consensus site to be 5′-TTTT/AA-3′ on the

bottom-strand where “/” indicates the site of cleavage.

The EN cleavage site is not absolute as variations are

common and thus the site can better be defined as 5′-

YYYY/RR-3′ where Y = pyrimidine and R = purine. The

asymmetry of a pyrimidine followed by a purine at the

cleavage site is almost always observed. See Table 1 for

additional variations (YYRY/RR, YRYY/RR, etc).

The cleavage of the DNA bottom-strand liberates a

3′-OH which will serve as the primer used by ORF2p

for reverse-transcription. It is postulated that the T-rich

bottom-strand basepairs with the LINE-1 RNA polyA tail

and perhaps in some instances, a nuclease activity associ-

ated with the LINE-1 RNP processes the 3′-bottom strand

to obtain a better primer. 3′-processing can be ob-

served biochemically and for genomic insertions where

the cleavage site appears to be absent by annotation

(e.g. YYYY/YR), the actual site is merely obscured by

this activity [85, 86].

Following bottom-strand cleavage, ORF2p initiates

reverse-transcription of the LINE-1 RNA to generate the

first strand of LINE-1 cDNA [68, 78]. Cleavage of the

DNA top-strand seems to occur following the bottom-

strand nick in a stepwise manner after initiation of first-

strand cDNA synthesis [69]. That said, sequence features

in some LINE-1 insertions, namely 5′-inversions and

target-site deletions, suggest that top-strand cleavage

may occur prior to completion of bottom-strand cDNA

synthesis. While sequence-specificity for top-strand cleav-

age has yet to be defined, sequence distance likely plays a

role as the majority of target-site duplications are within

4-20 bp in length [6, 37, 84, 86]. A potential suspect for

top-strand cleavage could be the additional nuclease ac-

tivity observed in vitro in LINE-1 RNPs [78, 85].

Next, top-strand cDNA synthesis ensues probably by

ORF2p which displays DNA-dependent DNA synthe-

sis activity in vitro [87].

In contrast to DNA transposon and ERV insertions,

most LINE-1 insertions are not a full 6 kbp in length

(Fig. 2b). The majority of genomic LINE-1 s (>99 %) are

grossly truncated at their 5′-end (Fig.2c) or contain a 5′-

inversion (Fig. 2e) of the LINE-1 sequence [37, 88]. Al-

though ~ one-third of the human-specific LINE-1 s are

full-length, indicating most full-length elements have been

selected against throughout primate evolution [89] and

even recently since the human-chimpanzee divergence

[90], some LINE-1-containing loci display signatures of

positive selection [91]. The lack of LINE-1 RT processivity

during cDNA synthesis is unlikely to contribute to short

insertions as non-LTR RTs, including ORF2p, are highly

processive in vitro [87, 92]. Currently, it is speculated

that conflict with host factors, that serve as defenders

of the genome against LINE-1 parasites [93, 94] such as

apolipoprotein B mRNA editing enzyme catalytic subunit

3A (APOBEC3A) or DNA repair factors [44, 45, 95] like

ataxia telangiectasia mutated (ATM), limit the size of a

LINE-1 insertion [95]. Ongoing studies will determine

whether this conflict interferes with cDNA synthesis

resulting in a shortened first-strand cDNA or whether

some unknown factor attacks and perhaps cleaves a full-

length first-strand cDNA basepaired with the LINE-1

RNA. Conversely, it has not escaped notice that LINE-1

sequences contain numerous sequence motifs resembling

the LINE-1 EN cleavage site on what would be deemed

the bottom-strand. Although no ribonuclease H (RNaseH)

activity has been associated with LINE-1 proteins and per-

haps it is counterintuitive, it may be possible that LINE-1

cleaves itself as part of a multifaceted molecular arms-race

including but not limited to: 1) AT-rich codon

optimization in the ORFs to limit DNA methylation which

has the potential to alter coding via cytidine deamination,

2) low ORF2 protein expression to escape innate immun-

ity, and 3) maintenance of only the minimum number of

full-length insertions deployed throughout the genome in

order to survive and to cloak itself from purifying selec-

tion. In contrast, a yet unidentified host-encoded nuclease,

such as a factor distantly related to ORF2p with a
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Table 1 Retrotransposition events associated with human disease

Insertion Gene CHR Reference Disease Subfamily Size polyA
tail

length

Truncation Transduction
(bp)

Strand Exon/
Intron/

Mechanism

Target-site duplication (TSD) L1 EN site
(5′-TTTT/AA-3′)

Note

1 Alu ABCD1 X Kutsche et al.
2002 [255]

ALD AluYb9 98 20 Y/5′TR N S 4.7 kb
Deletion

No TSD ATTT/GT

2 Alu ATP7A X Gu et al. 2007
[256]

Menkes Disease AluYa5a2 282 89 N N AS E AAAAAGGACAGC TTTT/AT

3 Alu BTK X Lester et al. 1997
[257]

XLA AluY N/A N/A N/A N AS E N/A N/A

4 Alu BTK X Conley et al. 2005
[258]

XLA AluY 281 74 N N S E AGAAATGTATGAGTAAGT TTCT/AT Same insertion
site Conley et al.
SVA

5 Alu CD40LG X Apoil et al. 2007
[259]

HIGM AluYb8 292 8 N N AS E AAAAATTTTC TTTT/AT

6 Alu CLCN5 X Claverie-Martin et.
al. 2003 [260]

Dent’s Disease AluYa5 281 50 N N S E AGAAAATGCTCGAAAGA TTCT/AT

7 Alu CTRC 1 Masson et. al.
2013 [160]

Chronic
pancreatitis

Alu 31 11 Y/5′TR N AS 53.9 kb
Deletion

N/A TCTT/AT Deletes entire
CTRC and ELA2A
genes

8 Alu PKLR 1 Lesmana et. al.
2015 [159]

Severe
Hereditary
Nonspherocytic
Hemolytic
Anemia

Yb8 288 70 N N S E AAGATCATCAGCAAA TCTT/GA consanguinity,
consensus Yb8

9 Alu FVIII X Sukarova et. al.
2001 [261]

Hemophilia A AluYb8 290 47 N N AS 3 nt
Deletion

No TSD TTTC/AT

10 Alu FVIII X Ganguly et. al.
2003 [262]

Hemophilia A AluYb9 288 37 N N AS I/Splicing AAAAACCAACAGG TTTT/AT Consensus Yb9

11 Alu FVIII X Green et. al. 2008
[263]

Hemophilia A AluYb8 FL N/A N N AS E N/A

12 Alu FIX X Vidaud et al. 1993
[264]

Hemophilia B AluYa5a2 244 78 Y/5′TR N S E AAGAATGGCAGATGCGA TCTT/AA Same insertion
site as Wulff et al.
Alu

13 Alu FIX X Wulff et al. 2000
[265]

Hemophilia B AluYa5a2 237 39 Y/5′TR N S E AAGAATGGCAGATGC TCTT/AA Same insertion
site as Vidaud et
al. Alu

14 Alu FIX X Li et al. 2001 [266] Hemophilia B AluY 279 40 Y/5′TR N AS E AAGAAACTGGTCCC TCTT/AA

15 Alu GK X Zhang et al. 2000
[267]

GKD AluYc1 241 74 Y/5′TR N AS I AAAAAATAAG TTTT/AA

16 Alu IL2RG X Lester et al. 1997
[257]

XSCID AluYa5 N/A N/A N/A N AS I N/A N/A
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Table 1 Retrotransposition events associated with human disease (Continued)

17 Alu CRB1 1 den Hollander et al.
1999 [268]

RP AluY 244 70 Y/5′TR N AS E AAGAGTAAAGATGA TCTT/GA

18 Alu SERPINC1 1 Beauchamp et al.
2000 [269]

Type 1 ATP Alu 6 40 Y/5′TR N AS 1.4 kb
Deletion

N/A TTCT/AT Shortest Alu
insertion

19 Alu ALMS1 2 Taşkesen et al.
2012 [270]

Alström
syndrome

AluYa5 257 76 Y/5′TR N S E AAAAGCCTAGAGAA TTTT/AA

20 Alu MSH2 2 Kloor et al. 2004
[271]

HNPCC AluJ 85 40 Y/5′TR N S E N/A N/A Contains extra
99 nt 3′-of Alu,
may be
transduction or
recombination

21 Alu MSH2 2 Qian et al. 2015
[158]

Hereditary
Cancer

N/A N/A N/A N/A N/A N/A E N/A N/A Pan-cancer panel
testing

22 Alu ZFHX1B 2 Ishihara et al. 2004
[272]

MWS AluYa5 281 93 N N S E AAAATTAAAACA TTTT/AA

23 Alu BCHE 3 Muratani et al.
1991 [273]

Cholinesterase
deficiency

AluYb9 289 38 N N S E AAAAATATTTTTTCC TTTT/AA

24 Alu CASR 3 Janicic et al. 1995
[274]

FHH and NSHPT AluYa5 280 93 N N AS E GAAAGCGTGAGCTGC TTTC/AA

25 Alu HESX1 3 Sobrier et al. 2005
[275]

Anterior
Pituitary Aplasia

AluYb8 288 30 N N S E AGAAAATGTCTTTAGA TTCT/AA

26 Alu OPA1 3 Gallus et al. 2010
[276]

ADOA AluYb8 289 25 N N AS I/Splicing AAAAATTTTAAAAAGTT TTTT/AC

27 Alu MLVI2 5 Economou-
Pachnis and
Tsichlis 1985 [277]

Associated with
leukemia

AluYa5 280 26 N N AS I GAAAATGT TTTC/AT

28 Alu APC 5 Halling et al. 1999
[278]

Hereditary
desmoid
disease

AluYb8 278 40 Y/5′TR N S E AAGAATAATG TCTT/AA Same insertion
site as Miki et al.
L1

29 Alu APC 5 Su et al. 2000
[279]

FAP AluYb9 93 60 Y/5′TR N AS I/Splicing No TSD TTTT/AA 1.6 kb intronic
deletion

30 Alu APC 5 Qian et al. 2015
[158]

Hereditary
Cancer

N/A N/A N/A N/A N/A N/A E N/A N/A Pan-cancer panel
testing

31 Alu MAK 6 Tucker et al. 2011
[280], Edwin
Stone, personal
communication

RP AluYb8 281 57 N N AS E AAAGAAAAAA CTTT/AA Identified by
exome
resequence

32 Alu NT5C3 7 Manco et al. 2006
[281], Leticia
Ribeiro, personal
communication

Chronic
hemolytic
anemia

Alu Ya5 281 36 N N S E AAGAATGGCAGATGG TCTT/AA
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Table 1 Retrotransposition events associated with human disease (Continued)

33 Alu CFTR 7 Chen et al. 2008
[282]

Cystic Fibrosis AluY 46 57 Y/5′TR N AS E AAGAATCCCACCTATAAT TCTT/AA

34 Alu CFTR 7 Chen et al. 2008
[282]

Cystic Fibrosis AluYa5 281 56 N N S E AATAGAAATGATTTTTGTC TCTC/AT 3′-Processing of
(5′-CTC-3′)

35 Alu EYA1 8 Abdelhak et al.
1997 [283]

BOR syndrome AluYa5 n/a 97,31 N/A N AS E AAAAAATAAATGTGTG TTTT/AA PolyA tail
shortening
between
generations

36 Alu LPL 8 Okubo et al. 2007
[284]

LPL deficiency AluYb9 150 60 Y/5′TR N AS 2.2 kb
Deletion

No TSD TTTT/AA

37 Alu CHD7 8 Udaka et al. 2007
[285]

CHARGE
syndrome

AluYa5/8 75 100 Y/5′TR N S 10 kb
Deletion

No TSD ATTT/AA

38 Alu POMT1 9 Bouchet et al.
2007 [286]

Walker Warburg
syndrome

AluYa5 290 53 N N AS E AAAAAGAGATGTACTG TTTT/AC

39 Alu FGFR2 10 Oldridge et al.
1999 [287]

Apert syndrome AluYa5 283 69 N N AS I/Splicing AGAAAACAAGGGAAGCA TTCT/AG

40 Alu FGFR2 10 Oldridge et al.
1999 [287]

Apert syndrome AluYb8 288 47 N N AS E AGAATTACCCGCCAAG TTCT/AT

41 Alu FGFR2 10 Bochukova et al.
2009 [288]

Apert syndrome AluYk13 214 12 Y/5′TR N AS E AAAAGTTACATTCCG TTTT/GA

42 Alu FAS 10 Tighe et al. 2002
[289]

ALPS AluYa5 281 33 N N AS I AGAATATTCTAAATGTG TTCT/AA

43 Alu SERPING1 11 Stoppa-Lyonnet et
al. 1990 [290]

HAE AluYc1 285 42 N N S I AAAAATACAAAAATTAG TTTT/AG

44 Alu HMBS 11 Mustajoki et al.
1999 [291]

AIP AluYa5 279 39 N N AS E AAGAATCTTGTCCC TCTT/GA

45 Alu ATM 11 Qian et al. 2015
[158]

Hereditary
Cancer

N/A N/A N/A N/A N/A N/A E N/A N/A Pan-cancer panel
testing

46 Alu GNPTAB 12 Tappino et al.
2008 [292]

ML II AluYa5 279 17 N N AS E AAAAACAACAACTGAG TTTT/GA

47 Alu BRCA2 13 Miki et al. 1996
[293]

Breast Cancer AluYc1 281 62 N N S E AATCACAGGC GATT/AT

48 Alu BRCA2 13 Teugels et al. 2005
[294]

Breast Cancer AluYa5 285 N/A N N S E AAGAATCTGAACAT TTCT/GC 3′ Processing 2 nt
(5′-CT-3′)

49 Alu BRCA2 13 Qian et al. 2015
[158]

Hereditary
Cancer

N/A N/A N/A N/A N/A N/A E N/A N/A Pan-cancer panel
testing

50 Alu BRCA2 13 Qian et al. 2015
[158]

Hereditary
Cancer

N/A N/A N/A N/A N/A N/A E N/A N/A Pan-cancer panel
testing

51 Alu BRCA2 13 Qian et al. 2015
[158]

Hereditary
Cancer

N/A N/A N/A N/A N/A N/A E N/A N/A Pan-cancer panel
testing
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Table 1 Retrotransposition events associated with human disease (Continued)

52 Alu BRCA2 13 Qian et al. 2015
[158]

Hereditary
Cancer

N/A N/A N/A N/A N/A N/A E N/A N/A Pan-cancer panel
testing

53 Alu BRCA2 13 Qian et al. 2015
[158]

Hereditary
Cancer

N/A N/A N/A N/A N/A N/A E N/A N/A Pan-cancer panel
testing

54 Alu BRCA2 13 Qian et al. 2015
[158]

Hereditary
Cancer

N/A N/A N/A N/A N/A N/A E N/A N/A Pan-cancer panel
testing

55 Alu BRCA2 13 Qian et al. 2015
[158]

Hereditary
Cancer

N/A N/A N/A N/A N/A N/A E N/A N/A Pan-cancer panel
testing

56 Alu BRCA2 13 Qian et al. 2015
[158]

Hereditary
Cancer

N/A N/A N/A N/A N/A N/A E N/A N/A Pan-cancer panel
testing

57 Alu PMM2 16 Schollen et al.
2007 [295]

CDG-Ia AluYb8 263 10 Y/5′TR N AS 28 kb
Deletion

No TSD TTTT/AA

58 Alu PALB2 16 Qian et al. 2015
[158]

Hereditary
Cancer

N/A N/A N/A N/A N/A N/A E N/A N/A Pan-cancer panel
testing

59 Alu BRCA1 17 Peixoto et al. 2013
[161]

Breast and
Ovarian Cancer
Family

AluYc 191 60 Y/5′TR N AS 23.3 kb
Deletion

No TSD CTTT/AG

60 Alu BRCA1 17 Teugels et al. 2005
[294]

Breast Cancer AluS 286 N/A N N S E GAAAAAGAATCTGCTTT TTTC/GA

61 Alu BRCA1 17 Qian et al. 2015
[158]

Hereditary
Cancer

N/A N/A N/A N/A N/A N/A E N/A N/A Pan-cancer panel
testing

62 Alu NF1 17 Wallace et al. 1991
[23]

NF1 AluYa5 282 40 N N AS I/Splicing AAAAAAAAAAACAT TTTT/AA First report of de
novo Alu
insertion

63 Alu NF1 17 Wimmer et al.
2011 [296]

NF1 AluY 280 N/A N N S I AAAAAATTCAG TTTT/AA Same insertion site
as Wimmer et al.a

64 Alu NF1 17 Wimmer et al.
2011 [296]

NF1 AluY 281 N/A N/A N AS I N/A

65 Alu NF1 17 Wimmer et al.
2011 [296]

NF1 AluYa5 282 60 N N S E ATAAATAGCCTGGA TTAT/AA

66 Alu NF1 17 Wimmer et al.
2011 [296]

NF1 AluYa5 284 120 N N AS E AAAAAACTTGCT TTTT/GA Same insertion site
as Wimmer et al.c

67 Alu NF1 17 Wimmer et al.
2011 [296]

NF1 AluYa5 281 N/A N N AS E AAAAAACTTGCTGATGG TTTT/GA Same insertion site
as Wimmer et al.c

68 Alu NF1 17 Wimmer et al.
2011 [296]

NF1 AluYa5 284 110 N N AS E AATAAAACCTAAAGA TATT/GA

69 Alu NF1 17 Wimmer et al.
2011 [296]

NF1 AluYa5 279 N/A N N S E AAAAGAAGAACATAT TTTT/GT Same insertion site
as Wimmer et al.b

70 Alu NF1 17 Wimmer et al.
2011 [296]

NF1 AluYa5 264 60-85 Y/5′TR N AS E AAGAAGTGCGGTACCT TCTT/GA
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Table 1 Retrotransposition events associated with human disease (Continued)

71 Alu NF1 17 Wimmer et al.
2011 [296]

NF1 AluYb8 249 121 Y/5′TR N S E AAAGCAGTGC CTTT/AT

72 Alu NF1 17 Wimmer et al.
2011 [296]

NF1 AluYb8 288 N/A N N AS I AAAAAAGAGAAAGACAA TTTT/AA Same insertion site
as Wimmer et al.a

73 Alu NF1 17 Wimmer et al.
2011 [296]

NF1 AluYb8 289 120 N N AS E AACAATGGTCTT TGTT/AA

74 Alu NF1 17 Wimmer et al.
2011 [296]

NF1 AluYb8 288 78-
178

N N S E AAACAATGATGTTA TTTC/AA 3′ Processing of
1 nt (C)

75 Alu NF1 17 Wimmer et al.
2011 [296]

NF1 AluYb8 288 118 N N S E AAAAGAAGAACATAT TTTT/GT Same insertion site
as Wimmer et al.b

76 Alu NF1 17 Wimmer et al.
2011 [296]

NF1 AluYb8 268 121 Y/5′TR N AS I AAAAAACAAACAAACA TTTT/GT

77 L1 CYBB X Meischl et al. 1998
[297], Brouha et al.
2002 [181]

CGD L1 Ta 1722 101 Y/5′TR Y (280) S E AA TGTT/GA Maternal Meiosis I

78 L1 CYBB X Meischl et al. 2000
[298]

CGD L1 Ta 836 69 Y/5′TR/INV N S I/Splicing AGAAATAACTATTTAA TTCT/AA

79 L1 CHM X van den Hurk et
al. 2003 [177]

Choroideremia L1 Ta 6017 71 FL Y (119/406) AS E AGAAGATCAATTAG TTCT/AA Insertion in Early
Development

80 L1 DMD X Musova et al. 2006
[299]

DMD L1 Ta 452 41 Y/5′TR/INV N AS E AAATATCTTTATATCA ATTT/AA

81 L1 DMD X Narita et al. 1993
[164]

DMD L1 Ta 608 16 Y/5′TR N AS E No TSD TCTT/AA 2 nt deletion

82 L1 DMD X Holmes et al. 1994
[176]

DMD L1 Ta 1400 38 Y/5′TR/INV Y(489) S E AAATCATCTGCTGCT ATTT/AA First Report of L1
3′TR

83 L1 DMD X Yoshida et al.
1998 [300]

XLDCM L1 Ta 530 73 Y/5′TR N AS 5′-UTR/Loss
of mRNA

AAAAAAAACCTGGTAAA TTTT/AT Tissue specific
loss of mRNA

84 L1 DMD X E Bakker & G van
Omenn, personal
communication

DMD N/A 878 N/A Y/5′TR N S N/A N/A N/A

85 L1 DMD X Awano et al. 2010
[301], Solyom et
al. 2011 [302]

DMD L1 Ta 212 118 Y/5′TR Y (212) AS E GAA TTTC/AA Orphan 3′-
transduction

86 L1 FVIII X Kazazian et al.
1988 [22]

Hemophilia A L1 Ta 3800 54 Y/5′TR N S E AAAGACAAACAAAAC CTTT/AA First report of de
novo L1 insertion

87 L1 FVIII X Kazazian et al.
1988 [22]

Hemophilia A L1 preTa 2300 77 Y/5′TR/INV N AS E AATGTTTCCTTCTTTTC CATT/AA

88 L1 FIX X Li et al. 2001 [266] Hemophilia B L1 Ta 463 68 Y/5′TR N S E AAAAATAGTGCTGATA TTTT/AC

89 L1 FIX X Mukherjee et al.
2004 [303]

Hemophilia B L1 Ta 163 125 Y/5′TR N S E GAAAAATGGATTGT TTTC/AT
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Table 1 Retrotransposition events associated with human disease (Continued)

90 L1 RP2 X Schwahn et al.
1998 [304]

XLRP L1 Ta 6000 64 FL N S I/Loss of
mRNA

AAGACTGTAAGGTG TCTT/AA Interrupted polyA

91 L1 RPS6KA3 X Martinez-Garay et
al. 2003 [305]

Coffin-Lowry
syndrome

L1 Hs 2800 Yes Y/5′TR/INV N AS E AAGAAAACCTGCATTT TCTT/AG

92 L1 ABDH5 3 Samuelov et al.
2011 [306], Eli
Sprecher, personal
communication

CDS N/A FL N/A N N/A N I/Splicing N/A N/A

93 L1 MLH1 3 Qian et al. 2015
[158]

Hereditary
Cancer

N/A N/A N/A N/A N/A N/A E N/A N/A Pan-cancer panel
testing

94 L1 MLH1 3 Qian et al. 2015
[158]

Hereditary
Cancer

N/A N/A N/A N/A N/A N/A E N/A N/A Pan-cancer panel
testing

95 L1 APC 5 Miki et al. 1992
[200]

Colon cancer L1Ta 520 222 Y/5′TR/INV N S E AAGAATAATG TCTT/AA Somatic Insertion/
same insertion site
as Halling et al. Alu

96 L1 EYA1 8 Morisada et al.
2010 [247]

BOR syndrome L1 Hs 3756 None Y/3′TR N AS 17 kb
Deletion

No TSD TCTC/AG Internal Priming

97 L1 FKTN 9 Kondo-Iida et al.
1999 [307]

FCMD L1Ta 1200 59 Y/5′TR N S I/Splicing/
6 nt
Deletion

No TSD TTTT/AA

98 L1 SETX 9 Bernard et al. 2009
[308], Christine
Zühlke, personal
communication

AOA2 L1 Hs 1300 42 Y/5′TR/INV N S E GGAAGAATGTGAACTGGCTA TTCC/AG 3′-processing 2 nt
(5′-CC-3′)

99 L1 PTEN 10 Helman et al.
2014 [201]

endometrial
carcinoma

L1 Hs 90 22 Y/5′TR N S E AAAGAATCATCTGGATTATAG CTTT/AA Somatic Insertion

100 L1 HBB 11 Divoky et al. 1996
[309]

β-thalassemia L1 Ta 6000 107 FL N AS I AAAATAAAAGCAGA TTTT/AT

101 L1 PDHX 11 Mine et al. 2007
[310]

PDHc deficiency L1 Hs 6086 67 FL N S 46 kb
Deletion

No TSD TTTT/AT

102 L1 SLCO1B3 12 Kagawa et al. 2015
[157]

Rotor syndrome L1 Ta-1d 5989 100 Near FL N S I/Splicing AAGAATTAATAGTGACAGT TCTT/AC 0.054 Japanese
Allele Frequency,
may be “Hot L1”

103 L1 RB1 13 Rodriguez-Martin
et al.2016 [202]

Familial
Retinoblastoma

L1 Ta-1d 6044 33 FL N S I/Splicing AAATTATCTGTTTC ATTT/AA N/A

104 L1 NF1 17 Wimmer et al.
2011 [296]

NF1 L1 preTa 1800 N/A Y/5′TR N S E AAAAACGAAACTGTGT TTTT/AT Untemplated 3′- T?

105 L1 NF1 17 Wimmer et al.
2011 [296]

NF1 L1 Ta 6000 N/A FL N S E AAAAATCGAGGG TTTT/AA Untemplated 3′- T?

106 L1 NF1 17 Wimmer et al.
2011 [296]

NF1 N/A 2200 N/A Y/5′TR/INV N AS I/Splicing AAGAAAATGGT TCTT/AA
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Table 1 Retrotransposition events associated with human disease (Continued)

107 SVA BTK X Rohrer et al. 1999
[311], Conley et al.
2005 [258]

XLA N/A 251 92 Y/5′TR N S E AGAAATGTATGAGTAA TTCT/AT Same insertion site
as Conley et. al. Alu

108 SVA TAF1 X Makino et al. 2007
[312]

XDP F 2627 62 FL N AS I AAAAAAAAAAAATGAAATAG TCCT/AT 3′-Processing 3 nt
(5′-CCT-3′)

109 SVA FIX X Nakamura et.al.
2015 [156]

Hemophilia B F 2524 28 FL N AS E AAATGGCACTAGAA TTCC/AT 3′-Processing 1 nt
(5′-C-3′)

110 SVA LDRAP1 1 Wilund et al. 2002
[313]

ARH E 2600 57 FL N S I/Splicing GAAACCTGTTTTCTC TTTC/AA

111 SVA SPTA1 1 Hassoun et al.
1994 [314],
Ostertag et al.
2003 [24]

HE and HPP E 632 50 Y/5′TR/INV Y (183/599) S E GAAATTTGAAGACTTCCAAGT TTTC/AA Orphan 3′-
transduction

112 SVA CASP8 2 Stacey et al. 2016
[203]

Breast Cancer
Susceptibility

E 2782 N/A FL N AS I/
Decreased
RNA

AAGAATTTGA TCTT/AT Protective against
prostate cancer;
active locus?

113 SVA A4GNT 3 Nazaryan et al.
2015 [155]

Chromothripsis E 502 None Y/5′TR
(VNTR)

N AS I N/A TTTT/GA First report of
large scale
rearrangement
and an insertion.
Implicates
retrotransposition
in germline
chromothripsis.

114 SVA HLA-A 6 Takasu et al. 2007
[315]

Leukemia F1 2000 45 FL N/A AS 14 kb
Deletion

N/A CCTT/AG Novel SVA
subfamily (F1)

115 SVA PMS2 7 van der Klift et al.
2012 [154]

Lynch
syndrome

F 2200 64 Y/5′TR
(VNTR)

N S I/Splicing AAGAATGTGCCATGTGA TCTT/AA SVA exonization

116 SVA FKTN 9 Kobayashi et al.
1998 [162]

FCMD E 3023 32 FL N S 3′UTR/
Splicing

AAGAAAAAAAAAATTGT TCTT/AA

117 SVA PNPLA2 11 Akman et al. 2010
[316]

NLSDM E 1800 44 Y/5′TR N S E AAAGAGGCCCGG CTTT/AG

118 SVA SUZ1P 17 Vogt et al. 2014
[153]

NF1 F1 1700 23 Y/5′TR
(VNTR)

Y (282/160) AS I/Deletion
of NF1

N/A TTTT/AC Largest reported
insertion
associated
deletion (~1 Mb),
somatic

119 SVA SUZ1P 17 Vogt et al. 2014
[153]

NF1 F 1300 40 Y/5′TR
(VNTR)

N AS I/Deletion
of NF1

N/A CTTT/AC 867 kb deletion,
somatic

120 Processed
Pseudogene

CYBB X de Boer et al.
2014 [152]

CGD N/A 5739 100 FL No AS I/Splicing AAAACTCAAAGACTC TTTT/AA First reported de
novo processed
pseudogene
(TMF1)
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Table 1 Retrotransposition events associated with human disease (Continued)

121 pA COL4A6 X Segal et al. 1999
[317]

Alport
syndrome

N/A N/A 70 N/A N/A AS 13.4 kb
Deletion

No TSD TTCT/AT

122 pA AGA 4 Jalanko et al. 1995
[318]

AGU N/A N/A 37 N/A N/A AS 2 kb
Deletion

No TSD TTCT/AA

123 pA BRCA2 13 Wang et al. 2001
[319]

Breast Cancer N/A N/A 35 N/A N/A S 6.2 kb
Deletion

No TSD TTCT/AA

124 pA NF1 17 Wimmer et al.
2011 [296]

NF1 N/A 130 120 N/A N/A AS E AAGAAA TCTTNAA

Data for this table were compiled from the primary references listed and reports prior to 2009 are reviewed in the following: Ostertag and Kazazian 2001 [35], Chen et al. 2006 [150], Belancio et al. 2008 [151], Hancks

and Kazazian 2012 [86]

A few insertions were left off the list as they were common polymorphisms or did not cause disease. The following websites and databases were used in the analysis: http://www.repeatmasker.org/, Repbase

(http://www.girinst.org/), http://dbrip.brocku.ca/, The following symbols, a,b,c, indicate same insertion site in Wimmer et al. [296]

Abbreviations: TR truncation, INV inversion, E exon, FL full-length, I intron

Disease acronyms: ADOA Autosomal dominant optic atrophy, AGU Aspartylglucosaminuria, AIP Acute intermittent porphyria, ALD Adrenoleukodystrophy, ALPS Autoimmune lymphoproliferative syndrome, AOA2 Ataxia

with oculomotor apraxia 2, ARH Autosomal recessive hypercholesterolemia, BOR Branchio-oto-renal syndrome, CDG-Ia Congenital disorders of glycosylation type Ia, CDS Chanarin-Dorfman syndrome, CGD Chronic

granulomatous disease, DMD Duchenne muscular dystrophy, FAP Familial adenomatous polyposis, FCMD Fukuyama-type congenital muscular dystrophy, FHH and NSHPT Familial hypocalciuric hypercalcemia and

neonatal severe hyperparathyroidism, GKD Glycerol kinase deficiency, HAE Hereditary form of angioedema, HE and HPP Hereditary elliptocytosis and hereditary pyropoikilocytosis, HIGM Hyper-immunoglobulin M

syndrome, HNPCC Hereditary non-polyposis colorectal cancer syndrome, LPL Lipoprotein lipase, MLII Mucolipidosis Type II, MWS Mowat-Wilson syndrome, NF1 Neurofibromatosis Type I, PDHc Pyruvate dehydrogenase

complex deficiency, NLSDM Neutral lipid storage disease with subclinical myopathy, RP Retinitis pigmentosa, Type 1 ATP Type 1 antithrombin deficiency, XDP X-linked dystonia-parkinsonism, XLA X-linked

agammaglobulinemia, XLDCM X-linked dilated cardiomyopathy, XLRP X-linked retinitis pigmentosa, XSCID X-linked severe combined immunodeficiency
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preference for AT-rich motifs may in part explain LINE-1

5′-truncations. Overall, many of the key steps in LINE-1

retrotransposition have been defined; yet, gaps still exist in

our understanding of this selfish gene’s lifecycle.

Trans-mobilization of non-autonomous elements

Alu elements

In addition to mobilizing its own RNA, LINE-1 proteins

retrotranspose a myriad of other RNAs. For instance, the

most abundant retrotransposon in the human genome by

copy number is the Short INterspersed Element (SINE)

Alu [6]. Its name originates from human DNA renatur-

ation studies which identified an abundant ~300 repetitive

nucleotide sequence that contained the AluI restriction

endonuclease cleavage site [96]. Alu RNAs are primate-

specific [97, 98] non-coding RNA Pol III transcripts [98]

derived from the 7SL RNA [99, 100], a component of the

signal recognition particle. While Alu elements contain

their own transcriptional signals [101] (A and B box, and

Pol III terminator (TTTT)) [102] and end in a polyA tail

of varying length, transcriptional robustness is largely dic-

tated by the presence of upstream enhancer elements

[103, 104] (Fig. 1b) . The Alu polyA tail, which is part of

the element, differs from the LINE-1 polyA, which is pre-

sumably added via the canonical polyadenylation pathway.

Along with being transcribed via internal signals, these el-

ements are frequently incorporated into the transcriptome

via exonization [105]. An antisense Alu element contains

certain sequence features that poise this SINE for splicing.

In particular, a pyrimidine-rich tract is generated by the

reverse complement of the polyA tail along with a CAG

trinucleotide motif, which together generate a very strong

splice acceptor motif.

The Alu’s evolutionary origins provide insight into

how it has become the most abundant retrotransposon

in the human genome. Namely, evolution from 7SL

RNA [100] followed by monomer duplication [106–108],

which increased SRP9/14 binding sites, coupled with in-

creased protein levels of SRP 14 due to triplet repeat ex-

pansion seeded by a point mutation in the anthropoid

ancestor [109], enhanced localization of this non-coding

RNA to the ribosome where it can hijack the LINE-1

protein machinery [110]. Cell-culture retrotransposition

assays and mutational analysis by Devine and colleagues

have shown that Alus with less secondary structure simi-

larity to 7SL have decreased LINE-1-mediated retrotran-

sposition [111]. Structural analysis has revealed Alu in

complex with the SRP 9/14 proteins [110, 112].

Following incorporation into the LINE-1 RNP, Alu inte-

gration likely follows in a fashion similar to LINE-1. Based

on trans-mobilization cell culture assays, engineered Alu

elements require a polyA tail and appear to only need

transfected LINE-1 ORF2 for retrotransposition [71]. Sub-

sequently, it was demonstrated that transfecting increasing

amounts of an ORF1 plasmid enhances Alu retrotranspo-

sition [113]. One might infer from these data that

endogenous ORF1 and ORF2 generated from distinct

LINE-1 elements could serve to retrotranspose Alus.

In contrast to LINE-1, most Alus are full-length. How-

ever, 5′-truncated Alu elements have been identified in

human genomes [114] and as de novo insertions result-

ing in disease (Table 1). Over evolutionary time, Alus ap-

pear to be more tolerated than LINE-1 in introns [115],

which may be due to their decreased effectiveness over

evolutionary time in mediating ectopic homologous re-

combination when compared to LINE-1. Alus are also

commonly found in 3′-UTRs where they may serve as

small RNA binding sites [116, 117] or serve as substrates

for the RNA editing enzyme adenosine deaminase acting

on RNA (ADAR) when at least two inverted Alus are

present [118–120]. Also, base-pairing between Alus

embedded in mRNA 3′-UTRs and long non-coding

RNAs can be involved in directing Staufen-mediated

RNA decay [121].

SVA elements

The youngest active human retrotransposon is named

after the sum of its parts SINE-VNTR-Alu (SVA). SVA

elements are ~2 kb hominid-specific non-coding com-

posite elements [24, 122, 123]. The structure of an SVA

(Fig. 1c) [124–126], starting from its 5′-end, is 1) a

CCCTCT mostly pure repeat ranging from a few copies

up to a hundred (also known as the hexamer), 2) an Alu-

like domain derived from two Alu antisense fragments, 3)

a variable number of very GC-rich tandem repeats

(VNTR), 4) a SINE-R domain sharing sequence homology

to the env gene and right LTR from a HERV-K, and 5) a

polyA tail of varying length similar to LINE-1. From elem-

ent to element within the human genome, these se-

quences display more structural sequence variation than

LINE-1 and Alu [125–127], primarily because of changes

in hexamer and VNTR copy number along with 5′- [127,

128] and 3′- transductions [24, 65]. There are approxi-

mately 2700 SVA elements in the human genome refer-

ence sequence [123] which differs dramatically from

LINE-1 and Alu copy number, ~500,000 and ~1,000,000

copies, respectively. Due to its more recent discovery rela-

tive to LINE-1 and Alu elements, less is known about

SVA biology.

The nature of the SVA transcriptional unit or SVA

promoter has not been completely resolved, but SVAs

are presumed to be Pol II transcripts due to the poly A

tail downstream of a canonical polyA signal (AATAAA).

Furthermore, untemplated guanosines [127, 129, 130] have

been identified at the 5′-end of full-length insertions, simi-

lar to LINE-1, which likely represent reverse-transcription

of the 7mG cap. Initiation of SVA transcription can be

broadly grouped into 4 classes [126–128]: 1) transcription
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initiation from within the hexamer, 2) transcription initi-

ation downstream of the hexamer, 3) transcriptional initi-

ation 5′- of the SVA, which can lead to retrotransposition

of upstream sequences (e.g. 5′-transduction) (Fig. 2f), and

4) transcription initiation in an upstream exon followed

by splicing into SVA which results in a chimeric tran-

script (Fig. 2h).

It is currently unclear how or where SVA RNA interacts

with the LINE-1 proteins. It has been predicted that perhaps

the SVA RNA is localized to the ribosome [24, 131] via base-

pairing interactions between the SVA Alu-like domain and

Alu RNAs. This may be the case for some SVAs, however

the recent discovery of a human-specific SVA subfamily gen-

erated via splicing from the first exon of the microtubule as-

sociated serine/threonine kinase 2 (MAST2) gene into the

3′-end of the Alu-like domain [127, 128, 132], suggests that

basepairing with Alu at the ribosome is not a requirement.

SVAs require ORF2p for retrotransposition [24, 129, 133],

whereas the requirement for ORF1p is less clear, in part, be-

cause the contribution of endogenous ORF1p for engineered

SVA retrotransposition is unknown. Cell-culture retrotran-

sposition assays and deletion analysis indicate that SVAs

require the 5′-end (hexamer and Alu-like domain) of

the element to retrotranspose [130, 133]. Additional

requirements for LINE-1-mediated retrotransposition

are currently being investigated using a comparative

strategy involving cell culture assays [134, 135] with

the newly identified composite VNTR elements like

LAVA in gibbons [136–138].

Once an SVA RNA is incorporated into the RNP, inte-

gration is hypothesized to occur in a similar manner to

LINE-1. SVA insertions share many similarities to LINE-

1. Other than typical LINE-1 hallmarks (target-site du-

plication, insertion at LINE-1 EN site, end in polyA tail),

both LINE-1 and SVA insertions occasionally contain

3′-transductions [24, 62, 65, 139]. Some SVA insertions

differ from classical LINE-1 insertions by containing 5′-

transductions, which are almost non-existent for LINE-1

[6, 82] yet ~10 % of all SVAs contain transduced se-

quence via upstream transcriptional initiation [127, 128].

Unlike LINE-1 s, SVAs are occasionally 3′-truncated

due to premature polyadenylation mediated by polyA

signals located in the SINE-R [127]. Another major dif-

ference between LINE-1 and SVA insertions, both in the

genome [127] and those recovered from cell culture ret-

rotransposition assays [129, 130, 133], is that most SVAs

are full-length while less than 5 % of LINE-1 s recovered

from cell culture assays are full-length [6, 84]. Indeed,

full-length SVAs and LINE-1 do differ in length (SVAs

range from ~1 kb to almost 5 kb and LINE-1 = 6 kb), yet

many if not most LINE-1 genomic insertions are under

1.5 kb [6]. A notable difference between LINE-1 and

SVA is the sequence composition; LINE-1 s are very AT-

rich while SVAs are very GC-rich.

Retrotransposition of splicesomal RNAs

In addition to Alu and SVAs, other RNAs encoded by

the genome can be retrotransposed. Many small splice-

somal RNAs are commonly integrated by LINE-1 into

genomes with U6 being the most frequent (Fig. 1e)

[140–144]. Interestingly, U6 retrotransposition events

are often characterized as chimeric insertions [140, 144].

Specifically most are fused with a LINE-1 or an Alu

element at the 3′-end of the U6 sequence [144]. In

addition to evidence from the genome, chimeric U6-

LINE-1 insertions have been identified and investigated

using cell culture retrotransposition assays [84, 144].

Retrotransposition of protein-coding transcripts

Along with small abundant RNAs, LINE-1 can

mobilize protein-coding RNAs [145, 146]. Following

retrotransposition, these insertions are referred to as

processed pseudogenes (PPs) due to their lack of in-

trons (Fig. 1d). PPs contains all of the hallmarks of

LINE-1-mediated retrotransposition (target-site dupli-

cations, 5′-truncations, 5′-end inversions, end in a

polyA tail of variable length). The reference human

genome sequence contains approximately ~8000 proc-

essed pseudogenes [147] with the most abundant be-

ing sequences encoding ribosomal protein RNAs

[148]. Retrotransposition is thought usually to inacti-

vate PPs due to the loss of regulatory elements such as

promoter sequences.

Mechanisms by which retrotransposons can cause

disease
Retrotransposons can potentially cause disease by a var-

iety of mechanisms [149]. Most of the 124 disease-

causing insertions [35, 86, 150–161] reported to date

inactivate gene function through insertional mutagenesis

or aberrant splicing. Indeed, the precise mechanism of

gene inactivation may be more detailed. For example, a

LINE-1 insertion into an exon or an intronic insertion

that is spliced into may result in a frameshift mutation

that will result in nonsense-mediated RNA decay. In

contrast, depending on the site of insertion, the retro-

transposon may result in an alternative C-terminus of

a protein which can in turn alter function of the gene

leading to disease. This is best exemplified by the

SVA element insertion in the fukutin (FKTN) gene

which causes fukuyama muscular dystrophy [162, 163].

Here, alternative splicing of the FKTN mRNA into

the SVA located in the 3′-UTR generates a protein

that is mislocalized from the Golgi to the endoplas-

mic reticulum [163].

Another major mechanism by which LINE-1-mediated in-

sertions result in disease is through target-site deletions

(Fig. 2j) [82, 83]. Deletions associated with de novo LINE-1-

mediated insertions range from a few basepairs [164] up
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to a megabase [153]. LINE-1 [165], Alu [166], and SVA [167]

associated target-site deletions have also been identified in

the human and primate genomes. Thus, these deletions in

the short-term may result in disease but may serve as a

means by which retrotransposons contribute to genome evo-

lution. Notably, retrotransposon sequences can also generate

genetic deletions via non-allelic homologous recombination

(NAHR) [168] which is independent of TPRT and DNA

breakage mediated by LINE-1 ORF2p. NAHR is most fre-

quently observed for Alu elements presumably due to their

high copy-number and results in structural variation which

can lead to genetic disease. These deletions may be gener-

ated via mispairing of two retrotransposon sequences on the

same strand usually on homologous chromosomes, while

crossing over between two retrotransposon sequences

inverted relative to each other may result in an inversion

[149, 169].

Additional hypothesized mechanisms by which new

LINE-1, Alu, and SVA element insertions may disrupt

gene function relate to epigenetic changes at the site

of integration. All three elements are known to be

methylated at CpGs. LINE-1 [170, 171] and SVA

DNA [172], in the 5′-UTR and VNTR, respectively,

are known to be densely methylated in somatic tissue.

Interestingly, SVAs were initially identified by one

group when carrying out a restriction endonuclease

based assay to identify methylated sequences in the

human genome [172]. In this study, SVA comprised

>70 % of one of the libraries of methylated sequence.

Along the epigenetic spectrum, alterations in local

histone modifications following LINE-1 insertion have

been described in teratocarcinoma cell lines [173]. Specif-

ically, recruitment of a histone-deacetylase enzyme by

some unknown mechanism or signal to LINE-1-target

sites results in deacetlyation of histone tails. Similarly,

a new study reports that Sirtuin-6 (SIRT6) can re-

press LINE-1 [174] by binding the 5′-UTR and ribo-

sylating KRAB-associated protein-1 (KAP1), a major

corepressor. This posttranslational modification is import-

ant for KAP1 to interact with heterochromatin protein-1α

(HP1α). Interestingly, over time (e.g. ageing) SIRT6 is de-

pleted at LINE-1 loci. Although no specific examples have

been reported thus far for disease-causing insertions, ex-

perimental evidence indicates epigenetic silencing follow-

ing LINE-1, Alu, or SVA insertion in a gene may result in

reduced mRNA expression from a given gene. In contrast,

loss of epigenetic mediated repression may lead not only

to expression of retrotransposons but also neighboring

genes. For example, one report demonstrated that loss of

DNA methylation occurs at an intronic LINE-1 inser-

tion near the hepatocyte growth factor receptor (MET)

gene which leads to expression of a LINE-1-MET fusion

transcript encoding a truncated form of this protein

known to be oncogenic [175].

New reports of LINE-1-mediated insertions causing

Mendelian disorders

Since our last survey of disease-causing insertions [86],

28 more have been reported in the literature. Disease-

causing insertions have been priceless in regards to our

understanding of human retrotransposon biology. Genetic

disease phenotypes serve as markers to identify de novo

retrotransposition events. It has been almost 30 years

since the first de novo retrotransposon insertion was iden-

tified in the factor VIII (F8) gene of a Hemophilia A pa-

tient by Kazazian and colleagues [22]. LINE-1-mediated

insertions have been associated with autosomal domin-

ant, autosomal recessive, and X-linked genetic disorders

(Table 1). Disease-causing insertions have aided in the

recovery of active retrotransposons used in cell-culture

retrotransposition assays [41]. Furthermore, these inser-

tions have confirmed and revealed phenomena, such as

3′-transductions [176], observed in cell culture and

genomic studies.

Neurofibromatosis Type I is an autosomal dominant

disorder caused by mutations in the NF1 gene. Recently,

while characterizing genetic deletions in the neurofibro-

min 1 (NF1) gene, an SVA insertion associated with a

867 kb deletion in one individual and an SVA in a differ-

ent individual associated with a 1 MB deletion were

found [153]. These two insertions represent the largest

genomic deletions caused by a de novo insertion to date.

Using sequence analysis, the authors were also able to

identify the source elements for both insertions. One in-

sertion was generated from a full-length SVA located on

chromosome 6 belonging to the human-specific subfam-

ily F. The other insertion was generated from an element

on chromosome 10 belonging to the human specific

SVA_F1 (MAST2) subfamily. The element on chromo-

some 10 has been associated with other SVA disease-

causing insertions and is thought to be the source

element for at least 13 genomic SVAs [127, 128]. Inter-

estingly, both insertions were somatic. One patient had

the SVA-associated deletion in 93 % of her blood cells

(absent in 7 % of her blood cells); while the grandmother

of the other patient who passed on the insertion had the

SVA in 75 % of her blood cells (absent in 25 % of the

blood cells).

Somatic mosaicism has been described for disease-

causing insertions as in a LINE-1 retrotransposition

event into the choroideremia (rab escort protein 1)

(CHM) gene [177]. More and more evidence is accu-

mulating that somatic insertions may be more common

than previously appreciated and perhaps the norm

[178–180]. In addition to disease-causing insertions, in-

sights into somatic mosaicism generated by LINE-1 ac-

tivity were first gained from two mouse studies: one

investigating retrotransposition of engineered LINE-1 s

in the brain [180] and the other studying LINE-1

Hancks and Kazazian Mobile DNA  (2016) 7:9 Page 17 of 28



inheritance [178]. Next-generation sequencing of can-

cer genomes and brain samples is starting to uncover a

wealth of somatic insertions. The current thought in

the field is that many, if not most, LINE-1-mediated in-

sertions are not inherited despite what had been previ-

ously inferred based on the abundance of genomic

insertions.

Most de novo retrotransposition events are likely be-

nign, however coupled with a loss-of-function mutation

on the other allele the insertion may result in recessive

genetic disease (e.g. compound heterozygosity). A study

analyzing the genetic basis for Rotor syndrome [157], an

autosomal recessive disorder, uncovered patients homo-

zygous for a near full-length LINE-1 insertion (lacking

24 nt from the 5′-end relative to LINE-1.3) in intron 5

of solute carrier organic anion transporter family mem-

ber 1B3 (SLCO1B3). This insertion results in aberrant

mRNA splicing and ultimately loss of SLCO1B3 protein

expression in liver tissues. As Rotor syndrome is a

digenic disorder the homozygous LINE-1 insertion alone

is not sufficient to cause Rotor syndrome; these patients

are also homozygous for a nonsense mutation in the

downstream solute carrier organic anion transporter fam-

ily member 1B1 (SLCO1B1) gene. LINE-1SLCO1B3 may rep-

resent a population-specific “hot LINE-1” with a gene

frequency of ~6 % in Japanese individuals. LINE-1SLCO1B3
contains intact reading frames with ORF1 being 100 %

identical to the LINE-1 amino acid consensus and LINE-

1SLCO1B3 ORF2 containing three amino acid changes rela-

tive to the consensus LINE-1 sequence. A LINE-1 whose

sequence is close to the amino acid consensus is typically

very active in cell culture retrotransposition assays. For,

example LINE-1LRE3 [181], which is one of the most active

LINE-1 s isolated to date shares 100 % amino acid identity

with the consensus sequence. In addition, a survey of

highly active (“hot”) LINE-1 s, recently identified a very

active element also lacking the first 21 nt (118 % of LINE-

1.3) [40]. The first nucleotide of LINE-1SLCO1B3 –a guan-

ine- may actually represent reverse-transcription of the

7mG cap, a phenomenon often observed for very active

elements, as most full-length LINE-1 s have a thymine at

this same position in the 5′-UTR. Although LINE-

1SLCO1B3 may appear 5′-truncated, it is more probable that

an alternative transcriptional start site may have been used

at the source locus or that the source locus was lacking

the first 24 nts. Other instances of LINE-1-mediated inser-

tions associated with recessive diseases are typically due to

a founder effect or consanguinity.

LINE-1-mediated retrotransposition events and inactive

retrotransposons have long been considered to be agents

of genome instability. A new study [155] analyzing a germ-

line chromosome shattering event - a phenomenon re-

ferred to as chromothripsis [182, 183] - that can also

occur in cancer, which consisted of 7 breakpoints and

rearrangements between two chromosomes, identified a

502 bp 5′-truncated SVA element insertion spanning a

breakpoint associated with a 110 kb deletion. This SVA

element belongs to a young active subfamily and may

be derived from a full-length SVA on chromosome 7.

Additional analysis of genomic sequence prior to DNA

shattering identified two Alu elements on the same

strand flanking the 110 kb sequence that was deleted.

Furthermore, two antisense Alus were identified at

breakpoints junctions involving an inversion in this

chromothripsis event. Unexpectedly, sequence motifs

resembling LINE-1 endonuclease cleavage sites were

identified at exact breakpoints. A model was devel-

oped that integrated Alu-mediated chromosome loop-

ing and LINE-1-mediated SVA retrotransposition to

account for the genome configuration following chro-

mothripsis [155].

To date, the DNA damage agents causing chromo-

thripsis and the mechanisms driving the rearrange-

ment of chromosomal fragments are poorly understood.

[184–186]. Several hypotheses have been generated to ex-

plain chromothripsis [184–186] including: 1) replication

fork collapse coupled with template-switching and 2) ion-

izing radiation followed by DNA repair via the non-

homologous end-joining pathway. More recently, experi-

mental analysis has demonstrated that partitioning of

chromosomes into micronuclei can result in chromothrip-

sis and may explain why chromothriptic rearrangements

are restricted to a limited number of chromosomes [187].

In addition, another study has provided evidence that

three prime repair exonuclease 1 (TREX1) may cause re-

arrangements reminiscent of chromothripsis between di-

centric chromosomes formed by telomere fusion [188].

Although the new study [155] represents only one in-

stance of active and inactive retrotransposons associ-

ated with chromothripsis, it is tempting to speculate

that an endonuclease, such as ORF2p expressed in

germ cells, in early development, and in some cancer

cells may play a role. Finally, although a bit tenuous, it

is worthwhile to note that “kataegis,” the localized

hypermutation frequently observed near DNA break-

point junctions in chromothripsis [188, 189] and can-

cers [190], is thought to be caused by the LINE-1

restriction factors [94, 191–194]- the APOBEC3 pro-

teins [195]. APOBEC3A control of LINE-1 typically re-

sults in no observed remnants of LINE-1 sequence at

the target-site due to uracil DNA glycosylase activity

following APOBEC3A deamination of the TPRT inter-

mediate [94]. Perhaps kataegis is a consequence of

APOBEC3 defense of the genome against retrotranspo-

sons in cancers.

Contemporary LINE-1, Alu, and SVA activity has been

documented, in part, due to new insertions causing gen-

etic disease. A long-standing question in the field is
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whether processed pseudogene formation (e.g. retrotran-

sposition of cellular mRNAs, retrogenes) is ongoing in

humans? Despite the name, retrogenes may serve as a

crucible for new genes. Retrogenes have the potential for

subfunctionalization or neofunctionalization. For example,

5′-truncation or point mutations could in principle gener-

ate a negative regulator of the parent gene. One report

noted that processed pseudogenes coupled with 5′-inver-

sion may be a means to generate new genes with novel N-

termini [196]. Likewise, it is interesting that many large

DNA viruses, such as poxviruses, contain many genes that

share homology to host genes, lack introns, and are

flanked by A-rich sequences; perhaps, implicating LINE-1

activity in the evolution of viral genomes.

Analysis of the 1000 genomes sequencing and Cancer

Genome Atlas data has identified 48 polymorphic proc-

essed pseudogenes [197], thus indicating retrotransposi-

tion of cellular mRNAs in recent human history. A new

study demonstrated ongoing processed pseudogene for-

mation when the investigators identified an insertion of

a partly processed TMF1 gene transcript into the cyto-

chrome b-245, beta polypeptide (CYBB) gene of a

chronic granulomatous disease patient [152]. Uniquely,

this insertion was very large (~5.8 kb) and represented

an RNA that utilized a noncanoncial polyA signal [152].

The insertion was flanked by a target-site duplication,

inserted at a LINE-1 EN cleavage site, and ended in a

3′- polyA tail. The authors also demonstrated that the

mother of the patient displayed somatic mosaicism for

the insertion consistent with retrotransposition in early

development [152]. Along these lines, retrotransposition

of an almost full-length centromere protein W (CENPW)

RNA, lacking 7 bp relative to the annotated TSS, into

exon 8 of Poc1 centriolar protein A (Poc1a) resulted in

growth insufficiency and male infertility in mouse [198]

(insertion size = 495 bp). This insertion displays all of the

hallmarks of LINE-1-mediated retrotransposition (target-

site duplication, insertion at EN cleavage site, and 3′-

polyA tail).

Other diseases

It is well-established that retrotransposition can occa-

sionally result in human genetic disease. Of late there

has been a great effort to determine whether these self-

ish genetic elements may contribute to complex diseases

such as cancer, autoimmunity, and neuropsychiatric

disorders.

LINE-1 s and cancer

Genomic instability is a hallmark of cancer [199]. Not-

ably, one of the first disease-causing insertions reported

was an LINE-1 insertion into the adenomatous polyposis

coli (APC) gene of a colon cancer patient described by

Nakamura and colleagues [200]. That insertion was

somatic as it was absent in normal colon from the pa-

tient. Likewise, a very short somatic LINE-1 insertion

(112 bp) was identified from exome data using Transpo-

Seq analysis in exon 6 of phosphatase and tensin homo-

log (PTEN) of an endometrial carcinoma [201]. Two

new reports further indicate that cancer can be initiated

by retrotransposition-mediated gene inactivation. The

first example is a full-length LINE-1 insertion located in

intron 14 of the tumor-suppressor retinoblastoma 1

(RB1) which results in retinoblastoma in the proband

and his father [202]. The authors’ determined that this

insertion was de novo, as it was absent from the father’s

parents and the proband’s brother. The insertion causes

aberrant RB1 splicing due to its precise integration into

the splice acceptor site (target-site duplication (upper-

case) tttt/AAATTATCTGTTTC/ag, splice acceptor tri-

nucleotide motif in bold).

The second new report involves the use of population

whole-genome sequencing to identify a full-length SVAE

insertion (2792 bp in length) into intron 8 of the caspase

8 (CASP8) gene associated with increased susceptibility

to cutaneous basal cell carcinoma (BCC) and breast can-

cer [203]. It is thought that this SVA insertion accounts

for the previously reported germline SNP in CASP8

linked to BCC. The mechanism by which the antisense

SVA insertion results in decreased CASP8 expression in

breast cancer is unclear but it is not thought to be due

to aberrant splicing. Extensive genotyping analysis indi-

cated that the same SVA insertion into CASP8 confers

protection against prostate cancer in the same popula-

tions. This SVA locus has also been active in recent hu-

man history as evidenced by a full-length SVA insertion

on chromosome 19 containing a 288 bp 3′-transduction

derived from intron 8 CASP8 sequence.

Although, LINE-1-mediated insertions have been iden-

tified in tumor suppressor genes, the overall absence of

insertions in these genes has led researchers to focus on

the contribution of LINE-1-mediated retrotransposition

to cancer progression instead of cancer initiation. Nu-

merous studies by independent labs over the past several

years have reported extensive retrotransposition and/or

LINE-1 protein expression in a variety of cancer types

[201, 204–211]. Our recent studies [205, 207] demon-

strate that LINE-1 insertions can occur in somatic

gastrointestinal tissues, and that they can be carried for-

ward essentially clonally in the cancers. We postulate

that these somatic insertions contribute to the evolvabil-

ity of cancer and its progression in the presence of lim-

ited resources and competition from not only the host

but perhaps from other proximal competing cancer cells.

Specifically, many somatic insertions may be benign, but

following cancer initiation and the onslaught of other

types of mutation including deletions, these insertions

have the potential to optimize different cellular networks
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or if full-length seed new agents of adaptability during

cancer progression.

A largely unexplored question is whether LINE-1 pro-

teins play yet undefined roles in cancer [212]. For ex-

ample, ORF2p may be a source of endonuclease activity

contributing to additional genomic rearrangements in

these already unstable cells. Furthermore, LINE-1 RT ac-

tivity may be a means to mend DNA breaks similar to

what has been observed for LINE-1 endonuclease inde-

pendent insertions (Fig. 2k) [213–215]. Although com-

pletely speculative, based on LINE-1 endonuclease

independent insertions at telomeres in cell culture [216],

perhaps on occasion, LINE-1-mediated insertions may

aid in telomere elongation in some cancers. In addition,

ORF2p expression may have important roles in cancer

onset and progression through perturbation of regula-

tory networks [217–220].

LINE-1 s and autoimmunity

Autoimmunity is characterized by the immune system

attacking “self.” Some autoimmune disorders such as

Aicairdes-Goutieres syndrome are caused by mutations

in genes, such as TREX1 or SAM domain and HD do-

main 1 (SAMHD1), known to inhibit LINE-1 activity

[221–223]. More recently, it has been demonstrated

that a pattern-recognition receptor (PRR) named cyc-

lic GMP-AMP synthase (cGAS) serves as a sensor for

cytoplasmic DNA and activates the interferon re-

sponse in the absence of the DNase TREX1 [224].

Notably, cell culture and in vitro studies have shown

that cGAS can activate the immune response not only

by binding double-stranded DNA [225] but also by

binding RNA: DNA hybrids [226]. Thus, cGAS or

other PRRs may serve as critical cytoplasmic sentinels

against retrotransposon replicative intermediates.

Autoantibodies are a hallmark of autoimmune disor-

ders. Antibodies against the RNA binding protein Ro60

are detected in systemic lupus erythematosus and Sjor-

gen’s syndrome. Interestingly, Ro60 RNPs reactive to

autoantibodies contained Alu RNAs [227]. Similarly, Alu

RNAs have also been implicated in age-related macular

degeneration. During disease progression, expression of

the microRNA processing enzyme DICER is reduced in

retinal pigmented epithelium (RPE) [228]. Surprisingly,

knockdown of DICER in human and mouse RPE results

in an increase in Alu or B1 and B2 SINE RNA [228].

Knockdown of Alu RNAs using antisense oligonucleotides

halts RPE degeneration driven by DICER knockdown in

primary RPE culture. It is thought that the loss of DICER

and an increase in Alu RNA leads to NLRP3 inflammasome

activation resulting in cell death via Caspase-1 activation

[229]. Interestingly, nucleoside reverse-transcriptase inhibi-

tors known to inhibit LINE-1 activity [230] can block RPE

degeneration and inflammasome activation in mice

injected sub-retinally with a plasmid expressing Alu [231].

The ability of retrotransposon replicative intermediates

(e.g. RNA, cDNA) to trigger the innate immune re-

sponse - activation of apoptotic pathways or interferon

signaling- is consistent with a vital role for the immune

system in protecting the cell and genome from TEs like

LINE-1. It has been speculated that many key innate

immunity factors such as APOBEC3 first evolved to

control retrotransposition. Although several examples

already exist, it is highly likely that additional immunity

factors known to inhibit viral replication will be shown

to also inhibit LINE-1 activity. In addition, while inser-

tional mutatgenesis is thought to be the primary means

by which retrotransposons result in human disease,

these highlights from the literature indicate that the

RNAs themselves may be toxic to host fitness. It re-

mains to be determined whether individuals harboring

diseases associated with an increase in retrotransposon

RNA have an increase in endogenous LINE-1 mediated

retrotransposition.

LINE-1 s and neuronal diversity

A little over a decade ago, an interesting observation

was made by Muotri, Gage, and colleagues regarding

which cells are permissive for LINE-1 retrotransposition

[180]. Prior to their work, most retrotransposition was

thought to occur in the germline as evidenced by the

~500,000 LINE-1 copies in the human genome. Using

engineered LINE-1 s, the authors detected LINE-1 retro-

transposition in rat neuronal progenitor cells and in the

brain of mice carrying an engineered LINE-1 marked

with GFP [180]. These data demonstrated that engi-

neered LINE-1 retrotransposition in the brain resulted

in somatic mosaicism.

After a few years, the major question of whether en-

dogenous LINE-1 was retrotransposing in the brain in

vivo would be answered. Faulkner and colleagues devel-

oped a new technique termed Retrotransposon Capture-

sequencing (RC-seq) [232]. This method coupled an array

targeting the 5′- and 3′- ends of LINE-1, Alu, and SVA el-

ements with high-throughput sequencing to enrich for

potentially rare retrotransposition events. RC-seq revealed

that LINE-1, Alu, and SVA retrotransposition had oc-

curred somatically in the human hippocampus and caud-

ate nucleus [232].

More recent work involving whole-genome amplifica-

tion with RC-seq of single hippocampal neurons revealed

almost 14 somatic insertions per cell [233]. Another study

from the Walsh group on single cells outside the hippo-

campus has found a much lower incidence of somatic

LINE-1 retrotransposition [234]. We in the field are con-

vinced that LINE-1 retrotransposition is occurring in the

brain; however its rate is presently a matter of some
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controversy. With sensitive methods in place, research

over the next 5 years will begin to determine some of the

questions research on LINE-1 activity in the brain has

generated: [180, 232, 234–238] 1) Are there functional im-

plications for retrotransposition in the brain? 2) Does ret-

rotransposition in the brain contribute to neurological

diseases? 3) What is the true rate of retrotransposition in

the brain and other somatic tissues?

Conclusions
LINE-1 and other retrotransposons have moved from

mysterious, repetitive sequences in our genome to mak-

ing appearances in diverse research fields from cancer

biology to neuroscience. Future research may reveal that

TEs such as LINE-1 are the giant shoulders on which

our genome and the cell stands.
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