
Article https://doi.org/10.1038/s41467-023-38291-1

Roles of adenine methylation in the
physiology of Lacticaseibacillus paracasei

Jie Zhao1,2,3,6, Meng Zhang 1,2,3,6, Wenyan Hui1,2,3, Yue Zhang1,2,3, JingWang1,2,3,
Shaojing Wang4, Lai-Yu Kwok 1,2,3, Jian Kong5, Heping Zhang1,2,3 &
Wenyi Zhang 1,2,3

Lacticaseibacillus paracasei is an economically important bacterial species,
used in the food industry and as a probiotic. Here, we investigate the roles of
N6-methyladenine (6mA) modification in L. paracasei using multi-omics and
high-throughput chromosome conformation capture (Hi-C) analyses. The
distribution of 6mA-modified sites varies across the genomes of 28 strains, and
appears to be enriched near genes involved in carbohydrate metabolism. A
pglXmutant, defective in 6mAmodification, shows transcriptomic alterations
but only modest changes in growth and genomic spatial organization.

In bacteria, DNAmethylation is a universal epigenetic mechanism
achieved by transferring a methyl group onto specific positions
of cytosine and adenine to form 5-methylcytosine, 4-methylcy-
tosine, or 6-methyladenine (6mA)1. DNA methylation is asso-
ciated with important physiological functions, including
chromosome replication, genome stability, correction of DNA
mismatches, and cell cycle-coupled transcription2. In earlier high-
throughput functional genomics studies, bacterial DNA methy-
lation is largely analyzed by using the single-molecule real-time
(SMRT) sequencing technology that produces genome-level
methylation profiles directly without DNA pretreatment3. Nowa-
days, an increasing number of studies have applied an integrated
approach by combining other omics and high-throughput tech-
nologies, like transcriptomics, proteomics, and high-throughput
chromosome conformation capture (Hi-C), to reveal potential
associations or even interactions between methylated sites and
gene expression4. Data obtained by such an approach provide
useful information for decoding the underlying molecular
mechanisms of how DNA methylation regulates cellular and
physiological functions.

6mA is themost prevalent among the three common typesofbase
methylation patterns identified in bacteria. It plays roles in regulating
gene expression and forming persister cells in pathogenic bacteria5, 6.
The cellular function of 6mA is far less known in non-pathogens like

lactobacilli, which are commonly found and indeed often used in food
fermentation7,8. A recent metagenomics study has linked the plasmids
and phages to their respective host genomes based on plasmid-borne
DNA methylation motifs to reveal biologically relevant insights9. Spe-
cies-/strain-specificity of DNA methylation has been demonstrated in
the species Lacticaseibacillus paracasei and Lactiplantibacillus
plantarum10. Moreover, DNA methylation could influence the trans-
formation efficiency of L. paracasei hosts11.

Although high-throughput sequencing-based methylomics
studies have started to reveal information likemethylation profiles
and features in certain non-pathogens like lactobacilli, such
knowledge remains at a phenotypic level without providing much
functional and mechanistic data. Moreover, the inter- and intras-
pecies distribution of 6mA at the population level remains unex-
plored, and the interactions between 6mA and metabolic capacity
are also largely unknown in lactobacilli. One well-studied species
among lactobacilli is L. paracasei, which is an economically
important species in the food industry12. Under specific industrial
fermentation processes, they have to survive harsh conditions
with limited nutrient supply for an extended period of time, when
they continue to contribute to flavor development in the food
matrix13,14. Development and exploitation of L. paracasei strains
have mainly relied on screening according to their genetic and/or
genomic backgrounds15.
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Based on the premise that epigenetic codes hidden in the genome
also involve in regulating the physiological behavior of the host, this
study aimed to perform a systematic investigation on L. paracasei by a
combined use of genomics, methylomics, transcriptomics, pro-
teomics, Hi-C, and metabolomics analyses. The biological insights
obtained through omics and high-throughput data integration shed
light on the molecular and functional roles of epigenetic modifica-
tions, which would promote novel, cutting-edge frontier research in
the field of probiotics. Meanwhile, the current work has paved a new
way to improve the production characteristics of lactobacilli.

Results
Genome sequencing, annotation, and phylogenetic reconstruc-
tion of L. paracasei isolates
This study sequenced and constructed a total of 27 closed genomes
(average genome coverage of 257- to 643-fold) of L. paracasei by the
combined use of Illumina and SMRT sequencing. For comparison, L.
paracasei Zhang previously sequenced by our research team was also
added to the present data set16.

The chromosome size of these genomes ranged from 2.83 to
3.27Mb. The average nucleotide identity (ANI) of the 27 isolates was
compared with the genome of L. paracasei Zhang, showing >98%
sequence similarity (Fig. 1a), confirming their species-level taxonomy.
The results of genome annotation identified 2652–3230 coding
sequences (CDSs) per L. paracasei isolate. Their pan-genome consisted
of 8250 gene families (Fig. 1b); and the size of the core-genome
decreased with the increase in the isolate number (Fig. 1c).

Adenine methylation is highly variable among L. paracasei iso-
lates and is skewed toward carbohydrate metabolism-
related genes
To understand the physiological roles of DNA methylation in L.
paracasei, we first determined their genome-wide methylome
profiles. To analyze the contribution of individual 6mA methyl
groups, SMRT sequencing was applied to provide the kinetic

information of the DNA polymerase, possible modification types
and sequence motifs.

The isolates of L. paracasei contained greatly diverse and
individualized 6mA methylated bases and motifs, ranging from
375 to 28,132 per isolate, and 78% of the 6mA sites were found in
the identified motifs (Table 1). Among the 28 investigated isolates
(including L. paracasei Zhang), 20 were found to possess
methylation motifs, and a total of 26 different methylated motifs
were identified. Many of the isolates contained unique motif
sequence(s) (Table 1). Putative methylase genes present in the 28
isolates were annotated by REBASE, and, in most cases, the
methylome signatures correlated well with the genome methyl-
transferase detected in the respective genomes (Supplementary
Table S1). A Markov chain approach analysis revealed that the
range of motif usage bias in the CDSs and the intergenic regions
deviated from −0.518 to 0.212; and 20/32 methylated motifs were
more often found in the CDSs compared with the intergenic
regions (Fig. 2a). The average frequency of 6mA methylated
motifs was non-significantly higher within the CDSs than the
intergenic regions (0.95 versus 0.76 per kb; Fig. 2b).

When mapping the methylated motifs to the annotated
genomes of the L. paracasei isolates, 18 out of 20 isolates
exhibited a skewed distribution of methylation motifs toward
CDS of genes in the Clusters of Orthologous Groups of proteins
(COG) functional category of carbohydrate transport and meta-
bolism [G] and translation, ribosomal structure and biogenesis [J].
These two categories are more skewed than other COG cate-
gories. The COG functional category [J] contains genes that play
important roles in bacterial methylation6, while the COG func-
tional category [G] is related to carbohydrate metabolism. The
COG functional category [G] genes of the 20 L. paracasei isolates
with methylated motifs were inferred and mapped to 15 carbo-
hydrate metabolism-related pathways (Supplementary Fig. S1).
The frequency distribution of methylation motifs in these genes
varied greatly between isolates, and the most methylated genes
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Fig. 1 | Intraspecific genome similarity, core- and pan-genomes of Lacticasei-
bacillus paracasei. Heatmap displaying whole-genome level average nucleotide
identity (ANI) across 27 L. paracasei isolates and L. paracasei Zhang (a); and their
pan- (b) and core-genome (c) size evolution. The color scale next to the heatmap
represents pairwise ANI values. The boxes in the boxplots represent the

interquartile range of each group’s distribution of values; the lines inside the boxes
represent the median values; the whiskers denote the lowest and highest values
within 1.5 times the interquartile range of each group; the dots above/below the
upper/lower line are the outliers.
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encoded 6-phospho-beta-glucosidase, oligo-1,6-glucosidase,
fructan beta-fructosidase, fructose-bisphosphate aldolase, pyr-
uvate oxidase, and some components of the mannose, fructose,
cellobiose and galactitol phosphoenolpyruvate-dependent phos-
photransferase systems (PTSs; Supplementary Fig. S2 and Fig. 2c).
The skewed distribution pattern of methylated motifs among
these genes is suggestive of an epigenetic level of carbohydrate
metabolism regulation, accounting for the versatile growth
behavior of L. paracasei.

Adenine methylation regulated the expression of carbohydrate
metabolism-coding genes at the transcriptomic and proteomic
levels
Annotation using REBASE revealed two methyltransferases in L. para-
casei Zhang, and these two methyltransferases are located in the
bacteriophage exclusion system, which is an eight-gene cassette in the
genome of L. paracasei Zhang (Supplementary Fig. S3). Eight of the 27
other investigated L. paracasei isolates in this study were found
to possess an identical (IMAU30101 and IMAU10043) or a partial

Table 1 | Information of detected methylated motifs and bases in different isolates

Isolate Motif IDa Motif sequenceb Number of methy-
lated motifs

Total number of
motifs

Proportion of methy-
lated motifs (%)

Number ofmethylated
basesc

IMAU10004 motif_001 CYYANNNNNNGTG/
CACNNNNNNTRRG

1636 1652 99.03 1937

IMAU10510 motif_002 CGANNNNNNNTARC/
GYTANNNNNNNTCG

1046 1066 98.12 1585

IMAU10557 motif_003 CTGCAG 1460 1476 98.92 13,707

motif_004 GCATC/GATGC 9178 9338 98.29

motif_005 GCANNNNNNNTTAC/
GTAANNNNNNNTGC

652 666 97.90

IMAU11652 motif_006 CCATC/GATGG 6292 8100 77.68 28,132

motif_007 CGGAT/ATCCG 5996 6127 97.86

motif_004 GCATC/GATGC 8911 8982 99.21

motif_008 TGGAG/CTCCA 2428 2442 99.43

motif_009 CGANNNNNNNTAYG/
CRTANNNNNNNTCG

984 986 99.80

IMAU60143 motif_010 GAGCC/GGCTC 2795 2797 99.93 3452

IMAU70001 motif_011 YAGGAG/CTCCTR 956 1018 93.91 1559

IMAU70038 motif_012 GCAAAG/CTTTGC 2516 2516 100.00 4423

motif_013 GARANNNNNNGTG/
CACNNNNNNTYTC

1358 1358 100.00

IMAU70046 motif_014 ACCNNNNNNGTC/GACNNNNNNGGT 2251 2256 99.78 3444

motif_015 CRTANNNNNNCGT/
ACGNNNNNNTAYG

619 624 99.20

IMAU70057 motif_016 CGANNNNNNNTTGY/
RCAANNNNNNNTCG

1999 2012 99.35 2430

IMAU70061 motif_017 GCCAT/ATGGC 11,353 11,419 99.42 12,368

IMAU70083 motif_018 GYTANNNNNNNTTGY/
RCAANNNNNNNTARC

953 956 99.69 2716

IMAU80010 motif_019 ACCNNNNNCCT/AGGNNNNNGGT 1924 1966 97.86 10,074

motif_014 ACCNNNNNNRTC/GAYNNNNNNGGT 6575 7382 89.07

IMAU80044 motif_020 AAGGAG/CTCCTT 1100 1142 96.32 3629

motif_021 CCANNNNNNNTYTC/
GARANNNNNNNTGG

1729 1750 98.80

IMAU80047 motif_020 AAGGAG/CTCCTT 1093 1110 98.47 4706

motif_021 CCANNNNNNNTYTC/
GARANNNNNNNTGG

1727 1730 99.83

IMAU80077 motif_022 CCANNNNNNNTANNG/
CNNTANNNNNNNTGG

2716 2726 99.63 3096

IMAU80079 motif_022 CCANNNNNNNTANNG/
CNNTANNNNNNNTGG

2693 2696 99.89 3535

IMAU80116 motif_001 CYYANNNNNNGTG/
CACNNNNNNTRRG

1741 1808 96.29 2357

PC646 motif_023 GCANNNNNNNTGC 2216 2218 99.91 3746

motif_024 GACNNNNNRTAT/ATAYNNNNNGTC 961 962 99.90

PC804 motif_025 GCAAAT/ATTTGC 2722 2825 96.35 3857

Zhang motif_026 ACRCAG/CTGYGT 1861 1908 97.54 2621
aEach motif ID represents one specific motif sequence.
bPalindromic motifs are presented in the format of “forward/reverse”.
cEight isolates (IMAU10043, IMAU10685, IMAU30101, IMAU70017, IMAU70018, PC724, IMAU70027, and IMAU80048) have no detected motifs, and their methylated bases ranged from 375 to 1312.
Degenerate bases: N =A, C, G, T; R = A, G; Y =C, T.
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bacteriophage exclusion system with at least one missing gene
(IMAU70083, IMAU70038, IMAU60143, IMAU70061, IMAU70017,
IMAU70001; Supplementary Fig. S3). However, 6mA methylation in L.
paracasei Zhang was obliterated only by inactivating its pglX gene but
not the secondmethyltransferase, suggesting that 6mAmethylation in
L. paracasei Zhang is solely responsible by the pglX gene and that the
second methyltransferase gene in this strain plays a regulatory role in
the adenine methylation process11, 17.

Owing to the well-characterized physiological properties of L.
paracasei Zhang18 and the availability of the pglX mutant, it was
selected from the isolate set as a representative strain for further
probing the potential role of 6mA methylation in carbohydrate
metabolism. Although not drastic, an obvious growth difference was
observed between the wild-type L. paracasei Zhang and the pglX
mutant when they were grown in a chemically defined medium (CDM;
Supplementary Fig. S4). The pglX mutant grew faster in the log phase
(4–14 h) compared with the wild type, reflected by the higher OD
values and lower pH values of pglXmutant during the entire period of
this growth stage.We then profiled the transcriptomes and proteomes
of the two strains after growing them inCDMfor 12 h (late logphase) to
decipher the molecular mechanism of the different growth behavior.

At the late log phase, a total of 196 differentially expressed genes
(DEGs) were identified, including 164 upregulated genes and 32
downregulated genes (Supplementary Table S2). The results of
COG and Kyoto Encyclopedia of Genes and Genomes (KEGG)
gene annotation and enrichment analysis showed that the DEGs
were mostly related to carbohydrate transport and metabolism (left
panel of Fig. 3a, b). At the proteomic level, a total of 149 DEPs were
identified, including 126 significantly increased and 23 significantly
decreased proteins (Supplementary Data 1). The results of tran-
scriptomic and proteomic analyses were largely consistent, revealing
obvious enrichment in DEPs involved in carbohydrate transport
and metabolism (right panel of Fig. 3a, b). A total of 82 DEGs/DEPs
were shared by the two data sets, including: 78 significantly increased
genes/proteins and two significantly decreased gene/protein (Fig. 3c,

Supplementary Table S2 and Supplementary Data 1). Most likely, the
differential expression of these carbohydrate metabolism-related
genes/proteins is responsible for the phenotypic growth variation
between L. paracasei Zhang and the pglX mutant.

For validation, 11 DEGs from the transcriptomic data were ran-
domly selected for real-time quantitative PCR analysis. Data generated
by real-time quantitative PCRs and transcriptomic analysis showed
good congruence (R =0.972; p = 0.001; Fig. 3d), suggesting high
reliability of the transcriptomic analysis. Notably, 6 of the 11 selected
genes also showed consistent proteomic-level differential expression
trends.

Adenine methylation-mediated regulation of carbohydrate
metabolism in L. paracasei was also confirmed by metabolomic ana-
lysis, which revealed significant increases in the levels of various car-
bohydrate metabolites in the late log phase culture of pglX mutant,
including D-fructose-6-phosphate, D-glucose-1-phosphate, D-glucose-
6-phosphate, 6-phosphogluconic-acid, fructose-1,6-bisphosphate, tre-
halose-6-phosphate, glyceraldehyde-3-phosphate, dihydroxyacetone-
phosphate, 2,3-diphosphoglycerate, and 3-phenyllactic-acid (Fig. 4).
The metabolomic results serve as a strong support for the observa-
tions of our transcriptomics and proteomics analyses.

Adeninemethylation affects the spatial genome organization of
carbohydrate metabolism-related genes
It has been reported that spatial genome organization is impor-
tant in regulating gene/protein expression19. Thus, mapping the
chromatin topology of L. paracasei Zhang pglX mutant and its
wild type would provide novel insights into the cellular and
molecular regulation of activities of lactobacilli from a fresh
perspective. Comparative Hi-C analysis of L. paracasei Zhang pglX
mutant and its wild type from log-phase cultures was therefore
performed to uncover the link between 6mA methylation and
chromosome topology. A total of 95,586,301 and 102,778,323
clean read-pairs were produced for L. paracasei Zhang pglX
mutant and its wild type, respectively.
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In both the genome-wide contact heatmaps of L. paracasei Zhang
pglX mutant and its wild type (Supplementary Fig. S5a, b), a single
intense diagonal was observed, suggesting a smaller distance with a
higher contact probability between adjacent chromosome regions. In
general, 1215 interactions, 16 chromosomal interaction domains
(CIDs), and 14 insulation areas were unique in the pglX mutant,
representing 1327, 132, and 62 coding genes, respectively.

Interestingly, genes involved in the COG functional category of car-
bohydrate transport and metabolism [G] were enriched in all three
types of chromosomal interacting regions (Fig. 5), and a number of
these genes showed altered expression in the transcriptomics or
proteomics analyses (Supplementary Data 2). Our data revealed the
potential effect of 6mA methylation on the spatial genome organiza-
tion and the gene expression in the affected genomic regions.
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Adenine methylation of transcription factor binding sites
(TFBSs) upstream of carbohydrate metabolism-related genes
To further elucidate how methylation regulates carbohydrate meta-
bolism, we searched the L. paracasei genomes for TFBSs and com-
paratively analyzed their methylation profiles. Our search returned
330–540 TFBS-containing upstream regions of CDSs across the 28 L.
paracasei genomes, and most of the identified genomic regions car-
ried conserved motifs for binding to transcriptional regulators like
CcpA, RbsR, and GalR (Supplementary Data 3). Then, to identify con-
served TFBSs present in specific genes, we performed another
homology search using sequences of upstream TFBSs together with
their downstream CDSs, which returned 82 putative functional or
hypothetical proteins, and 78 of which were associated with non-
methylated sites (Supplementary Data 4). Again, many of these
downstream CDSs encoded carbohydrate metabolism-related genes,
including N-acetylglucosamine-6-phosphate deacetylase, alpha-glu-
cosidase, glycoside hydrolase family 65 protein, aldose 1-epimerase
family protein, PTS sugar transporter subunit IIA, PTS sugar trans-
porter subunit IIB, and some predicted transcriptional regulators
(Supplementary Data 4).

We next mapped the TFBSs to the upstream regions of the DEGs
identified in the pglX mutant and compared them against the methy-
lation profile of L. paracasei Zhang. Notably, in the pglX mutant, the
upstream region of the pyruvate dehydrogenase (PDH) complex gene
cluster, encoding the PDH (acetyl-transferring) E1 component subunit
alpha (LCAZH_1299, pdhA), the PDH E1 component beta subunit
(LCAZH_1300, pdhB), the dihydrolipoamide acetyltransferase
(LCAZH_1301, pdhC), and the dihydrolipoyl dehydrogenase
(LCAZH_1302, pdhD), contained a non-methylated motif that was
highly similar to the CcpA binding site present in L. paracasei,
according to the information retrieved from the RegPrecise database.
Such observation is suggestive of the role of adenine methylation in
regulating pyruvate metabolism in the pglX mutant.

Discussion
Our results of whole-genome sequencing and methylomics analyses
showed that adenine methylation is variable among L. paracasei iso-
lates and is skewed toward carbohydrate metabolism-related genes,
particularly genes coding for key enzymes and components of PTSs.
The central role of PTSs is the nutrient acquisition, particularly in the
processes of carbohydrate transportation and phosphorylation16. The
skewed distribution pattern of methylatedmotifs among this group of
functional genes drove us to hypothesize that there was an epigenetic
level of regulation of carbohydrate metabolism in L. paracasei,
accounting for its growth versatility under nutrient-limiting
conditions.

Our previous study found that thewild type and its pglXmutant (a
pglX gene-inactivated strain) exhibited no significant difference in
growth performance in de Mann Rogosa Sharpe medium, a nutrient-
rich medium11. We then tested our hypothesis by comparing the
transcriptome, proteome, and spatial genome organization of the

wild-type L. paracasei Zhang and its mutant grown in a nutritional
restrictive CDM. As a common food use bacterium, L. paracasei is also
often subjected to nutrient-limiting or even deficit conditions during
the food fermentation or production process. In fact, such environ-
mental conditions can contribute to the flavor development of specific
food products via altered bacterial growth and metabolic responses13.
The pglX gene is responsible for 6mA methylation in L. paracasei
Zhang; thus, the mutant lacks the ability to methylate adenine in the
genome. Interestingly, the inactivation of pglX gene in L. paracasei
affected mostly the gene expression of carbohydrate metabolism-
related genes on the transcriptomic and proteomic levels. Metabo-
lomics analysis detected more carbohydrate substrates of various
types in the late log phase culture of pglXmutant than that of the wild
type. Moreover, Hi-C analysis revealed the presence of carbohydrate
metabolism-related genes in the unique interaction, CID, and insula-
tion regions of thepglXmutant (SupplementaryData 2). Thesefindings
together suggested that 6mAmethylation is involved in the regulation
of carbohydrate metabolism in L. paracasei at the transcriptomics,
proteomics, and metabolomics levels, and such regulation could be
exerted via modulating the spatial genome organization. Spatial
positions of regulatory sequences and proteins are important for
regulating gene expression20, and the methylation of a local motif site
does not only affect the expression of a proximal gene but also a distal
one as a result of the tridimensional conformation of the
chromosome20.

Notably,most of the investigated L. paracasei isolates haveunique
6mA methylation patterns in their carbohydrate metabolic genes,
which might be one of the mechanisms for their differential gene
regulation of carbohydrate metabolism. Intragenic methylation of
hemi-methylation clusters has been proposed as a regulatory
mechanism of gene expression in bacteria like Escherichia coli via
elevating themelting temperature21. A recent study byHua et al. (2022)
has provided further evidence of intragenic transcriptional regulation
by direct binding of transcriptional factors to the coding regions to
modulate transcription of the boundor adjacent genes22. García-Pastor
et al. (2019) reported thebistable expressionof the Salmonella enterica
std fimbrial operon through a competitive regulatory control between
DNA adenine methylation and formation of the StdE-StdF-HdfR acti-
vator loop upstream of the std promoter23. Thus, transcription is
regulated via complicated mechanisms involving both upstream and/
or the coding region of a gene/operon, and such control could be
directed via modifying specific methylation sites and/or TFBSs. The
current comparative analysis of TFBSs across the genomes of L.
paracasei identified several conserved TFBSs with non-methylated
sites at the upstream regions of carbohydrate metabolism-related
genes, implicating the existence of putative interactive gene reg-
ulatorymechanismsmediated by a combined action of transcriptional
factor binding and methylation, although the observation of colocali-
zation of the methylation sites and differentially expressed carbohy-
dratemetabolic genes alonedoes not allowdisentangling a direct from
a pleiotropic effect. The overlapping between non-methylated sites

Fig. 3 | Analysis of differentially expressed genes (DEGs) and proteins (DEPs)
across functional categories andpathways.Distribution and enrichment analysis
of DEGs and DEPs (left and right panels, respectively) across different Cluster of
Orthologous Group of proteins (COG) functional categories. The DEGs and DEPs
were identified by transcriptomics and proteomics, respectively. Significant
enrichment is indicated by a single asterisk (the P values less than 0.05 are labeled;
two-sided Fisher’s exact test). All exact P values are provided in the data source file
(a). COG functional categories: [C], Energy production and conversion; [D], Cell
cycle control, cell division, chromosomepartitioning; [E], Amino acid transport and
metabolism; [F], Nucleotide transport and metabolism; [G], Carbohydrate trans-
port andmetabolism; [H], Coenzyme transport andmetabolism; [I], Lipid transport
and metabolism; [J], Translation, ribosomal structure and biogenesis; [K], Tran-
scription; [L], Replication, recombination and repair; [M], Cell wall/membrane/

envelope biogenesis; [O], Posttranslational modification, protein turnover, cha-
perones; [P], Inorganic ion transport and metabolism; [S], Function unknown; [T],
Signal transduction mechanisms; [U], Intracellular secretion, trafficking, and vesi-
cular transport; [V], Defense mechanisms. Kyoto Encyclopedia of Genes and Gen-
omes (KEGG) pathway enrichment analysis of DEGs andDEPs, shown in the left and
the right panels, respectively. Statistical difference was tested by two-sided Fisher’s
exact test; and the color scale represents the P values. P values with correction by
the Benjamini–Hochberg procedure are shown in the data source file (b). Venn
diagram showing common differentially regulated genes between transcriptomics
and proteomics (c). Pearson correlation analysis of data generated by real-time
quantitative polymerase chain reaction (RT-qPCR) andRNA-seq.X- and y-axes show
the data of fold-change found by RNA-seq and RT-qPCR, respectively. The gray-
shaded area represents the error band of Standard Deviation (SD) (d).
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and known TFBSs would bemore direct evidence for the regulation of
gene expression. Nevertheless, the possession of both TFBSs and
methylation sites in these regions suggested that these features are
likely playing a role in governing the cellular and metabolic responses
and confining the species-/strain-specific carbohydrate metabolic
capacity of L. paracasei.

As expected, genes encoding key enzymes involved in the car-
bohydrate metabolism were identified, and some of which were sig-
nificantly upregulated in the pglXmutant comparedwith thewild type,
including class II fructose-bisphosphate aldolase (LCAZH_0191,
LCAZH_0381, and LCAZH_2698), triose-phosphate isomerase

(LCAZH_2697), aldose 1-epimerase (LCAZH_1782, LCAZH_2563), acet-
ate kinase (LCAZH_0188), xylulokinase (LCAZH_0190), PDH (acetyl-
transferring) E1 component subunit alpha (LCAZH_1299, pdhA), PDHE1
component beta subunit (LCAZH_1300, pdhB), dihydrolipoamide
acetyltransferase (LCAZH_1301, pdhC), dihydrolipoyl dehydrogenase
(LCAZH_1301, pdhD), and L-lactate dehydrogenase (LCAZH_0554).
Class II fructose-bisphosphate aldolase, triose-phosphate isomerase,
and aldose 1-epimerase are enzymes of the glycolytic pathway, while
acetate kinase, xylulokinase, and PDH participate in pyruvate meta-
bolism. Moreover, an increase in the activity of the PDH complex
would enhance the conversion of glucose to pyruvate by L-lactate
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dehydrogenase to produce lactic acid24. Theseproteins are anticipated
to be highly expressed in actively proliferating bacteria to ensure
enough energy production for supporting growth. Moreover, the
enhanced expression of carbohydrate metabolism-related genes and
proteins in the pglXmutant is also accompanied by obvious increases
in a multitude of carbohydrate metabolites compared with the wild
type. Intriguingly, aCcpAmotif from L. paracaseiwasdiscovered in the
upstream region of the PDH complex gene cluster in the pglX mutant
with no methylated sites. Regulatory proteins bind more favorably to
non-methylated DNAs with the highest affinity, enhancing their inter-
actions and effectiveness inmodulating the expression of downstream
genes and metabolic pathways25. We thus speculate that the upregu-
lation of the PDH complex was mediated by the CcpA motif with non-
methylated sites.

The omics data set also showed the upregulation of several genes
in the vitaminC (L-ascorbate)metabolic pathway, including L-ribulose-
5-phosphate 4-epimerase (LCAZH_2733 and LCAZH_2735), DeoR/GlpR
transcriptional regulator (LCAZH_2736), 3-keto-L-gulonate-6-phos-
phate decarboxylase (LCAZH_2737), UlaA (LCAZH_0192, LCAZH_0379
and LCAZH_2739), UlaB (LCAZH_0378 and LCAZH_2738), and UlaC
(LCAZH_0377 and LCAZH_2740) in the pglXmutant comparedwith the
wild type. Under anaerobic conditions, vitamin C could serve as a sole
carbon source for supporting bacterial growth. In E. coli, the catabolic
pathway of vitamin C is encoded by an operon containing six genes,
namely ulaABCDEF, encoding a transporter (UlaA), an IIB-like enzyme
(UlaB), and an IIA-like enzyme (UlaC), which are necessary for bacterial
uptake and phosphorylating vitamin C into L-ascorbate 6-phosphate26.
Inactivating the genes encoding enzyme IIA and enzyme IIB of vitamin
C-specific PTSs in Streptococcus mutans would extend the growth lag
phase and decrease the growth yield in vitamin C-containing
medium27. The differential regulation of these genes suggested that
6mAmethylation can also regulate themetabolic pathwayof vitaminC
utilization.

Unlike PTSs of other families, themannose PTS has an IID protein.
Bacterial mannose PTSs have been shown to have broad substrate
specificity, such as mannose, glucose, and galactose28. Mannose PTSs
in some lactobacilli have previously been characterized. Functionally,
themannose PTSs in Latilactobacillus curvatus have been proven to be
glucose and mannose transporters, though no glucose-specific PTS
activity was found29. Similarly, a 2-deoxy-D-glucose-resistantmutant of
L. paracasei was found to be impaired in the main glucose transport
mechanism30, and thus themannose PTSs in the pglXmutant are likely
functioned via a strong alternative catabolite repression mechanism
by glucose andmannose of the lactose and ribose assimilation genes30.
Our data showed an upregulation of mannose PTSs-coding genes in
the pglX mutant, including fructose/mannose PTS IIA component
(LCAZH_0402), PTS sugar transporter subunit IIB (LCAZH_0403), PTS
sugar transporter subunit IIC (LCAZH_0404), PTS system mannose/
fructose/sorbose family transporter subunit IID (LCAZH_0405), and
PTS sugar transporter (LCAZH_0406). In addition, it is interesting to
note that there was an increase in the expression of the N-acetyl-
galactosamine (Aga)-series components of the mannose PTSs in the
pglX mutant, namely PTS fructose transporter subunit IIA
(LCAZH_0402 and LCAZH_2662), PTS system mannose/fructose/sor-
bose family transporter subunit IID (LCAZH_2663), PTS sugar trans-
porter subunit IIC (LCAZH_2664), and PTS sugar transporter subunit
IIB (LCAZH_2665). In E. coli, Aga-PTSs are responsible for N-acetyl-
galactosamine and galactosamine utilization31. These amino sugars are
particularly required for bacterial cell wall synthesis. Therefore, the
increase in uptake efficiency in these sugars by regulating Aga-PTSs in
L. paracasei is likely a protective mechanism activated in the late log
phase for cell maintenance.

Another 6mAmethylation-regulated PTS-related gene set at both
transcriptomic and proteomic levels was the galactitol family, includ-
ing PTS galactitol transporter subunit IIC (LCAZH_2647), PTS galactitol
transporter subunit IIB (LCAZH_2648), and PTS sugar transporter
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Fig. 5 | Distribution and enrichment analysis of Cluster of Orthologous Group
of proteins (COG) of differentially expressed genes. X-axis indicates the number
of genes in the regions of unique interactions (a), unique chromosomal interaction
domains (b), and unique insulation areas (c) were analyzed. Significant gene
enrichment in a specific functional category is indicated by a single asterisk (the P
values less than 0.05 are labeled; two-sided Fisher’s exact test). All P values are
provided in the data source file. COG functional categories: [C], Energy production
and conversion; [D], Cell cycle control, cell division, chromosome partitioning; [E],
Amino acid transport and metabolism; [F], Nucleotide transport and metabolism;

[G], Carbohydrate transport and metabolism; [H], Coenzyme transport and meta-
bolism; [I], Lipid transport and metabolism; [J], Translation, ribosomal structure
and biogenesis; [K], Transcription; [L], Replication, recombination and repair; [M],
Cell wall/membrane/envelope biogenesis; [N], Cell motility; [O], Posttranslational
modification, protein turnover, chaperones; [P], Inorganic ion transport and
metabolism; [Q], Secondary metabolites biosynthesis, transport and catabolism;
[R], General function prediction only; [S], Function unknown; [T], Signal trans-
duction mechanisms; [U], Intracellular secretion, trafficking, and vesicular trans-
port; [V], Defense mechanisms.
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subunit IIA (LCAZH_2649). Bacterial galactitol-PTSs are associatedwith
D-arabitol utilization. Although this gene cluster hasbeen annotated as
CDSs for galactitol fermentation, most available evidence supported
that this subset of gene is related to arabitol metabolism. For example,
genes encoding galactitol-PTSs have been found to be highly activated
during the growth ofBacillusmethanolicus utilizing arabitol as the sole
carbon source32. The role of galactitol-PTS transporter in L. paracasei
and the exact reason for its differential regulation by 6mAmethylation
would require further investigation.

The whole-genome sequencing and methylomics analyses
revealed great variation in 6mA methylation pattern among L. para-
casei strains, and such variation between strains could potentially
account for the strain-specificity and versatility in carbohydrate
metabolism of this species. Data from further multi-omics and Hi-C
analyses of the L. paracasei wild type and its pglXmutant consistently
supported that 6mAmethylation could be a regulatorymechanism for
its carbohydratemetabolism. Our study provides new insights into the
role of 6mA methylation in L. paracasei, particularly with prior
knowledge that carbohydratemetabolism affects both the growth and
survival of L. paracasei under various environmental conditions. Fur-
ther study to understand the role of epigenomic regulation of the
growth and activity of L. paracasei would be of interest in improving
industrial production using this species.

Methods
Bacterial strains and cultivation
Twenty-eight L. paracasei isolates (including L. paracasei Zhang) and a
pglX gene-inactivated strain of L. paracasei Zhang were obtained from
the Key Laboratory of Dairy Biotechnology and Engineering, Ministry
of Education, at the Inner Mongolia Agricultural University of China.
For strain activation, the bacteria were cultivated in standard deMann
Rogosa Sharpe (MRS) broth (CM0359; Oxoid, Ltd., Basingstoke, UK).
For RNA-seq analysis, proteomics analysis, Hi-C, and metabolomics
analysis, the bacteria were cultivated in a CDM (Supplementary
Table S3). The CDM was a minimal medium developed for investigat-
ing the growth and metabolism of L. paracasei33. The growth of L.
paracasei Zhang and the pglX mutant in CDM were measured by
changes in pH and optical density at 600nm (OD600).

Genomics and methylomics analyses by Illumina and SMRT
sequencing
Genomic DNA was isolated by the Wizard Genomic DNA Purification
Kit (Promega, Madison, WI, USA). The integrity of DNA was examined
by 0.6% agarose gel and 1.2% Lonza FlashGel electrophoresis. For
SMRT sequencing, libraries with an insert size of 10 kb were con-
structed using the PacBio SMRTbell TM Template Kit. The quality of
the libraries was evaluated on a Qubit® 2.0 Fluorometer (Thermo
Fisher Scientific, Waltham, MA, USA), and the insert fragment size was
determinedby anAgilent 2100Bioanalyzer (Agilent Technologies, Inc.,
SantaClara, CA,USA). For Illumina sequencing, librarieswere prepared
using theNEBNext®Ultra™DNALibrary PrepKit (NewEnglandBiolabs,
Inc., Ipswich, MA, USA). The DNA samples were first fragmented by
sonication to a size of around 350bp. Then, the DNA fragments were
end-polished, A-tailed, and ligated with the full-length adaptor by PCR
amplification. ThePCRproductswerepurifiedwithAMPureXP system,
and the quality and size distribution of libraries were evaluated by an
Agilent 2100 Bioanalyzer. Sequencing was performed on a PacBio
Sequel platform (Pacific Biosciences ofCalifornia, Inc., Menlo Park, CA,
USA) and an Illumina NovaSeq 6000 (Illumina, Inc., San Diego, CA,
USA), respectively.

De novo assemblies were realized by a standard hierarchical
genome assembly process using only PacBio sequencing data from a
single, long-insert library; and the consensus was called across reads
after assembly polishing. Effective data of each sample after quality
control were used to assemble the genome of reads by SMRT link

v5.1.0 software, and the preliminary assembly results could reflect the
crude genome quality of samples. Then, Arrow software (Pacific
Biosciences of California, Inc., Menlo Park, CA, USA) was used to
optimize the assembly results and correct areas with assembly errors
by comparing the original data of the initial assembly sequence against
data generated by the Illumina platform34,35. The chromosomal and
plasmid sequences were identified, and chromosomal sequences were
assembled into a circular genome. To identify base modifications and
methyltransferase motifs, the protocols for modification and motif
analysis in SMRT Link software were used with the identification
quality score ≥2036. Methylation sites generated by the protocol were
mapped to the genomes. Methyltransferases were identified by
REBASE using BLASTP with identity >50%, e value <1e–10, and bit
score >5037.

Gene prediction was realized in Prokka (version 1.13) with the
argument of kingdom Bacteria38. Functional annotation of coding
sequences (CDSs) was conducted by using the databases of Rapid
Annotation Subsystem Technology (RAST) 2.039, KEGG40, and COG41.
The ANI was calculated by a standalone java ANI calculator42. The
skewness of CDS and COG distribution was evaluated with a Markov
model that considered motif composition36. Motif-based sequence
analysis was performed by the MEME suite (v5.0.5)43. First, the
upstream regions with a length of 50–300 bp of L. paracasei genes
were extracted using a python script, intergenic_regions.py44. A Lac-
tobacillaceae-specific TFBS catalog was built by using the sites2meme
script of MEME suite based on motif sequences, which included 82
transcription factor regulons of 15 Lactobacillaceae strains. Then, the
FIMO tool included in the MEME suite was used to scan upstream
regions of L. paracasei genes for the occurrence of putative TFBSswith
the q value (adjusted P value) threshold of 0.0545. The motif sequence
logo was constructed by WebLogo346.

RNA-seq analysis
Triplicate parallel cultures of wild-type L. paracasei Zhang (reference
condition) and pglXmutant (test condition) were grown in the CDM to
late log phase, and bacterial cells were harvested. Total RNA was
extracted using the Trizol reagent (Invitrogen Corporation, Carlsbad,
CA, USA) following the manufacturer’s instructions. The RNA library
was constructed from 2μg of total RNA using the TruSeqTM RNA
Sample Preparation Kit (Illumina Inc., San Diego, CA, USA). Briefly,
rRNA was removed from the total RNA by a Ribo-Zero Magnetic Kit
(Epicenter Biotechnologies, Madison, WI, USA), and the mRNAs were
randomly fragmented into lengths of about 200 nucleotides. Double-
stranded cDNAwas synthesizedby reverse transcription using random
hexamer primers (Illumina Inc., San Diego, CA, USA) and a SuperScript
Double-stranded cDNA Synthesis Kit (Invitrogen Corporation, Carls-
bad, CA, USA). Phusion DNA polymerase (New England Biolabs, Inc.,
Ipswich, MA, USA) was used for PCR amplification by a total of 15
cycles. After the library was quantified by the Turner BioSystems TBS-
380 Mini-Fluorometer (in conjunction with Molecular Probes’ Pico-
Green® dsDNA Quantitation Reagent), Illumina HiSeq X Ten was used
for RNA-seq paired-end sequencing.

Clean reads were obtained by removing the adapter sequences,
filtering low-quality sequences at the end of the reads, and removing
readswith N ratio of 10%. The high-quality clean readsweremapped to
the reference genome by using Bowtie2 (http://bowtie-bio.
sourceforge.net/bowtie2/index.shtml). In addition, 10,000 raw reads
were randomly selected from each sample and compared against the
Rfam database (http://rfam.xfam.org/) using BLAST. The rRNA con-
tamination rate in the samples was calculated based on the annotation
results. DESeq2 software (http://bioconductor.org/packages/release/
bioc/html/DESeq2.html) was used to identify DEGs between samples
(with a cut-off false discovery rate [FDR] of ≤0.05 and 2.0-fold change).

Real-time quantitative PCRs were performed to validate the RNA
sequencing results. The RNA of three biological replicates of the
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collected samples was extracted by using the RNAprep Pure Cell/
Bacteria Kit (Tiangen Biotech Co., Ltd., Beijing, China). Then 500 ng of
RNAwas reverse transcribed into cDNAwith a reverse transcription kit
(PrimeScript RT Reagent Kit with gDNA Eraser; Takara Biomedical
Technology Co., Ltd., Beijing, China) according to the manufacturer’s
instructions. Quantitative analysis was conducted via the qTOWER3G
Touch Real-Time PCR System (Analytik Jena AG, Jena, Germany). The
reaction was performed in a 20μL system, containing 1 µL of cDNA
template, 10 µL of SYBR Premix Ex TaqII (Takara Biomedical Technol-
ogy Co., Ltd., Beijing, China), 0.8 µL of each primer, and 7.4 µL of
ddH2O. The PCR conditions were as follows: initial denaturation at
95 °C for 30 s, 40 cycles of denaturation at 95 °C for 5 s, primer
annealing, and DNA extension at 60 °C for 30 s. The housekeeping
gene, glyceraldehyde phosphate dehydrogenase, was used as the
reference gene. Comparative threshold cyclemethod (2−ΔΔCT) was used
to calculate the relative gene expression level47. The primers used are
listed in Supplementary Data 5.

Proteomics analysis
Three biological replicates of culture samples of wild-type L.
paracasei Zhang (reference condition) and pglX mutant (test
condition) grown to late log growth phase in CDM were prepared.
For protein extraction, samples were dissolved in the extraction
buffer (1% sodium deoxycholate, 200mM dithiothreitol, 50mM
Tris-HCl) containing protease inhibitors. Protein concentrations
were assayed by a Pierce bicinchoninic acid protein assay kit
(Thermo Fisher Scientific, Waltham, MA, USA). After reduction,
cysteine alkylation and digestion, samples were labeled with
tandem mass tag reagent (TMT reagent; Thermo Fisher Scientific,
Waltham, MA, USA) according to the manufacturer’s instructions.
Pooled samples were separated by an ACQUITY UPLC BEH C18
column (1.7 µm, 2.1 mm × 150mm; Waters, Milford, MA, USA).
Proteomic analyses were performed on an Easy-nLC system cou-
pled to a Q Exactive HF-X (Thermo Fisher Scientific, Waltham, MA,
USA) for 60min. The peptides were dissolved in mass spectro-
metric loading buffer and separated on the C18-reversed phase
column (75 μm× 25 cm, Thermo Fisher Scientific, Waltham, MA,
USA) for 120min at a volume flow rate of 300 nL/min; the mobile
phases consisted of aqueous solution A (2% acetonitrile with 0.1%
formic acid) and B (80% acetonitrile with 0.1% formic acid). The
peptides were eluted using the following gradient: 0–67min,
6–23% B; 67–81 min, 23–29% B; 81–90min, 29–38% B; 90–92min,
38–48% B; 92–93min, 48–100% B; 93–120min, 100–0% B. The Q
Exactive HF-X was run in the collection mode of data-dependent
acquisition. The mass spectrometry (MS) spectra (m/z 350-1500)
were obtained with primary MS resolution 120000. The automatic
gain control (AGC) was targeted at 3e6, and the maximum fill time
was 50ms. The top 15 intense precursor ions were selected into
collision cell for fragmentation by higher-energy collision dis-
sociation. The MS/MS resolution was set at 45,000; the AGC
target was 2e5; the maximum fill time was 120ms; the fixed first
mass was 110m/z; the minimum AGC target was 1e4; the intensity
threshold was 8.3e4; and the dynamic exclusion time was 30 s.

Raw data of LC-MS/MS spectra were analyzed by Proteome
DiscoverTM Software 2.4. The MS/MS search criteria were as follows:
precursor mass tolerance of 20ppm; fragment mass tolerance of
0.02Da; trypsin as the enzyme with 2 missed cleavage allowed; car-
bamidomethyl (C), TMTpro (K), and TMTpro (N-terminus) as static
modifications; and oxidation (M), acetyl (N-terminus), met-loss (N-
terminus), and met-loss with acetyl (N-terminus) as dynamic mod-
ifications. The cut-off FDR of peptide identification was ≤0.01. For
protein identification, each protein should match at least one unique
peptide. Proteins displaying a P value of <0.05 by t-test were con-
sidered statistically significant. A 1.2-fold change was defined as the
threshold for regulated proteins.

Hi-C analysis
The wild-type L. paracasei Zhang (reference condition) and pglX
mutant (test condition) were grown to the late log phase in a CDM.
Cells were collected by centrifugation, washed at room temperature,
and crosslinked with 3% formaldehyde for 30min. The formaldehyde
was quenched with 0.375M glycine for 20min at 4 °C. The fixed cells
were collected and stored in a −80 °C freezer. For library construction,
the fixed cells were suspended in 100 µL Tris-EDTA buffer with 2 µL of
lysozyme (Ready-Lyse™ Lysozyme Solution; Epicenter Biotechnolo-
gies, Madison, WI, USA). After incubation for 20min, sodium dodecyl
sulfate was added to lyze cells for 10min at 65 °C. The lysed cells were
digested in the reaction mixture consisting of 300 µL water, 50 µL 10-
fold NEB buffer 2.1 (New England Biolabs, Inc., Ipswich, MA, USA), and
100 U of Sau3AI. Restriction fragment ends were labeled with bioti-
nylated cytosine nucleotides by biotin-14-dCTP (TriLINK Biotechnol-
ogies, San Diego, CA, USA). After blunt-end ligation, proteinase K was
used for reversing cross-linking overnight. The DNAwas purified using
the QIAamp DNA Mini Kit (Qiagen GmbH, Hilden, Germany) and
sheared to a length of ~400 bp. Point ligation junctions were pulled
down using Dynabeads® MyOne™ Streptavidin C1 (Thermo Fisher
Scientific, Waltham, MA, USA). The Hi-C library was prepared by
NEBNext® Ultra™ II DNA library Prep Kit (New England Biolabs, Inc.,
Ipswich, MA, USA) and was submitted for sequencing on an Illumina
HiSeq X Ten platform (Illumina Inc., San Diego, CA, USA).

To avoid any artificial bias, quality filtering was realized by Trim-
momatic software version 0.38, and then the clean data were itera-
tively aligned to the reference genome48. Valid paired reads were
binned into nonoverlapping genomic intervals to construct contact
maps. After the statistics of valid contacts at a defined resolution, an
observed interaction matrix was obtained and normalized with an
iterative normalization method. The contacts at the resolution of 1 kb
bins were imported to Fit-Hi-C software for calculating the cumulative
probability P value and FDR (q value). Significant interactions were
discriminated by: p and q values of less than 0.01, and contact count
>249. CIDs are contiguous regions with a high degree of self-associa-
tion, which were identified by dividing the chromosome into windows
with fixed length using an insulation score algorithm50. Differential
insulation areas were obtained by using the sliding-window method49.
According to the insulation score of bins, the Pearson correlation
coefficient of each window between two samples was calculated49.
Windows with Pearson coefficient >0.6 were merged, and the
remaining bins in the genome were regarded as the unique insulation
regions49. Interactions, and CIDs that occurred only under the refer-
ence condition (in wild type L. paracasei Zhang but not the pglX
mutant) was considered to be unique to the test condition and
vice versa.

Targeted metabolomics analysis of metabolites involved in
energy metabolism
Samples ofwild-type L. paracaseiZhang (referencecondition) andpglX
mutant (test condition) prepared from cells grown to late log phase in
CDMwere separated by anACQUITYUPLCBEHAmide column (1.7 µm,
2.1 × 100mm;Waters,Milford,MA,USA). The solvent system consisted
of water with 10mM ammonium acetate and 0.3% ammonium
hydroxide (A), and 90% acetonitrile/water (B). The gradient was
as follows: 0–1.2min, 95% B; 8min, 70% B; 9–11min, 50% B;
11.1–15min, 95% B.

Linear ion trap and triple quadrupole scans were carried out
on a QTRAP® 6500+ LC-MS/MS System coupled to an electrospray
ionization (ESI) turbo ion-spray interface. It was operated in both
positive and negative ion modes. The operation conditions for ESI
source were as follows: ion source, ESI±; source temperature,
550 °C; ion-spray voltage, 5500 V (positive), −4500 V (negative);
curtain gas, 35 psi. Metabolites in energy metabolism were ana-
lyzed using multiple reaction monitoring (MRM). Data acquisition
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was realized using Analyst 1.6.3 software (Sciex, Framingham, MA,
USA). Multiquant 3.0.3 software (Sciex, Framingham, MA, USA)
was used to quantify metabolites. Mass spectrometer parameters,
such as the declustering potentials and collision energies for
individual MRM transitions, were optimized. A specific set of
MRM transitions were monitored for each period according to the
metabolites eluted within this period. Metabolite identification
was based on the MetWare online platform (http://www.metware.
cn/). Differentially regulated metabolites in energy metabolism
between samples were determined by variable importance in
projection and fold change.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw data of L. paracasei strains generated by Illumina and SMRT
sequencing have been deposited in the National Center of Biological
Information (NCBI) Sequence Read Archive (SRA; http://trace.ncbi.
nlm.nih.gov/Traces/sra/sra.cgi) under the accession numbers:
SRR16925174-SRR16925228. The genome sequence of L. paracasei
Zhang was retrieved from the NCBI GenBank under the accession
number CP001084.2. TheMS proteomics data have been deposited to
the ProteomeXchange Consortium via the PRIDE partner repository
(http://www.ebi.ac.uk/pride; data set identifier, PXD026826). The
transcriptomics data have been deposited in the NCBI SRA under the
accession number PRJNA725355. The Hi-C data of L. paracasei Zhang
and its mutant have been deposited in the NCBI SRA under the
accession number SAMN23078205. Source Data are provided with
this paper.
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