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Abstract. Parkinson's disease (Pd) is the second most 
common neurodegenerative disease amongst the middle‑aged 
and elderly populations. Several studies have confirmed that 
the microbiota‑gut‑brain axis (MGBa) serves a key role in 
the pathogenesis of Pd. changes to the gastrointestinal micro‑
biome (GM) cause misfolding and abnormal aggregation of 
α‑synuclein (α‑syn) in the intestine. abnormal α‑syn is not 
eliminated via physiological mechanisms and is transported 
into the central nervous system (cnS) via the vagus nerve. The 
abnormal levels of α‑syn aggregate in the substantia nigra pars 
compacta, not only leading to the formation of eosinophilic 
lewis Bodies in the cytoplasm and mitochondrial dysfunction 
in dopaminergic (da) neurons, but also leading to the stimu‑
lation of an inflammatory response in the microglia. These 
pathological changes result in an increase in oxidative stress 
(oS), which triggers nerve cell apoptosis, a characteristic of Pd. 
This increase in OS further oxidizes and intensifies abnormal 
aggregation of α‑syn, eventually forming a positive feedback 
loop. The present review discusses the abnormal accumula‑
tion of α‑syn in the intestine caused by the GM changes and 
the increased levels of α‑syn transport to the cnS via the 
MGBa, resulting in the loss of da neurons and an increase in 
the inflammatory response of microglial cells in the brain of 
patients with Pd. in addition, relevant clinical therapeutic strat‑
egies for improving the GM and reducing α‑syn accumulation 
to relieve the symptoms and progression of Pd are described.
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1. Introduction

Parkinson's disease (Pd) is the second most common 
age‑related neurodegenerative disorder after alzheimer's 
disease (ad). With the increase in the proportion of the 
aging population, the incidence of Pd is increasing (1). The 
prevalence of Pd is 0.3% in the general population, and as 
high as 1% in the elderly over the age of 60 years, and 3% in 
individuals >80 years in industrialized countries (2). a major 
characteristic of Pd is the accumulation of the misfolded 
α‑synuclein (α‑syn) protein in cerebral nerve cells, eventu‑
ally leading to the loss of dopaminergic (da) neurons in the 
substantia nigra pars compacta (Snpc) or the death of nerve 
tissue (3). This results in large areas of dead brain tissue, 
and the promotion of the formation of eosinophilic inclusion 
bodies, such as lewis bodies (lBs) and lewy neuritis (ln), in 
the cytoplasm (4). With the death of neurons in the brain, the 
clinical manifestations of Pd comprise a static tremor, muscle 
rigidity, bradykinesia, abnormal posture gait and a series of 
non‑motor symptoms, such as olfactory disorders, anxiety 
and depression, cognitive decline, sleep disorders, autonomic 
dysfunction, fatigue and pain (5,6). Several studies have 
demonstrated that mitochondrial dysfunction and oxidative 
stress (oS) serve a key role in the pathogenesis of Pd, as they 
cause a loss of da neurons (7‑10). Several genes and signaling 
pathways are involved in the initiation and development of Pd. 
For example, the familial autosomal recessive genes PTen 
induced kinase 1 (PinK1)/parkin and the autosomal dominant 
mutations of leucine‑rich repeat kinase 2 (lrrK2) regulate 
mitochondrial dysfunction and Pd pathogenesis (11,12). 
Furthermore, it has been reported that a mutated lrrK2 

Roles of α‑synuclein in gastrointestinal microbiome 
dysbiosis‑related Parkinson's disease progression (Review)

QinGcHun lei1,2*,  TinGTinG Wu1*,  Jin Wu2,  XiaoGanG Hu2,  
YinGXia Guan3,  YinG WanG1,  JinYuan Yan1  and  Guolin SHi1

1Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101; 
2department of neurosurgery, Puer People's Hospital, Pu'er, Yunnan 665000; 3department of Vasculocardiology, 

The Affiliated Hospital of Yunnan University, Kunming, Yunnan 650021, P.R. China

Received January 26, 2021;  Accepted July 16, 2021

doi: 10.3892/mmr.2021.12374

Correspondence to: Professor Jinyuan Yan or Mr. Guolin Shi, 
department of neurosurgery, The Second affiliated Hospital of 
Kunming Medical university, 374 dian Mian avenue, Kunming, 
Yunnan 650101, P.r. china
e‑mail: yanjinyuan1011@126.com 
e‑mail: shiguolinsy@sina.com 

*contributed equally 

Key words: Parkinson's disease, α‑synuclein, microbiota‑gut‑brain 
axis, gastrointestinal microbiome, microglia, oxidative stress



lei et al:  α-SYNUCLEIN IN PARKINSON'S DISEASE2

gene can induce Pd pathogenesis, which is dependent on the 
PinK1/parkin pathway via independent mechanisms (13). 
in addition, several genes, such as GTP cyclohydrolase 1 
(GcH1) (14), coiled‑coil‑helix‑coiled‑coil‑helix domain 
containing 2 (cHcHd2/ParK22) (15) and VPS35 retromer 
complex component (VPS35/ParK17) (16) are involved in 
the induction of mitochondrial dysfunction of patients with 
Pd. environmental factors are also a pathogenic factor of Pd. 
For example, the occupational and environmental exposure to 
pesticides and cytokine pathways (17), the influence of genetic 
polymorphisms on pesticides (18) and the dysregulation of the 
microrna (mirna/mir) network caused by pesticide expo‑
sure (19), all serve an important role in the pathophysiology of 
Pd via neurodegeneration of Snpc da neurons, mitochondrial 
dysfunction or oxidative damage (20). Some of the related 
genes, such as mirnas, may serve as novel non‑invasive 
early biomarkers for the prediction and prognosis of Pd (21). 
it has also been demonstrated that exposure to polystyrene 
microplastics can induce intestinal injury and neurodegenera‑
tion through increased production of reactive oxygen species 
(roS) in Caenorhabditis elegans (C. elegans) (22). recent 
reports have reported that coronavirus 2019 (coVid‑19) 
colonizes in the gut and the central nervous system (cnS), 
where it triggers neuroinflammation and neurodegenerative 
processes, suggesting that patients infected with coVid‑19 
may be susceptible to certain neurodegenerative disorders, 
such as Pd (23,24). However, the molecular mechanism 
underlying the development and progression of Pd requires 
further investigation.

Gastrointestinal dysfunction, an important non‑motor 
symptom of Pd, not only has a high incidence, but also appears 
several years prior to the characteristic motor symptoms (25). 
Currently, the influence of intestinal microbiota on PD has 
been studied extensively by scientists, and has been termed 
the microbiota‑gut‑brain axis (MGBa) (26). numerous studies 
have demonstrated that abnormal intestinal microbiotas are 
not only closely associated with gastrointestinal dysfunction 
in patients with Pd but may also be an important mechanism 
underlying the pathological process of Pd (27,28). recently, 
it has been reported that dysfunction of gastrointestinal 
microbiomes (GM) occurs earlier than/or at the same time 
as Pd, and the pathology of Pd is closely associated with the 
changes of the GM (29). nielsen et al (30) demonstrated that 
individuals infected with Helicobacter pylori are more likely 
to induce the development of Pd. devos et al (31) reported 
that most patients with Pd have colitis, which can enhance the 
peripheral and brain inflammatory response, and promote the 
pathogenesis of Pd.

α‑syn consists of 140 amino acids and the gene encoding it, 
synuclein α (SNCA), is comprised of five exons and is located 
at chromosome 4q21.3‑q22 (32). it is widely expressed in the 
cnS, mainly in the presynaptic terminals, and is involved in the 
regulation of neurotransmission and synaptic homeostasis (33). 
The α‑syn family of proteins contains three members, 
synapsin‑i, synapsin‑ii and synapsin‑iii (34). according to the 
c‑terminal splicing structure, α‑syn can be divided into α and 
β subtypes (34). Currently, five synapsin proteins (synapsin-Iα, 
synapsin‑iβ, synapsin‑iiα, synapsin‑iiβ and synapsin‑iiiα) 
have been detected (35). a pathological characteristic of Pd 
is the accumulation of the misfolded α‑syn protein involved 

in slow and progressive degeneration of da neurons in the 
Snpc (36). α‑syn exhibits characteristics of prion‑like protein 
during PD pathogenesis; the misfolded α‑syn is an ‘infectious’ 
protein spreading pathology into the cnS via the vagus nerve 
(Vn) by forming a template that seeds misfolding for nearby 
α‑syn proteins, turning the endogenous physiological protein 
into a pathogenic protein (37). Previous studies have demon‑
strated that neurons can absorb α‑syn in vitro and in vivo, and 
α‑syn can also transmit between two neurons to neighboring 
neurons via endocytosis (38,39). However, further studies are 
required to determine the specific mechanisms. In addition, 
studies have reported that an abnormal GM can enhance the 
levels of inflammation via the induction of immune responses, 
leading to the misfolding of α‑syn in patients with Pd (40,41). 
The dysfunction of the enteric nervous system (enS), and the 
accumulation of anti‑α‑syn immune response proteins were 
detected in the enS ganglia in mice with α‑syn mutations 
(either a53T or a30P from insertions of an entire human 
Snca gene) when they were 3 months old (42). Braak et al (43) 
demonstrated that Pd is initiated by unknown pathogens that 
traverse the gastric epithelial lining and lead to the formation 
of misfolded α‑syn in nerve cells of the submucosal plexus. 
The pathological formation of α‑syn is retrogradely propa‑
gated along the axonal and transneuronal axis along with the 
Vn to reach the cnS (37). Braak et al (43) also reported that 
the accumulation of misfolded α‑syn in the peripheral nervous 
system (PnS) occurred earlier than that in the cnS of patients 
with Pd. Several studies have speculated that the initiation of 
Pd originates from the PnS, and is retrogradely transported 
towards the cnS via the PnS (44,45). These results suggest 
that the abnormal GM can affect the development of Pd 
by inducing α‑syn misfolding, abnormal aggregation and 
transmission from Vn to cnS.

Several studies have reported that GM serves an impor‑
tant role in the development of Pd by regulating misfolded 
and abnormal aggregation of α‑syn and the MGBa (46,47). 
The present review focuses on the association between GM, 
α‑syn and MGBa in patients with Pd, with an emphasis on 
the mechanisms of the GM and its role in the pathogenesis 
of Pd (Fig. 1). in addition, adaptable novel potential treat‑
ment strategies are discussed. The present review offers an 
insight into the role of α‑syn and MGBa in the pathological 
progression of Pd, and highlights the potential of α‑syn and 
MGBa as relevant drug targets, as well as discussing potential 
therapeutic candidates.

2. An aberrant GM affects α‑syn accumulation in the 
intestines of patients with PD

numerous studies have confirmed that the GM regulates 
the autonomic nervous system and cnS via the immune 
system, neuroendocrine system, direct neural conduction and 
the interaction of the MGBa (48‑50). changes in GM are 
associated with the pathological process of Pd (51).

Changes of the GM in patients with PD. changes to the 
GM have been widely reported amongst patients with Pd. 
Scheperjans et al (48) reported that ~77.6% of patients with Pd 
exhibited a reduction of Prevotellaceae (family), and a notable 
increase in several pathogenic Gram‑negative bacteria, such as 
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Enterobacteriaceae (family), Verrucomicrobiaceae (family) 
and Escherichia coli (species) from their feces. Gerhardt 
and Mohajeri (52) demonstrated that there was a significant 
decrease of Prevotellaceae (family), Prevotella (genus) and 
Prevotella Copri (species) in the intestines of patients with 
Pd. lubomski et al (53) reported a notable alteration in the 
microbial population of Firmicutes in the GM of patients 
with Pd compared with healthy individuals. The quantity of 
Lactobacillaceae (family) and Lactobacillus (genus) increased, 
whereas the abundance of Lachnospiraceae (family), such 
as Ruminococcus (genus), Blautia (genus), Dorea (genus), 
Roseburia (genus) and Faecalibacterium (genus) decreased. 
according to these results, the researchers hypothesized that 
the types of pro-inflammatory bacteria in the intestines of 
patients with PD significantly increased, whereas the types of 
probiotic bacteria decreased. Keshavarzian et al (54) further 
confirmed this hypothesis, demonstrating that the proportion 
of pro-inflammatory bacteria in the intestines of patients with 
Pd increased by studying the mucosal‑associated bacteria and 
fecal microbiota. The results demonstrated that the diversity 
of fecal microbiota communities was not significantly altered 
between Pd and healthy control (Hc) individuals, but the 
α‑diversity at the phylum level and the richness of the genus 

level were significantly different. Specifically, at the phylum 
level, the abundance of Bacteroidetes, Proteobacteria and 
Verrucomicrobia in the fecal microbiota of the Pd group 
significantly increased, whereas the presence of Firmicutes 
in the fecal microbiota of Hc was higher in the Hc group. 
Similar results were obtained by assessing the fecal samples 
of the Pd group compared with the Hc group at the genus 
level, in which the abundance of pro-inflammatory bacteria, 
such as the Akkermansia, Oscillospira and Bacteroides 
were increased, and the abundance of butyrate‑producing 
bacteria that produce anti‑inflammatory short chain fatty 
acids (ScFas), such as Blautia, Coprococcus and Roseburia 
were significantly reduced in the fecal samples of the Pd 
group. The abundance of Coprobacillaceae (family), Dorea 
(genus) and anti‑inflammatory Faecalibacterium (genus) 
were rich in the mucosal‑associated bacterial populations 
of the Hc group, whereas the Oxalobac‑teraceae (family) 
and Ralstonia (genus) were richer in the Pd group (55). 
li et al (56) reported that the composition of GM was slightly 
altered between the healthy and Han chinese patients with 
Pd using next generation sequencing to analyze the feces. 
consistent with other studies, the abundance of Bacteroides 
(genus) and Prevotellaceae (family) significantly increased in 

Figure 1. Schematic representation of dysregulation of the MGBa pathways implicated in the pathogenesis of Pd. The aberrant GM or their products, such as 
LPS and the inflammatory factors involved in intestinal mucosal inflammation, reactive oxygen/nitrogen species and disruption of intestinal barrier integrity, 
induce misfolding of α‑syn, resulting in abnormal aggregation and the formation of truncated fragments in the enS of patients with Pd. The misfolded, 
abnormal aggregation and truncated fragments of α-syn are transported from the ENS to the CNS via projections of the VN, as well as autonomic enteric fibers 
at a speed of 5‑10 mm/day. once abnormal α‑syn from the enS reaches and deposits into the cnS, it subsequently spreads in the cnS through the brainstem, 
midbrain, basal forebrain and finally reaches the cortical areas via a mechanism similar to that of prion-like protein. Due to an increase in α‑syn aggregation 
in the Snpc of cnS, eosinophilic lBs are formed in the cytoplasm and mitochondrial dysfunction occurs in the da neurons, resulting in their degradation, 
which stimulates an inflammatory response of the microglia. These pathological changes result in the production of OS in the brain, which triggers cell 
apoptosis, and thus is involved in the initiation and progression of PD. The increase in OS further oxidizes and intensifies abnormal aggregation of α‑syn in the 
brain, eventually forming a positive feedback loop. MGBA, microbiota-gut-brain axis; PD, Parkinson's disease; GM, gut microbiota; LPS, lipopolysaccharide; 
α‑syn, α-synuclein; ENS, enteric nervous system; CNS, central nervous system; VN, vagus nerve; SNpc, substantia nigra pars compacta; LB, Lewis Body; 
DA, dopaminergic; OS, oxidative stress.
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the healthy Han chinese individuals, whereas the abundance 
of Ruminococcaceae (family), Verrucomicrobiaceae (family), 
Porphyromonaceae (family), Hydrogenoanaerobacterium 
(family) and Lachnospiraceae NK4A (family) increased signif‑
icantly in the Han chinese patients with Pd. in addition, these 
studies failed to demonstrate an increase in the abundance of 
Bifidobacterium (family) and Enterobacteriaceae (family) in 
the feces of Han chinese patients with Pd, an inconsistent 
result compared with the study of caucasian patients with 
Pd (57‑59). in summary, numerous changes to the GM are 
involved in the pathological process of Pd (Table i).

due to changes in the gut microbiota composition that 
occur during the course of Pd, several studies have investigated 
fecal microbiota transplant (FMT), a novel therapeutic method, 
which involves the transfer of gut microbiota from a healthy 
individual to another via oral administration of fecal material in 
rodents, or via medication that alters the GM or gastrointestinal 
endoscopy in humans, as a method to improve the symptoms of 
constipation in patients with Pd (60,61). Tan et al (62) reported 
that the FMT procedure is an effective treatment in 65.6% of 
patients with Pd, and that several patients exhibited an increase 
in spontaneous bowel movements by 1‑2 times per week in 
the process of FMT treatment. in a Pd mouse model, FMT is 
necessary for the neuroprotective effects of osteocalcin (63). in 
addition, FMT alleviates dyskinesia and neurodegeneration of 
striatal DA, reduces neuroinflammation and activates microglia 
and astrocytes in the brain of Pd mice. Furthermore, FMT can 
also increase the levels of 5‑hydroxytryptophan, decrease fecal 
ScFas and improve gut microbial dysbiosis in the intestinal 
tracts of Pd mice (64).

Influence of GM alterations on α‑syn. The barrier functions of 
the gut epithelium serve an important role during host‑micro‑
biome interactions, and the disruption of this barrier can lead to 
intestinal inflammation, production of reactive oxygen/nitrogen 
species in the gut, and a shift in microbial composition towards 
pro-inflammatory bacteria (65). Several studies have demon‑
strated that one of the potential mechanisms by which α‑syn 
enters into the mucosal neuronal tissue is the generation of oS 
and the disruption of intestinal barrier integrity via aberrant 
changes to the GM in patients with Pd (66,67). Given the effect 
of aberrant GM on the gastrointestinal barrier, the resultant 
translocation of bacteria or their products, such as lipopolysac‑
charide (LPS) can increase OS and intestinal inflammation, 
which in turn increases the mucosal intestinal permeability, 
also known as leaky gut, and increases the ability of α‑syn 
to communicate with the enS (53). immunohistochemical 
staining of postmortem analyses of intestines in patients with 
Pd exhibited an inevitable association between impaired 
intestinal barrier integrity, the increase in the intestinal bacte‑
rial flora, the high levels of expression of inflammatory genes 
and the abnormal accumulation of α‑syn in the enS (68‑70). 
other studies have reported that the volatile ScFa, particu‑
larly butyrate, serves a vital role in maintaining intestinal 
barrier integrity, and a lack of ScFa can increase intestinal 
permeability, which has been confirmed in studies of patients 
with inflammatory bowel disease (71,72). Further studies on 
the GM have reported that Prevotellaceae is involved in the 
formation of intestinal mucins and the production of ScFa 
through fiber fermentation in the sigmoid (73,74). Thus, the 
decrease of Prevotellaceae in the intestines of patients with 

Table i. Studies evaluating the changes in the gut microbiota in patients with Pd.

changes in the GM in patients with Pd ↓/↑ (refs.)

changes at the phylum level  
  Bacteroidetes; Proteobacteria; Verrucomicrobia ↑ (54)
changes at the family level  
  Prevotellaceae ↓ (48,52)
  Enterobacteriaceae, Verrucomicrobiaceae ↑ (48,56)
  Lactobacillaceae ↑ (53)
  Lachnospiraceae ↓ (53)
  Coprobacillaceae, Oxalobac‑teraceae ↑ (55)
  Ruminococcaceae, Porphyromonaceae ↑ (56)
  Hydrogenoanaerobacterium, Lachnospiraceae NK4A ↑ (56)
changes at the genus level  
  Prevotella ↓ (52)
  Lactobacillus ↑ (53)
  Ruminococcus, Blautia, Dorea, Roseburia, Faecalibacterium ↓ (53,55)
  Akkermansia, Oscillospira, Bacteroides, Ralstonia ↑ (55)
  Coprococcus ↓ (55)
changed in species level  
  Escherichia coli ↑ (48)
  Prevotella copri ↓ (52)

↓, significantly reduced in patients with PD; ↑, significantly increased in patients with PD; PD, Parkinson's disease. 
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Pd can lead to a decrease in intestinal mucus and an increase 
in intestinal permeability, and this serves as a prerequisite 
for entry of α‑syn into the enS via the intestinal barrier, and 
to maintain excessive α- syn expression or even promote its 
misfolding (75). The treatment of a colitis mouse model with 
butyrate can reduce the expression of TnF‑α in the intestines 
and reduce cell shedding (76).

an aberrant GM or their products are involved in the 
misfolding, abnormal aggregation and presence of truncated 
fragments of α‑syn in the enS of patients with Pd (66,69). in 
particular, the LPS generated by inflammatory bacteria can 
increase the nitration and oligomerization of α‑syn by upregu‑
lating the expression of inducible nitric oxide synthase (inoS), 
suggesting that lPS not only increases the inflammatory 
response to induce gut leakiness and the communication of 
α‑syn, but can also accelerate the neurodegenerative process via 
the influence of α‑syn (55). The monocyte/macrophage‑related 
signaling pathway is involved in the aforementioned biological 
processes (77). The lPS generated from the gram‑negative 
bacteria can downregulate the expression of tight junction 
proteins in the intestinal epithelial cells, such as occludin, 
and upregulate the expression of TnF‑α, which activates 
the macrophages and promotes the expression of α‑syn in a 
mouse model (78,79). Bhattacharyya et al (80) demonstrated 
that lPS binds to the α‑helical intermediates of α‑syn to form 
a lipid‑protein complex that acts as a scaffold for growth 
of α‑syn fibers, and rapid nucleation based on cd spectra 
analysis. lPS also accelerates abnormal aggregation of α‑syn 
by increasing the production and reducing the half‑life and 
lag time of α‑syn (81). Wang et al (82) reported that inflam‑
matory activators, such as lPS, aluminum potassium sulfate 
crystals, nigericin and vitamin K3 (menadione) can activate 
the inflammasome, including caspase‑1, by inducing the 
cleavage of procaspase‑1 to the active caspase‑1, which is 
directly involved in cleaving and inducing the aggregation of 
α‑syn. Furthermore, the 10 or 30‑residues of α‑syn n‑terminal 
truncations alter the conformation of fibril, thus contributing 
to a reduction in its stability and induce their compatibility 
with normal α‑syn. The 20‑residues of α‑syn c‑terminal trun‑
cations result in it exhibiting unique prion‑like properties (83). 
The prion conformation of α‑syn interferes with the lysosomal 
and proteasomal degradation processes, and ultimately 
promotes aberrant accumulation (84).

3. α‑syn accumulation contributes to neurodegeneration in 
the CNS of patients with PD

The primary pathological characteristic of Pd is the abnormal 
aggregation of α‑syn in the Snpc (85). due to its prion‑like 
protein activation mechanism, α‑syn can misfold to cause 
self‑abnormal aggregation, and can also transmit signals 
amongst nervous cells, and spread throughout the nervous 
system (86). Several studies have indicated that the enS may 
be the channel by which α‑syn is transferred from the PnS to 
the cnS (41,87).

Abnormal α‑syn in the intestines of patients with PD enters 
the CNS via the MGBA. Misfolded α‑syn can transfer from 
affected to unaffected cells and serve as a template for patho‑
physiological aggregation of α‑syn in neuronal cells (88‑91). it 

has been speculated that α‑syn may be transmitted to the dorsal 
nucleus of the VN via VN fibers at a speed of 5-10 mm/day, 
and it accumulated in the neurons to trigger cell apoptosis 
after α‑syn was injected into the intestinal wall of rats (92). 
Kim et al (93) injected 25 µg misfolded α‑syn, preformed 
fibrils (PFF), into the pyloric stomach and upper duodenum 
(ud) of mice, and detected the distribution of PFF in the brain 
tissues after 1, 3, 7 and 10 months. The results demonstrated 
that PFF aggregated in the stomach and spread into the Vn 
1 month after injection. in the following 3‑10 months, the 
distribution of PFF was detected consecutively in the medulla 
oblongata, locus coeruleus in the pons, Snc in the ventral 
mesencephalon brain (VMB), prefrontal cortex and olfactory 
bulb. The number of DA neurons in the SNpc of mice signifi‑
cantly decreased, and this was accompanied by a decrease 
in forelimb strength, grip strength, the hindlimb strength, 
and muscle and motor coordination ability of mice based on 
a rotarod test 7 months after injection. However, PFF was 
not detected in the aforementioned areas of the brain in the 
mice whose VN fibers near UD and neck were cut by truncal 
vagotomy 7 months after injection with the same dosage of 
PFF. The death of neuronal cells and the production of lBs 
were not detected. Braak et al (94) demonstrated that several 
misfolded α‑syn proteins had accumulated in a portion of the 
enS that regulated intestinal function and connected the gut 
to the brain of patients with Pd. They speculated that the enS 
may be the α‑syn accumulation starting point, and α‑syn was 
transported from the Vn to the VMB, where the Snpc killed 
da cells selectively, resulting in Pd.

Abnormal α‑syn causes the death of DA neurons in patients 
with PD via OS. The abnormal α‑syn in da cells transported 
from MGBa often involves mitochondrial dysfunction and the 
generation of oS, which serve important roles in the develop‑
ment of Pd (95,96). it has been reported that overexpression 
of α‑syn in GT1‑7 cells increases mitochondrial volume and 
abnormal vacuolated cristae (97). Hu et al (98) demonstrated 
that in the α‑syn‑overexpressing SH‑SY5Y cells, α‑syn can 
interact with aTP‑dependent clp protease (clpP) to inhibit the 
activity of clpP, leading to mitochondrial oxidative damage 
and neurotoxicity. chong et al (99) performed experiments 
using an n27 immortalized rat mesencephalic dopami‑
nergic neuronal model of Pd cell lines that stably expressed 
wild‑type human α‑syn, and hypothesized that the expres‑
sion levels of caspase‑3 and 9 increased as the oS increased, 
and the expression of akt gradually decreased, resulting in 
cells undergoing mitochondrial dependent apoptosis. This 
suggests that α‑syn promotes apoptosis by increasing oS. 
dryanovski et al (100) and Tapias et al (101) reported that the 
increase in levels of α‑syn in da cells promotes the generation 
of oS. Musgrove et al (102) detected large quantities of nitrated 
α‑syn in the brain tissues of patients with Pd after death 
using an oxidized modified antibody. The study of SH-SY5Y 
human neuroblastoma cells stably expressing the c‑terminal 
half of Venus YFP‑tagged α‑syn or the n‑terminal half of 
Venus YFP‑tagged α‑syn demonstrated that the cells treated 
with 25 µm paraquat exhibited a stronger fluorescent signal 
due to the increase in oS compared with the control groups. 
However, after co‑culturing with 25 µM paraquat and oxidized 
modified inhibitor, the intensity of the fluorescent signal in 
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the experimental group decreased compared with the control 
group. Therefore, it was hypothesized that the increased oS 
was the result of increased spreading of α‑syn from the dorsal 
motor nucleus of the Vn to the rostral brain regions, resulting 
in enhanced cell‑to‑cell α‑syn transmission in patients 
with Pd. Martin et al (103) and Stichel et al (104) reported 
that lBs were formed in transgenic mice that expressed 
the human mutational α‑syn. Furthermore, the activity of 
neuronal mitochondrial complexes i and iV significantly 
reduced. conversely, inhibiting the activity of mitochondrial 
complex i promoted the accumulation of α‑syn in mice brains, 
suggesting that increased oS resulted in increased levels of 
oxidatively modified forms of α‑syn, resulting in increased 
α‑syn aggregation and thus, cell‑to‑cell transmission (105). 
Thus, an increase in oS and the aggregation of α‑syn forms a 
positive feedback loop throughout the progression of Pd (95).

Abnormal α‑syn induces neuroinflammation in patients with 
PD via activation of microglia. in the brain, microglia act as 
innate immune cells and serve a vital role in the pathogenesis 
of Pd (106). during the early stages of Pd, microglias are 
activated and are positive for human leukocyte antigen‑dr 
(Hla‑dr) (107). Microglias maintain continuous activation 
through the development of the disease (108). The activated 
microglia release several pro-inflammatory factors that target 
the blood vessel endothelial cells of the blood‑brain barrier 
(BBB) and promote the expression of adhesion molecules on 
their surface (109). The adhesion molecules induce T cells 
and monocytes to enter the brain through the BBB, which 
further release more pro-inflammatory factors, resulting in 
neuroinflammation and neuronal apoptosis (110). α‑syn is 
involved in the activity of microglial cells in patients with 
Pd (111). Studies on brain tissue samples of patients with 
Pd revealed high expression of α‑syn in neurons, and the 
microglia were Hla‑dr positive (112,113). The microglial 
cells treated with different (from low to high) concentra‑
tions of α-syn can increase the pro-inflammatory effect of 
microglial cells, and the mrna expression levels of TnF‑α, 
interleukin (il)‑1β, cyclooxygenase‑2 and inoS levels also 
increase, which causes apoptosis of nerve cells (114). in the 
brain, toll‑like receptor 4 (Tlr4) is primarily expressed by 
microglial cells, and a small amount of Tlr4 is expressed 
by astrocytes, oligodendrocytes and neurons (115,116). Tlr4 
can induce the activity of microglial cells, and subsequently 
induce the secretion of inflammatory chemokines and cyto‑
kines (117,118). Fellner et al (119) demonstrated that α‑syn can 
active microglial cells by targeting Tlr4, and inducing the 
production of nuclear factor‑κB (nF‑κB) and the secretion of 
cytokines by treating TLR4-deficient and wild-type mice with 
different forms of α-syn (full length soluble, fibrillized and 
c‑terminally truncated). Further research demonstrated that 
the c‑terminally truncated α‑syn was the most effective inducer 
of Tlr4‑dependent microglial activity (120). choi et al (121) 
indicated that α‑syn also reduces cell autophagy by decreasing 
lysosomal and proteasomal degradation, which further results 
in increased expression of Tlr4 and further strengthened 
Tlr4‑dependent microglial activity. Thus, α‑syn is consid‑
ered an inducer of microglial activation in patients with Pd. 
notably, several studies have reported that nF‑κB, matrix 
metalloproteinase and protease activated receptor 1 are also 

involved in microglial activity via monomers, polymers and 
nitration of α‑syn (122,123), which further induces the produc‑
tion of excessive roS in microglia, and thus, the death of da 
neurons (124).

activated microglia cells inhibit the activity of nuclear factor 
e2‑related factor 2 (nrf2), an antioxidant transcription factor 
associated with the anti-inflammatory capacity of microglia, 
via oxidative modification (125). The expression levels of 
TnF‑α, il‑6, il‑1β and iNOS are significantly upregulated 
in Nrf2-deficient microglia (126). Shavali et al (127) reported 
that activated microglia further promote nitrification of α‑syn 
through nitric oxide, thereby inducing the continuous spread 
of α‑syn to the adjacent neurons and resulting in neuronal 
cell death. it has been demonstrated that TnF‑α produced by 
α‑syn‑activated microglia can result in impaired function of 
mitochondrial complex I and the generation of OS; in turn, 
the oS promotes further aggregation of α‑syn in neuronal 
cells (128). Subsequently, the aggregated α‑syn increases 
oS further, forming a positive feedback loop between 
neuroinflammation, OS and the aggregation and spread of 
α‑syn in patients with Pd (129).

4. Novel treatments based on the MGBA and α‑syn for PD

The current treatments available for patients with Pd not only 
have no effect on its relentless progression but may also induce 
several side effects. There are no effective therapeutic strategies 
that target the MGBa to slow or halt the neurodegenerative 
process, or reduce motor and non‑motor symptoms. nutrition 
based probiotics or prebiotics‑based interventions inhibit 
neuroinflammation and ameliorate the diffusion of α‑syn in 
the MGBa, which offer a novel therapeutic strategy for the 
treatment of Pd and overcome the disadvantages of current 
therapies (130). an overview of the studies summarizing 
the novel treatments based on MGBa and α‑syn for the 
management of Pd is presented in Fig. 2.

Current clinical treatments for PD. The death of cerebral da 
neurons in patients with Pd leads to a decrease in secretion 
of dopamine and other neurotransmitters, resulting in the 
motor symptoms. currently, pharmacological therapeutic 
strategies primarily compensate for the loss of dopamine and 
other neurotransmitters to alleviate motor symptoms tempo‑
rarily. The drugs often include dopamine receptor activators 
and/or the dopamine precursor l‑3, 4‑dihydrophenylalanine 
(levodopa). However, levodopa not only relieves the neurode‑
generative processes, but also causes several effects, including 
nausea, emesis, abnormal involuntary movement of head, 
face, tongue, upper limbs, depression and dysuria. conversely, 
levodopa administered orally provides a favorable gastroin‑
testinal environment required for the drug absorption (131). 
However, most patients with Pd also exhibit gastrointestinal 
disorders, resulting in poor drug absorption (132). Several drug 
trials on healthy volunteers had demonstrated that levodopa 
can delay the time of gastric emptying, and long‑term use 
of levodopa can exacerbate the gastrointestinal dysfunction 
in patients with Pd (133). Further studies have reported that 
long-term use of levodopa may lead to fluctuation of symptoms 
and resistance to levodopa (134,135). Tyrosine decarboxylase 
(Tdc), which is involved in the transformation of levodopa 
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to dopamine and prevents the uptake of levodopa in the small 
intestine of patients with Pd, is specially coded in the genome 
of Lactobacillus and Enterococcus in the intestine (136). 
The content of Tdc is negatively correlated with the dosage 
of levodopa in the feces of patients, which may be used as a 
biomarker to evaluate the therapeutic effect of levodopa (137). 
The combination of a Tdc inhibitor and levodopa can reduce 
the dosage and the dependence on levodopa for more effective 
treatment of Pd (138).

Improving GM dysbiosis using probiotics and prebiotics in 
patients with PD. The abundance of Prevotellaceae was shown 
to be significantly reduced, the levels of SCFAs were decreased 
in the feces, whereas the content of pro-inflammatory bacteria, 
such as Proteus, Pseudomonas and Enterobacteriaceae were 
increased in patients with Pd (6). a study of a nude mouse 

was demonstrated to exhibit motor symptoms and loss of da 
neurons following transplant with intestinal microflora from 
Pd mice (139). However, the transplantation of probiotics 
can significantly maintain intestinal microbial homeostasis, 
increase the levels of ScFas in feces, decrease the activa‑
tion of microglia and increase the activity of da neurons 
in the brains of Pd mice (64). currently, the most common 
probiotics are Lactobacillus, Enterococcus, Bifidobacterium 
and yeast (140). Several studies have reported that probiotics 
can enhance intestinal epithelial integrity and stimulate the 
homeostasis of the intestinal mucosal immune system (40,141). 
in addition, probiotics can regulate the immune response, 
inhibit the growth of pro-inflammatory bacteria and increase 
the levels of ScFas in the intestines of patients with Pd 
by regulating the MGBa, reducing the production and 
aggregation of prion‑like α‑syn (142,143). Goya et al (144) 

Figure 2. novel treatments based on MGBa and α‑syn in the pathogenesis of Pd, including improving GM dysbiosis using probiotics and prebiotics, inhibiting 
the expression and abnormal aggregation of α-syn using RNAi or other gene modification techniques, and FMT that involves the transfer of intestinal microbiota 
from one healthy individual to another, or vagotomy. all of these treatments are known to modulate α‑syn pathophysiology and prevent the neuropathological 
and neurobehavioral deficits induced by the transmission of pathological α-syn via the MGBA. MGBA, microbiota-gut-brain axis; PD, Parkinson's disease; 
GM, gut microbiota; RNAi, RNA interference; FMT, fecal microbiota transplant; α‑syn, α-synuclein; VN, vagus nerve.
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reported that the probiotic, Bacillus subtilis can reduce α‑syn 
aggregation and clear previously aggregated α-syn via biofilm 
formation in a C. elegans model of Pd. currently, the most 
effective means of transplanting probiotics is FMT, which 
contributes to the reconstruction of a healthy intestinal micro‑
flora by transplanting the healthy intestinal microflora into the 
gastrointestinal tract to effectively improve the symptoms of 
patients with Pd (145). This treatment method has achieved 
positive effects in clinical trials of Pd, autism and chronic 
fatigue syndrome (146). The supplementation of probiotics 
or FMT not only improves gastrointestinal function, but also 
enhances the intestinal absorption capacity of levodopa (147). 
although most of the animal model studies demonstrated 
that FMT is an effective treatment for Pd (148,149), further 
studies are required to determine the molecular mechanism 
by which FMT exerts its beneficial effects before it can be 
recommended for use in humans. optimistically, FMT is 
gradually being clinically used as a medicinal therapy in 
humans for the treatment of Pd (149). This may effectively 
reconstitute the major commensal bacterial populations and 
re‑establish the diversity and composition of the GM in patients 
with Pd. Thus, this practice may become commonplace in the 
near future.

Prebiotics, such as Galacto‑oligosaccharides and 
Fructo‑oligosaccharide, are non‑digestible oligosaccharides, 
primarily synthesized from lactose or fructose (150). 
Prebiotics selectively activate certain probiotics in the gut, 
such as Bifidobacteria (151), promote its metabolism and 
produce ScFas to maintain the integrity of the intestinal 
epithelia and regulate the mucosal immune response (152). 
Savignac et al (153) demonstrated that prebiotics can increase 
the expression levels of brain derived neurotrophic factor, 
which serves a protective role in neurons in the dentate gyrus 
of the hippocampus of rats. Taken together, prebiotics can 
selectively reduce intestinal permeability and inflammation 
via activation of the metabolism of probiotics. Thus, it is 
hypothesized that the combination of FMT, prebiotics and 
traditional drugs may both improve intestinal dysfunction and 
protect neurons, as well as effectively reducing the dosage of 
levodopa or other drugs to reduce drug dependence (154).

Inhibiting the expression and abnormal aggregation of α‑syn 
in patients with PD. Given that α‑syn serves a key role in the 
development of Pd, an increasing number of studies have 
demonstrated that the inhibition of α‑syn expression and 
abnormal aggregation is an important method for the treatment 
of Pd (155). Preclinical gene therapy using rna interference 
(rnai) targeting α‑syn mrna via gene‑silencing is being 
assessed, and the results have indicated that it can effectively 
inhibit the expression of α-syn in fibroblasts (156). In addition, 
mirnas can downregulate the translation of target mrnas 
as post‑transcriptional regulators, through binding to the 
3'‑untranslated region (uTr) complementary sequences (157), 
which can be used as another means of gene therapy for the 
treatment of Pd. Junn et al (158) reported that mir‑7 can bind 
to the 3'‑uTr of α‑syn mrna complementary sequences 
to inhibit the expression of α‑syn, effectively relieving its 
inhibitory effect on the proteasome, and thus promoting the 
degradation of α‑syn. Masliah et al (159) demonstrated that 
Pd transgenic mice immunized with full length human α‑syn 

protein exhibit decreased accumulation of the misfolded α‑syn 
in neuronal cell bodies and synapses, resulting in reduced 
PD symptoms, and the mice that produced high affinity anti‑
bodies exhibited a greater capacity to reduce α‑syn expression 
compared with the mice that produced lower affinity and/or 
lower titers of anti‑α‑syn antibodies. Ghochikyan et al (160) 
also indicated that a Pd mouse model immunized with full 
length human α-syn protein can produce high affinity anti‑
bodies, which can reduce the accumulation of the aggregated 
forms of α‑syn in neuronal cells to relieve neurodegeneration. 
other studies indicated that monoclonal antibodies that target 
α‑syn can inhibit the expression and aggregation of α‑syn in a 
Pd mouse model, as well as in patients (161,162). upregulation 
of α‑syn in the extracellular matrix can be recognized by 
specific antibodies and cleared by the macrophages through 
phagocytosis (163,164). in addition, α-syn specific antibodies 
can reduce the activation of cd4+ T cells by clearing cyto‑
kines, such as il‑2 and TnF‑β, which are released by the 
activated cd4+ T cell‑mediated neurodegeneration (165). 
a study demonstrated that monoclonal antibodies against 
α‑syn can decrease lB/ln formation to reduce the loss of 
primary cultured neuronal cells by preventing the uptake of 
α‑syn‑PFF (166). due to the α‑syn form, the oligomers and 
fibrils, as well as the post-translational modifications of α‑syn 
in patients with Pd, such as acetylation, phosphorylation and 
truncation, several studies have demonstrated that d10, a 
single chain antibody of α-syn, had the highest affinity with 
α-syn; the single chain antibody D5 can effectively target the 
oligomer of α-syn; the single chain antibody syn-O1, -O2 and 
-O4 can effectively reduce neuroinflammation and the loss 
of neurons by specifically targeting the oligomer of α‑syn in 
the CA3 area of the hippocampus; the single chain antibody 
syn‑10h targets α‑syn trimers, and antibodies syn‑F1 and F2 
prevent neuronal loss and facilitated amelioration in behav‑
ioral defects by specifically recognizing and clearing α‑syn 
fibers (167,168). In addition, a specific antibody, LS4-2G12, 
which recognizes phospho‑α‑syn (ser129), is highly sensi‑
tive to the aggregation in the tissues of patients with Pd, 
and protects neurons from damage mediated by the immune 
system (169,170). Tlr4 inhibitors can be used as a potential 
drug for the treatment of Pd (171). The inhibitor of Tlr4 can 
effectively reduce intestinal inflammation and permeability in 
patients with Pd, which can be used as a competitive inhibitor 
of mutant α‑syn in the brain of patients with Pd to inhibit the 
activation of microglia (172). Taken together, the use of small 
molecules or antibodies to reduce the toxicity of α‑syn may 
serve as an effective method to inhibit the pathogenesis and 
development of Pd (173).

The failure to eliminate α‑syn is also an important cause 
of Pd, and autophagy serves a vital role in the elimination 
of abnormally aggregated α‑syn (174). mTor complexes are 
widely involved in regulating apoptosis and autophagy (175). 
MSdc‑0160, a mitochondrial pyruvate carrier inhibitor, 
enhances autophagy by inhibiting the activation of mTor in 
cells (176). it has been reported that MSdc‑0160 can effec‑
tively protect da neurons in an MPTP‑induced mouse model, 
and decreases α‑syn‑induced neural toxicity by increasing 
autophagy in a C. elegans model of Pd (177). in nerve cells, 
the expression of Beclin 1 can reduce apoptosis and enhance 
autophagy (178). Spencer et al (179) overexpressed Beclin 1 
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in a Pd mouse model using lentivirus to activate autophagy 
and reduce the accumulation of α-syn; however, the study only 
assessed this method in a mouse model. The levels of acti‑
vated c‑abl, a tyrosine kinase, in the brain of patients with Pd 
increased due to α‑syn aggregation (180). nilotinib, an anti‑
tumor drug, can promote intracellular autophagy by inhibiting 
the Pi3k/akt/mTor signaling pathway to inhibit c‑abl (181). 
a recent non‑placebo‑controlled study reported that the lower 
dose of nilotinib is effective and safe for the treatment of 
Pd by effectively inhibiting α‑syn aggregation (182). Taken 
together, these findings suggest that enhancing autophagy and 
inducing the degradation of α‑syn are potential therapeutic 
strategies for the treatment of Pd.

5. Conclusion

The intestinal microbiota contributes to the pathogenesis of 
Pd, which has changed the previous view that the etiology of 
Pd is concentrated on the brain. Misfolded and abnormally 
aggregated α‑syn in the intestines of patients with Pd is 
transported from the intestines to the brain via the MGBa. 
The spreading and abnormal aggregation of α‑syn in the brain 
results in the formation of lBs in da neurons, the activation of 
microglia, the production of inflammatory factors, an increase 
in oS, and ultimately apoptosis. MGBa not only serves an 
important role in the stability of the digestive system, but also 
serves a key role in the pathogenesis of Pd. MGBa abnormali‑
ties may be one of the causes of Pd. currently, several novel 
clinical therapeutic strategies that target the MGBa to slow 
or halt the neurodegenerative process or reduce the motor and 
non‑motor symptoms, such as food‑based therapies, vagotomy, 
inhibiting the expression and abnormal aggregation of α‑syn 
in patients with PD using RNAi or other gene modification 
measures, as well as FMT have been suggested. in addition, 
several genes serve prominent roles between MGBa and the 
progression of Pd, such as the aforementioned PinK1/parkin 
pathway, lrrK2, Tlrs and the Pi3k/akt/mTor pathway. 
These genes/pathways may serve as potential therapeutic 
targets for Pd clinical therapy via modulation of the MGBa 
in the near future. Thus, an improved understanding of the 
molecular mechanisms that are involved between the gut 
microbiota, MGBa and the brain in patients with Pd may 
assist in the development of novel therapeutic strategies for the 
treatment of Pd.

although several changes in the taxa of the GM have 
been found in patients with Pd, several questions regarding 
the association between the MGBa and Pd remain unan‑
swered. For example, similar changes to the taxa of the GM 
have been found in other diseases, such as decreased levels of 
prevotella in type i diabetes and an increased abundance of 
Lactobacillus in type ii diabetes (183,184). Thus, identifying 
specific PD-associated bacterial taxa as a method to diagnose 
Pd may not be viable. in the future, studies should concen‑
trate on confirming the changes to the bacterial taxa in the 
intestinal tract that may serve as biomarkers for diagnosis of 
Pd. Furthermore, although several studies have attempted to 
understand the association between the changes in the GM 
and the pathogenesis of PD, specific molecular mechanisms 
regarding the associations between the constituents of the 
intestinal bacterial taxa and Pd remain to be determined. 

notably, whether the changes in the bacterial taxa are the 
cause or consequence of Pd should be addressed.

despite recognizing the pathogeny of Pd and the role of 
abnormal aggregation of α‑syn, Horsager et al (185) reported 
that Pd can be separated into two hypotypes based on the 
initial position of the pathological α‑syn aggregation. The 
initial site of the build‑up of α‑syn aggregates has not been 
determined, thus, further studies are required to determine the 
starting position of α‑syn polymers and the associated mecha‑
nisms. in addition, in the gastrointestinal tract, why α‑syn 
tends to oligomerization or polymer and its functional roles 
remain unclear. Barbut et al (186) reported that monomeric 
α‑syn did not exhibit the ability of antimicrobial infection, 
but aggregated α‑syn exhibited a property of antimicrobial 
peptides (aMPs), which is concentration‑dependent aggrega‑
tion in the gastrointestinal tract of patients with PD. Briefly, 
the ‘intrinsically disordered’ α-syn assumes no specific struc‑
ture in the aqueous solvent. However, α‑syn exhibits a net of 
cationic charge by the n‑terminal (~60 amino acid residue) 
in the presence of lipid membranes, and interacts with the 
phospholipids of lipid membranes that contain an abundance 
of negatively charged headgroups, such as the phosphatidyl 
serine. Subsequently, the α‑syn is pulled toward the lipid 
membranes electrostatically, which increases the concentration 
of α‑syn on the lipid membrane. The bound α‑syn molecules 
are closer to one another and begin to aggregate, exhibiting the 
characteristic of concentration‑dependent aggregation, which 
has been described for numerous aMPs (187,188). despite 
the understanding of the process of α‑syn aggregation, the 
downstream targeted molecules of aggregated α‑syn in the 
lipid membrane remain unclear. Goya et al (144) demonstrated 
that a probiotic strain, B. subtilis PXn21, can effectively clear 
aggregated α‑syn. However, whether probiotic can remove 
α‑syn that has bound to the lipid membrane remains unknown. 
abbott et al (189) reported that the unbalance of lipid 
metabolism is an important pathogenesis of Pd. Whether the 
unbalance of lipid metabolism can increase an affinity between 
α‑syn and lipid membrane requires further investigation. if 
such means are exposed, it can unravel a new wave of therapies 
that target Pd from the foundational pathophysiology, rather 
than just suppressing the symptoms.
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